
Copyright Tibbo Technology 2000-2012

TIDE and Tibbo BASIC User Manual

Tibbo Technology Inc.

TIDE and Tibbo BASIC User ManualI

©2000-2011 Tibbo Technology Inc.

Table of Contents
Taiko R2 1

... 1Legal Information

Overview 4

... 4Our Language Philosophy

... 7System Components

... 8Objects

... 8Events

Getting Started 9

... 9Preparing Your Hardware

... 10Starting a New Project

... 11Writing Code

... 14Building, Uploading and Running

... 15Compiling a Final Binary

Programming with TIDE 15

... 15Managing Projects

... 16The Structure of a Project

... 17Creating, Opening and Saving Projects

... 18Adding, Removing and Saving Files

... 20Resource Files

... 20Built-in Image Editor

... 22Coding Your Project

.. 22Project Brow ser

.. 23Code Auto-completion

.. 24Code Hinting

.. 24Tooltips

.. 26Supported HTML Tags

... 26Making, Uploading and Running an Executable Binary

.. 27Tw o Modes of Target Execution

... 28Debugging Your Project

.. 28Target States

.. 29Exceptions

.. 30Program Pointer

.. 30Breakpoints

.. 31The Call Stack and Stack Pointer

.. 33Stepping

.. 33The Watch

.. 37Scopes in Watch

.. 37Code Profiling

... 38Project Settings

... 39Device Explorer

.. 41Upload Function

... 41Protecting Your Device with a Password

... 43Programming Fundamentals

... 43Program Structure

... 45Code Basics

... 47Naming Conventions

IIContents

©2000-2011 Tibbo Technology Inc.

... 47Introduction to Variables, Constants and Scopes

.. 48Variables And Their Types

.. 50Type Conversion

.. 52Type conversion in expressions

.. 53Compile-time Calculations

.. 54Arrays

.. 58Structures

.. 59Enumeration Types

.. 61Understanding the Scope of Variables

.. 64Declaring Variables

.. 65Constants

... 66Introduction to Procedures

.. 68Passing Arguments to Procedures

.. 70Memory Allocation for Procedures

... 72Introduction to Control Structures

.. 72Decision Structures

.. 72Loop Structures

.. 73Doevents

... 76Using Preprocessor

.. 78Scope of Preprocessor Directives

... 79Working with HTML

.. 80Embedding Code Within an HTML File

... 82Understanding Platforms

.. 82Objects, Events and Platform Functions

Language Reference 83

... 83Statements

... 84Const Statement

... 84Declare Statement

... 86Dim Statement

... 87Doevents Statement

... 87Do... Loop Statement

... 88Enum Statement

... 89Exit Statement

... 90For... Next Statement

... 91Function Statement

... 93Goto Statement

... 94If.... Then... Else Statement

... 95Include Statement

... 96Includepp Statement

... 97Select-Case Statement

... 99Sub Statement

... 100Type Statement

... 101While-Wend Statement

... 102Keywords

... 102As

... 102Boolean

... 102ByRef

... 102Byte

... 102ByVal

... 103Char

... 103Else

... 103End

... 103False

... 103For

... 103Integer

... 103Next

TIDE and Tibbo BASIC User ManualIII

©2000-2011 Tibbo Technology Inc.

... 104Public

... 104Short

... 104Step

... 104String

... 104Then

... 104Type

... 104To

... 104True

... 104Word

... 105Operators

... 106Error Messages

... 107C1001

... 107C1002

... 107C1003

... 108C1004

... 108C1005

... 108C1006

... 109C1007

... 109C1008

... 110C1009

... 110C1010

... 111C1011

... 111C1012

... 111C1013

... 112C1014

... 112C1015

... 113C1016

... 113C1017

... 113C1018

... 114C1019

... 114C1020

... 114C1021

... 115C1022

... 115C1023

... 116C1024

... 116L1001

... 116L1002

... 117L1003

... 117L1004

... 117L1005

... 117L1006

... 118L1007

... 118L1008

... 118L1009

... 119Objects, Properties, Methods, Events

Development Environment 119

... 119Installation Requirements

... 119User Interface

... 120Main Window

... 120Operation Modes

... 121Menu Bar

.. 121File Menu

.. 122Edit Menu

.. 122View Menu

.. 123Project Menu

IVContents

©2000-2011 Tibbo Technology Inc.

.. 124Debug Menu

.. 124Image Menu

.. 125Window Menu

.. 125Help Menu

... 126Toolbars

.. 126Project Toolbar

.. 126Debug Toolbar

.. 127Image Editor Toolbar

.. 128Tool Properties Toolbar

.. 128Selection Tool Properties

.. 128Paint Tool Properties

.. 128Eraser Tool Properties

.. 129Text Tool Properties

.. 129Line Tool Properties

.. 129Rectangle Tool Properties

.. 130Ellipse Tool Properties

.. 130Zoom Tool Properties

... 130Status Bar

... 131Dialogs

.. 131Project Settings

.. 132New Project

.. 132Add File to Project

.. 133Graphic File Properties Dialog

... 133Panes

.. 133Call Stack

.. 133Output

.. 134Project

.. 134Brow ser

.. 134Files

.. 135Watch

.. 135Colors

... 136Language Element Icons

Glossary of Terms 136

... 136Compilation Unit

... 136Compiler

... 136Construct

... 136Cross-Debugging

... 137Identifier

... 137Keyword

... 137Label

... 137Linker

... 137P-Code

... 137Syscall

... 137Target

... 137Virtual Machine

Platforms 138

... 138Platform Specifications

... 138EM500W

.. 140Platform-specific Constants

.. 140Enum pl_redir

.. 141Enum pl_io_num

TIDE and Tibbo BASIC User ManualV

©2000-2011 Tibbo Technology Inc.

.. 142Enum pl_io_port_num

.. 142Enum pl_int_num

.. 142Enum pl_sock_interfaces

.. 143Connecting External Flash IC

... 143EM1000 and EM1000W Platforms

.. 146Platform-specific Constants

.. 146Enum pl_redir

.. 147Enum pl_io_num

.. 149Enum pl_io_port_num

.. 150Enum pl_int_num

.. 150Enum pl_sock_interfaces

... 151EM1202 and EM1202W Platforms

.. 153Platform-specific Constants

.. 153Enum pl_redir

.. 154Enum pl_io_num

.. 156Enum pl_io_port_num

.. 157Enum pl_int_num

.. 157Enum pl_sock_interfaces

... 158EM1206 and EM1206W Platforms

.. 160Platform-specific Constants

.. 160Enum pl_redir

.. 161Enum pl_io_num

.. 163Enum pl_io_port_num

.. 163Enum pl_int_num

.. 163Enum pl_sock_interfaces

... 164DS1100 Platform

.. 165Platform-specific Constants

.. 166Enum pl_redir

.. 167Enum pl_io_num

.. 167Enum pl_io_port_num

.. 167Enum pl_int_num

.. 168Enum pl_sock_interfaces

... 168DS1101W Platform

.. 170Platform-specific Constants

.. 170Enum pl_redir

.. 171Enum pl_io_num

.. 173Enum pl_io_port_num

.. 174Enum pl_int_num

.. 174Enum pl_sock_interfaces

... 174DS1102W Platform

.. 176Platform-specific Constants

.. 177Enum pl_redir

.. 178Enum pl_io_num

.. 180Enum pl_io_port_num

.. 180Enum pl_int_num

.. 180Enum pl_sock_interfaces

... 181DS1202 Platform

.. 182Platform-specific Constants

.. 183Enum pl_redir

.. 184Enum pl_io_num

.. 185Enum pl_io_port_num

.. 185Enum pl_int_num

.. 186Enum pl_sock_interfaces

... 186DS1206 Platform

.. 188Platform-specific Constants

.. 188Enum pl_redir

.. 189Enum pl_io_num

.. 190Enum pl_io_port_num

.. 191Enum pl_int_num

VIContents

©2000-2011 Tibbo Technology Inc.

.. 191Enum pl_sock_interfaces

... 191Common Information

.. 192Supported Variable Types

.. 192Supported Functions

.. 194GPIO Type

.. 195RTS/CTS Remapping

.. 196Serial Port FIFOs

.. 196Clock Frequency (PLL) Control

.. 197Special Configuration Section of the EEPROM

.. 199Device Serial Number

.. 200Flash Memory Configuration

.. 200Status LEDs

.. 201Setup (MD) Button (Line)

.. 201Connecting GA1000

.. 204Debug Communications

.. 205Serial Channels vs. Serial Ports

... 205Function Reference

... 205Aes128dec Function

... 206Aes128enc Function

... 206Asc Function

... 207Bin Function

... 207Cfloat Function

... 208Chr Function

... 208Date Function

... 209Daycount Function

... 210Ddstr Function

... 210Ddval Function

... 211Ftostr Function

... 212Hex Function

... 213Hours Function

... 213.Insert Function

... 214Instr Function

... 214Lbin Function

... 215Left Function

... 215Len Function

... 216Lhex Function

... 216Lstr Function

... 217Lstri Function

... 218Lval Function

... 218Md5 Function

... 219Mid Function

... 220Mincount Function

... 221Minutes Function

... 221Month Function

... 222Random Function

... 222Rc4 Function

... 223Right Function

... 223Sha1 Function

... 225Str Function

... 225Strand Function

... 226Strgen Function

... 226Stri Function

... 227Stror Function

... 227Strsum Function

... 228Strtof Function

... 228Strxor Function

... 229Val Function

... 230Vali Function

TIDE and Tibbo BASIC User ManualVII

©2000-2011 Tibbo Technology Inc.

... 230Weekday Function

... 230Year Function

... 231Object Reference

... 232Beep Object

.. 232.Divider Property

.. 233On_beep Event

.. 233.Play Method

... 234Button Object

.. 234On_button_pressed Event

.. 235On_button_released Event

.. 235.Pressed R/O Property

.. 235.Time R/O Property

... 236Fd Object

.. 236Overview

.. 237Sharing Flash Betw een Your Application and Data

.. 239Fd. Object's Status Codes

.. 240Direct Sector Access

... 242Using Checksums

... 243Upgrading the Firmw are/Application

.. 245File-based Access

... 245Formatting the Flash Disk

... 246Disk Area Allocation Details

... 249Mounting the Flash Disk

... 249Checking Disk Vitals

... 249File Names and Attributes

... 250Creating, Deleting, and Renaming Files

... 251Reading and Writing File Attributes

... 252Walking Through File Directory

... 253Opening Files

... 254Writing To and Reading From Files

... 255Removing Data From Files

... 256Searching Within Files

... 258Closing Files

... 259Using Disk Transactions

... 261Understanding Transaction Capacity

.. 263File-based and Direct Sector Access Coexistence

.. 264Prolonging Flash Memory Life

.. 265Properties and Methods

.. 267.Availableflashspace R/O Property

.. 267.Buffernum Property

.. 268.Capacity R/O Property

.. 268.Checksum Method

.. 269.Close Method

.. 269.Copyfirmw are Method

.. 270.Copyfirmw arelzo Method

.. 271.Cutfromtop Method

.. 271.Create Method

.. 272.Delete Method

.. 273.Filenum Property

.. 273.Fileopened R/O Property

.. 274.Filesize R/O Property

.. 274.Find Method

.. 275.Flush Method

.. 276.Format Method

.. 277.Formatj Method

.. 278.Getattributes Method

.. 278.Getbuffer Method

.. 279.Getdata Method

VIIIContents

©2000-2011 Tibbo Technology Inc.

.. 280.Getfreespace Method

.. 280.Getnextdirmember Method

.. 281.Getnumfiles Method

.. 281.Getsector Method

.. 282.Laststatus R/O Property

.. 282.Maxopenedfiles R/O Property

.. 283.Maxstoredfiles R/O Property

.. 283.Mount Method

.. 284.Numservicesectors R/O Property

.. 284.Open Method

.. 285.Pointer R/O Property

.. 285.Ready R/O Property

.. 285.Rename Method

.. 286.Resetdirpointer Method

.. 287.Sector R/O Property

.. 287.Setattributes Method

.. 288.Setbuffer Method

.. 289.Setdata Method

.. 289.Setfilesize Method

.. 290.Setsector Method

.. 291.Setpointer Method

.. 292.Totalsize R/O Property

.. 292.Transactioncapacityremaining R/O Property

.. 293.Transactioncommit Method

.. 293.Transactionstart Method

.. 294.Transactionstarted R/O Property

... 294IO Object

.. 294Overview

.. 295Line/Port Manipulation With Pre-selection

.. 295Line/Port Manipulation Without Pre-selection

.. 296Controlling Output Buffers

.. 297Working With Interrupts

.. 298Properties, Events, Methods

.. 298.Enabled Property (Selected Platforms Only)

.. 299.Intenabled Property

.. 299.Intnum Property

.. 300.Invert Method

.. 300.Lineget Method

.. 300.Lineset Method

.. 301.Num Property

.. 301On_io_int Event

.. 302.Portenabled Property (Selected Platforms Only)

.. 302.Portget Method

.. 302.Portnum Property

.. 303.Portset Method

.. 303.Portstate property

.. 303.State Property

... 304Kp Object

.. 304Possible Keypad Configurations

.. 306Key States and Transitions

.. 307Preparing the Keypad for Operation

.. 310Servicing Keypad Events

.. 312Properties, Methods, Events

.. 312.Autodisablecodes Property

.. 312.Enabled Property

.. 313.Longpressdelay Property

.. 313.Longreleasedelay Property

.. 314On_kp Event

.. 314On_kp_overflow Event

TIDE and Tibbo BASIC User ManualIX

©2000-2011 Tibbo Technology Inc.

.. 315.Pressdelay Property

.. 315.Releasedelay Property

.. 315.Repeatdelay Property

.. 316.Returnlinesmapping Property

.. 317.Scanlinesmapping Property

... 317LCD Object

.. 318Overview

.. 318Understanging Controller Properties

.. 320Preparing the Display for Operation

.. 320Working With Pixels and Colors

.. 321Lines, Rectangles, and Fills

.. 322Working With Text

... 325Raster Font File Format

.. 329Displaying Images

.. 330Improving Graphical Performance

.. 333Supported Controllers/Panels

.. 333Samsung S6B0108 (Winstar WG12864F)

.. 335Solomon SSD1329 (Ritdisplay RGS13128096)

.. 336Himax HX8309 (Ampire AM176220)

.. 338Properties and Methods

.. 339.Backcolor Property

.. 339.Bitsperpixel R/O Property

.. 340.Bluebits R/O Property

.. 340.Bmp Method

.. 341.Enabled Property

.. 342.Error R/O Property

.. 342.Fill Method

.. 343.Filledrectangle Method

.. 343.Fontheight R/O Property

.. 344.Fontpixelpacking R/O Property

.. 344.Forecolor Property

.. 345.Getprintw idth Method

.. 345.Greenbits R/O Property

.. 346.Height Property

.. 346.Horline Method

.. 347.Inverted Property

.. 347.Iomapping Property

.. 348.Line Method

.. 348.Linew idth Property

.. 348.Lock Method

.. 349.Lockcount R/O Property

.. 349.Paneltype R/O Property

.. 350.Pixelpacking R/O Property

.. 351.Print Method

.. 351.Printaligned Method

.. 352.Rectangle Method

.. 352.Redbits R/O Property

.. 353.Rotated Property

.. 353.Setfont Method

.. 354.Setpixel Method

.. 355.Textalignment Property

.. 355.Texthorizontalspacing Property

.. 356.Textorientation Property

.. 356.Textverticalspacing Property

.. 356.Unlock Method

.. 357.Verline Method

.. 357.Width Property

... 358Net Object

.. 358Overview

XContents

©2000-2011 Tibbo Technology Inc.

.. 358Main Parameters

.. 359Checking Ethernet Status

.. 360Properties, Methods, Events

.. 360.Mac R/O Property

.. 360.Ip Property

.. 360.Netmask Property

.. 361.Gatew ayip Property

.. 361.Failure R/O Property

.. 361.Linkstate R/O Property

.. 362On_net_link_change Event

.. 362On_net_overrun Event

... 363Pat Object

.. 364.Channel Property

.. 364.Greenmap Property

.. 365On_pat Event

.. 365.Play Method

.. 366.Redmap Property

... 366Ppp Object

.. 367.Buffrq Method

.. 367.Buffsize R/O Property

.. 368.Enabled Property

.. 368.Ip Property

.. 368.Portnum Property

... 369Pppoe Object

.. 369.Acmac Property

.. 370.Ip Property

.. 370.Sessionid Property

... 370Romfile Object

.. 372.Find Method

.. 372.Find32 Method

.. 373.Getdata Method

.. 373.Offset R/O Property

.. 374.Open Method

.. 374.Pointer Property

.. 374.Pointer32 Property

.. 375.Size R/O Property

... 375RTC Object

.. 376.Getdata Method (Previously .Get)

.. 377.Running R/O Property

.. 377.Setdata Method (Previously .Set)

... 378Ser Object

.. 379Overview

.. 379Anatomy of a Serial Port

.. 380Three Modes of the Serial Port

... 380UART Mode

... 383Wiegand Mode

... 386Clock/Data Mode

.. 388Port Selection

.. 390Serial Settings

.. 393Sending and Receiving Data (TX and RX buffers)

... 393Allocating Memory for Buffers

... 394Using Buffers

... 394Buffer Memory Status

... 396Receiving Data

... 397Sending Data

... 398Handling Buffer Overruns

... 399Redirecting Buffers

... 399Sinking Data

.. 400Properties, Methods, Events

TIDE and Tibbo BASIC User ManualXI

©2000-2011 Tibbo Technology Inc.

.. 402.Autoclose Property

.. 402.Baudrate Property

.. 403.Bits Property

.. 403.Ctsmap property (Selected Platforms Only)

.. 404.Dircontrol Property

.. 404.Div9600 R/O Property

.. 405.Enabled Property

.. 405.Escchar Property

.. 405.Esctype Property

.. 407.Flow control Property

.. 407.Getdata Method

.. 408.Interchardelay Property

.. 408.Interface Property

.. 409.Mode Property

.. 410.New txlen R/O Property

.. 410.Notifysent Method

.. 411.Num Property

.. 411.Numofports R/O Property

.. 412On_ser_data_arrival Event

.. 412On_ser_data_sent Event

.. 413On_ser_esc Event

.. 413On_ser_overrun Event

.. 413.Parity Property

.. 414.Redir Method

.. 415.Rtsmap Property (Selected Platforms Only)

.. 415.Rxbuffrq Method

.. 416.Rxbuffsize R/O Property

.. 416.Rxclear Method

.. 417.Rxlen R/O Property

.. 417.Send Method

.. 418.Setdata Method

.. 418.Sinkdata Property

.. 419.Txbuffrq Method

.. 419.Txbuffsize R/O Property

.. 420.Txclear Method

.. 420.Txfree R/O Property

.. 420.Txlen R/O Property

... 421Sock Object

.. 422Overview

.. 422Anatomy of a Socket

.. 423Socket Selection

.. 424Handling Netw ork Connections

... 424TCP connection basics

... 425UDP "connection" basics

... 426Accepting Incoming Connections

... 428Accepting UDP broadcasts

... 428Understanding TCP Reconnects

... 429Understanding UDP Reconnects and Port Sw itchover

... 432Incoming Connections on Multiple Sockets

... 434Establishing Outgoing Connections

... 435Sending UDP broadcasts

... 437Closing Connections

... 439Checking Connection Status

... 441More On the Socket's Asynchronous Nature

.. 444Sending and Receiving data

... 444Allocating Memory for Buffers

... 445Using Buffers in TCP Mode

... 446Using Buffers in UDP Mode

... 447TX and RX Buffer Memory Status

XIIContents

©2000-2011 Tibbo Technology Inc.

... 448Receiving Data in TCP Mode

... 450Receiving Data in UDP Mode

... 451Sending TCP and UDP Data

... 453"Split Packet" Mode of TCP Data Processing

... 454Handling Buffer Overruns

... 454Redirecting Buffers

... 456Sinking Data

.. 456Working With Inband Commands

... 456Inband Message Format

... 457Inband-related Buffers (CMD, RPL, and TX2)

... 458Processing Inband Commands

... 460Sending Inband Replies

.. 461Using HTTP

... 462HTTP-related Buffers

... 463Setting the Socket for HTTP

... 465Socket Behavior in the HTTP Mode

... 466Including BASIC Code in HTTP Files

... 466Generating Dynamic HTML Pages

... 468URL Substitution

... 469Working w ith HTTP Variables

... 470Simple Case (Small Amount of Variable Data)

... 471Complex Case (Large Amount of Variable Data)

... 473Details on Variable Data

.. 474Properties, Methods, and Events

.. 474.Acceptbcast Property

.. 474.Allow edinterfaces Property

.. 475.Availableinterfaces R/O Property

.. 475.Bcast R/O Property

.. 475.Close Method

.. 476.Cmdbuffrq Method

.. 477.Cmdlen R/O Property

.. 477.Connect Method

.. 477.Connectiontout Property

.. 478.Currentinterface R/O Property

.. 478.Discard Method

.. 479.Endchar Property

.. 479.Escchar Property

.. 480.Event R/O Property (Obsolete)

.. 480.Eventsimple R/O Property (Obsolete)

.. 480.Getdata Method

.. 480.Gethttprqstring Method

.. 481.Getinband Method

.. 481.Httpmode Property

.. 482.Httpnoclose Property

.. 483.Httpportlist Property

.. 483.Httprqstring R/O Property

.. 484.Inbandcommands Property

.. 484.Inconenabledmaster Property

.. 485.Inconmode Property

.. 485.Localport R/O Property

.. 486.Localportlist Property

.. 486.New txlen R/O Property

.. 487.Nextpacket Method

.. 487.Notifysent Method

.. 488.Num Property

.. 488.Numofsock R/O Property

.. 488.Outport Property

.. 489On_sock_data_arrival Event

.. 489On_sock_data_sent Event

TIDE and Tibbo BASIC User ManualXIII

©2000-2011 Tibbo Technology Inc.

.. 490On_sock_event Event

.. 490On_sock_inband Event

.. 491On_sock_overrun Event

.. 491On_sock_postdata

.. 491On_sock_tcp_packet_arrival Event

.. 492.Protocol Property

.. 492.Reconmode Property

.. 493.Redir Method

.. 494.Remoteip R/O Property

.. 495.Remotemac R/O Property

.. 495.Remoteport R/O Property

.. 495.Reset Method

.. 496.Rplbuffrq Method

.. 497.Rplfree R/O Property

.. 497.Rpllen R/O Property

.. 497.Rxbuffrq Method

.. 498.Rxbuffsize R/O Property

.. 498.Rxclear Method

.. 499.Rxpacketlen R/O Property

.. 499.Rxlen R/O Property

.. 500.Send Method

.. 500.Setdata Method

.. 500.Setsendinband Method

.. 501Sinkdata Property

.. 501.Splittcppackets Property

.. 502.State R/O Property

.. 505.Statesimple R/O Property

.. 505.Targetbcast Property

.. 506.Targetinterface Property

.. 506.Targetip Property

.. 507.Targetport Property

.. 507.Toutcounter R/O property

.. 508.Tx2buffrq Method

.. 508.Tx2len R/O Property

.. 509.Txbuffrq Method

.. 509.Txbuffsize R/O Property

.. 510.Txclear Method

.. 510.Txfree R/O Property

.. 510.Txlen R/O Property

.. 511.Urlsubstitutes

.. 511.Varbuffrq Method

... 512Ssi Object

.. 513Configuring SSI Channel

.. 513CLK, DO, and DI Lines

.. 514Baudrate

.. 514SSI Modes

.. 515Direction

.. 515Sending and Receiving Data

.. 516More on I2C

.. 517Properties, Methods

.. 517.Baudrate Property

.. 518.Channel Property

.. 518.Clkmap Property

.. 519.Dimap Property

.. 519.Direction Property

.. 519.Domap Property

.. 520.Enabled Property

.. 520.Mode Property

.. 520.Str Method

XIVContents

©2000-2011 Tibbo Technology Inc.

.. 521.Value Method

.. 522.Zmode Property

... 522Stor Object

.. 523.Base Property

.. 523.Getdata Method (previously .Get)

.. 524.Setdata Method (previously .Set)

.. 525.Size R/O Property

... 526Sys Object

.. 526Overview

.. 526On_sys_init Event

.. 526Buffer Management

.. 528System Timer

.. 529PLL Management

.. 530Serial Number

.. 530Miscellaneous

.. 530Properties, Methods, Events

.. 530.Buffalloc Method

.. 531.Currentpll R/O Property (Selected Platforms Only)

.. 531.Freebuffpages R/O Property

.. 532.Halt Method

.. 532.New pll Method (Selected Platforms Only)

.. 533On_sys_init Event

.. 533On_sys_timer Event

.. 533.Onsystimerperiod Property (Selected Platforms Only)

.. 534.Reboot Method

.. 534.Runmode R/O Property

.. 534Serialnum R/O Property (Selected Platforms Only)

.. 535Setserialnum Method (Selected Platforms Only)

.. 535.Resettype R/O Property

.. 536.Timercount R/O Property

.. 536.Totalbuffpages R/O Property

.. 536.Version R/O Property

... 536Wln Object

.. 537Overview

.. 538Wi-Fi Parlance Primer

.. 539Wln Tasks

.. 542Wln State Transitions

.. 543Brining Up Wi-Fi Interface

... 545Configuring Interface Lines

... 546Applying Reset

... 547Selecting Domain

... 547Allocating Buffer Memory

... 548Setting MAC Address (Optional)

... 549Booting Up the Hardw are

... 549Setting IP, Gatew ay, and Netmask

... 550Setting TX Pow er (Optional)

.. 550Scanning for Wi-Fi Netw orks

... 551Discovering All Wireless Netw orks

... 551Collecting Data About Specific Netw ork

... 552Multiple Access Points With the Same Name

.. 552Setting Wi-Fi Security

... 553Setting WEP Mode and Key

... 553Setting WPA Mode and Key

.. 554Associating With Selected Netw ork

.. 555Creating Ow n Ad-hoc Netw ork

.. 555Communicating via Wln Interface

.. 556Disassociating From the Netw ork

.. 556Terminating Ow n Ad-hoc Netw ork

.. 556Detecting Disassociation or Offline State

TIDE and Tibbo BASIC User ManualXV

©2000-2011 Tibbo Technology Inc.

.. 556Properties, Methods, Events

.. 556.Activescan Method

.. 557.Associate Method

.. 558.Associationstate R/O Property

.. 558.Boot Method

.. 559.Buffrq Method

.. 559.Buffsize R/O Property

.. 560.Clkmap Property

.. 560.Csmap Property

.. 560.Dimap Property

.. 561.Disassociate Method

.. 561.Domain Property

.. 562.Domap Property

.. 562.Enabled R/O Property

.. 562.Gatew ayip Property

.. 563.Ip Property

.. 563.Mac Property

.. 564.Netmask Property

.. 564.Netw orkstart Method

.. 564.Netw orkstop Method

.. 565On_w ln_event Event

.. 565On_w ln_task_complete Event

.. 566.Rssi R/O Property

.. 567.Scan Method

.. 567.Scanresultbssid R/O Property

.. 568.Scanresultbssmode R/O Property

.. 568.Scanresultchannel R/O Property

.. 569.Scanresultrssi R/O Property

.. 569.Scanresultssid R/O Property

.. 569.Scanresultw painfo R/O Property

.. 570.Settxpow er Method

.. 570.Setw ep Method

.. 571.Setw pa Method

.. 572.Task R/O Property

Libraries 572

... 575Common Library Info

... 575Library Sets

... 576Anatomy of Tibbo Libraries

... 577Libraries and Platforms

... 577Adding Library Files to Projects

... 577About _get_info() API Functions

... 578Library Configurators

... 580Library Reference

... 580AGG (AggreGate) Library

.. 583AggreGate Configurator

.. 585The Access Control Demo

.. 586The Steps

.. 586Preparing the AggreGate Server

.. 587Step 1: The Embryo

.. 588Step 2: Adding Setting A-variables

... 590Define Required Settings

... 591Define Required A-variables

.. 593Step 3: Adding Table A-variables

... 594Define the User Table

... 595Add the Table A-variable

.. 596Step 4: Adding A-functions

XVIContents

©2000-2011 Tibbo Technology Inc.

... 597Adding A-function

.. 598Step 5: Firing Instant A-events

... 600Adding Instant A-event

.. 601Step 6: Handling Stored A-events

... 603Define the ACE Table

... 604Define the ACE Stored Event

.. 605Step 7: Gluing it All Together

.. 606Step 8: Adding Bells and Whistles

.. 606En_agg_event_levels

.. 606En_agg_status_codes

.. 607Library Procedures

.. 607Agg_start()

.. 608Agg_stop()

.. 609Agg_get_connection_state()

.. 609Agg_record_decode()

.. 610Agg_record_encode()

.. 610Agg_fire_instant_event()

.. 611Agg_stored_event_added()

.. 612Agg_proc_stored_events()

.. 612Agg_proc_timer()

.. 612Agg_proc_data()

.. 612Agg_proc_sock_event()

.. 613Agg_proc_data_sent()

.. 613Callback_agg_get_firmw are_version()

.. 613Callback_agg_device_function()

.. 614Callback_agg_synchronized()

.. 614Callback_agg_pre_buffrq()

.. 615Callback_agg_buff_released()

.. 615Callback_agg_error()

.. 616Callback_agg_convert_setting()

.. 617Callback_agg_convert_event_field()

.. 618Callback_agg_rtc_sg()

... 618DHCP Library

.. 619Step-by-step Usage Instructions

.. 621Operation Details

.. 622Code Examples

.. 622Step 1: Code Example for the Ethernet Interface

.. 624Step 2: Code Example for the Wi-Fi Interface

.. 628Step 3: Adding Bells and Whistles

.. 631Step 4: Adding More Bells and Whistles

.. 634Library Defines (Options)

.. 635En_dhcp_status_codes

.. 635Library Procedures

.. 636Dhcp_get_info()

.. 636Dhcp_start()

.. 637Dhcp_stop()

.. 637Dhcp_proc_timer()

.. 638Dhcp_proc_data()

.. 638Callback_dhcp_ok()

.. 639Callback_dhcp_failure()

.. 639Callback_dhcp_pre_clear_ip()

.. 640Callback_dhcp_pre_buffrq()

.. 640Callback_dhcp_buff_released()

... 641FILENUM (File Numbers) Library

.. 641Step-by-step Usage Instructions

.. 642Operation Details

.. 642A Code Snippet

.. 643Library Defines (Options)

.. 644Library Procedures

TIDE and Tibbo BASIC User ManualXVII

©2000-2011 Tibbo Technology Inc.

.. 644Filenum_get()

.. 644Filenum_w ho_uses()

.. 645Filenum_release()

... 645GPRS (PPP) Library

.. 646Step-by-step Usage Instructions

.. 647Operation Details

.. 647Operation Details

.. 647Code Example

.. 650Library Defines (Options)

.. 651En_gprs_status_codes

.. 652Library Procedures

.. 652Gprs_get_info()

.. 652Gprs_start()

.. 653Gprs_stop()

.. 653Gprs_proc_timer()

.. 653Gprs_proc_sock_data()

.. 654Gprs_proc_ser_data()

.. 654Callback_gprs_ok()

.. 654Callback_gprs_failure()

.. 655Callback_gprs_pre_buffrq()

... 655PPPOE Library

.. 656Step-by-step Usage Instructions

.. 657Operation Details

.. 657Code Example

.. 659Library Defines (Options)

.. 660En_pppoe_status_codes

.. 660Library Procedures

.. 660Pppoe_get_info()

.. 661Pppoe_start()

.. 661Pppoe_stop()

.. 662Pppoe_proc_timer()

.. 662Pppoe_proc_data()

.. 662Callback_pppoe_ok()

.. 662Callback_pppoe_failure()

.. 663Callback_pppoe_pre_buffrq()

... 664SOCK (Socket Numbers) Library

.. 664Step-by-step Usage Instructions

.. 665Operation Details

.. 665A Code Snippet

.. 667Library Defines (Options)

.. 667Library Procedures

.. 667Sock_get()

.. 668Sock_w ho_uses()

.. 668Sock_release()

... 668STG (Settings) Library

.. 670Controlling Your Device Through Settings

.. 670Setting Configurator

.. 671Library Options

.. 673Editing Settings

.. 674Dot-decimal Settings

.. 675Max Number of Members

.. 675P1 and P2 Parameters

.. 675Default Setting Values

.. 676Step-by-step Usage Instructions

.. 676Getting Started

.. 677Verifying and Initializing Settings

.. 678Writing and Reading Settings

... 678Using Stg_sg()

... 679Using Stg_get() and Stg_set()

XVIIIContents

©2000-2011 Tibbo Technology Inc.

... 680Using Setting Numbers

... 681Working With Multi-value Settings

... 681Understanding Timestamps

... 683Using Pre-gets and Post-sets

.. 684Operation Details

.. 686Sample Project

.. 686Step 1: The Embryo

.. 687Step 2: Adding Setting Initialization

.. 688Step 3: Adding Comms

.. 689Step 4: Completing the Project

.. 689Stg_timestamp Global Variable

.. 690En_stg_status_codes

.. 690Library Procedures

.. 691Stg_start()

.. 691Stg_check_all()

.. 692Stg_get_def()

.. 692Stg_restore_multiple()

.. 693Stg_restore_member()

.. 694Stg_get_num_settings()

.. 694Stg_get_num_members()

.. 695Stg_find()

.. 696Stg_stype_get()

.. 696Stg_get()

.. 697Stg_set()

.. 698Stg_sg()

.. 699Stg_set_ts()

.. 700Callback_stg_error()

.. 700Callback_stg_pre_get()

.. 701Callback_stg_post_set()

.. 702Callback_stg_vm_read()

.. 703Callback_stg_vm_w rite()

... 703WLN (Wi-Fi Association) Library

.. 705Step-by-step Usage Instructions

.. 706Operation Details

.. 707Code Examples

.. 708Step 1: The Simplest Example

.. 710Step 2: Adding TCP Comms

.. 711Step 3: Trying WPA

.. 716Step 4: Roaming Betw een Access Points

.. 721Library Defines (Options)

.. 722En_w ln_status_codes

.. 723Library Procedures

.. 723Wln_get_info()

.. 724Wln_start()

.. 725Wln_stop()

.. 725Wln_change()

.. 726Wln_rescan()

.. 727Wln_w pa_mkey_get()

.. 728Wln_check_association()

.. 728Wln_proc_timer()

.. 728Wln_proc_data()

.. 729Wln_proc_task_complete()

.. 729Wln_proc_event()

.. 729Callback_w ln_ok()

.. 730Callback_w ln_failure()

.. 730Callback_w ln_pre_buffrq()

.. 731Callback_w ln_mkey_progress_update()

.. 731Callback_w ln_rescan_result()

TIDE and Tibbo BASIC User ManualXIX

©2000-2011 Tibbo Technology Inc.

Update History (for this Manual) 732

1Taiko R2

©2000-2011 Tibbo Technology Inc.

Taiko R2
Last update: 01SEP2012

Legal Information

Manual Update History

Taiko is a solution which allows you to create programs for Tibbo modules capable
of running TiOS (Tibbo Operating System), and products based on these modules.

With Taiko, you write your program in a language called Tibbo Basic (a close
relative of any other BASIC you might already know), using a PC software called
TIDE - Tibbo Integrated Development Environment. Your program is then compiled
into a binary file and uploaded onto a Tibbo module. The Virtual Machine of TiOS
then executes this binary.

Taiko allows you to easily create programs for a variety of Tibbo-based products.
These may include:

Alarm Panels

Security Systems (Access control terminals, etc)

Data Collection terminals, such as time clocks

Sensor monitors

Interface converters

Vending machines

Industrial process controllers

The solutions created with Taiko are very flexible. They are written using a
language similar to BASIC, and are stored on a Tibbo module separately from the
core OS of the module (TiOS). This allows for simple modification of your device
functionality, even by the end-user (if you so allow).

Tibbo Basic itself is exactly the same for all TiOS-enabled devices. Hardware
differences are expressed through so-called platforms. Change the platform, and
you're programming for a different device.

Documentation Map

The documentation for Taiko includes:

Overview - The theory and background behind Taiko.

Getting Started - An example starter project.

Programming with TIDE -- An overview of TIDE itself, debug facilities, etc.

Language Reference -- Systematically covers Tibbo Basic statements, keywords
and operators.

Development Environment -- Systematically covers TIDE GUI elements.

Glossary of Terms -- Contains some basic terms used in Taiko.

Platforms -- Platform-specific documentation for each target device.

Legal Information
Tibbo Technology ("TIBBO") is a Taiwan corporation that designs and/or manufactures

a number of hardware products, software products, and applications ("PRODUCTS"). In

many cases, Tibbo PRODUCTS are combined with each other and/or third-party

1

732

4

9

15

83

119

136

138

2 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

products thus creating a PRODUCT COMBINATION.

Whereas you (your Company) wish to purchase any PRODUCT from TIBBO, and/or whereas

you (your Company) wish to make use of any documentation or technical information

published by TIBBO, and/or make use of any source code published by TIBBO, and/or consult

TIBBO and receive technical support from TIBBO or any of its employees acting in an official or

unofficial capacity,

You must acknowledge and accept the following disclaimers:

1. Tibbo does not have any branch office, affiliated company, or any other form of

presence in any other jurisdiction. TIBBO customers, partners and distributors in

Taiwan and other countries are independent commercial entities and TIBBO does

not indemnify such customers, partners or distributors in any legal proceedings

related to, nor accepts any liability for damages resulting from the creation,

manufacture, importation, advertisement, resale, or use of any of its PRODUCT or

PRODUCT COMBINATION.

2. BASIC-programmable devices ("PROGRAMMABLE DEVICES") manufactured by TIBBO

can run a variety of applications written in Tibbo BASIC ("BASIC APPLICATIONS").

Combining a particular PROGRAMMABLE DEVICE with a specific BASIC APPLICATION,

either written by TIBBO or any third party, may potentially create a combinatorial

end product ("END PRODUCT") that violates local rules, regulations, and/or infringes

an existing patent granted in a country where such combination has occurred or

where the resulting END PRODUCT is manufactured, exported, advertised, or sold.

TIBBO is not capable of monitoring any activities by its customers, partners or

distributors aimed at creating any END PRODUCT, does not provide advice on

potential legal issues arising from creating such END PRODUCT, nor explicitly

recommends the use of any of its PROGRAMMABLE DEVICES in combination with

any BASIC APPLICATION, either written by TIBBO or any third party.

3. TIBBO publishes a number of BASIC APPLICATIONS and segments thereof ("CODE

SNIPPETS"). The BASIC APPLICATIONS and CODE SNIPPETS are provided "as is"

without warranty of any kind, either expressed or implied, including, but not limited

to, the implied warranties of merchantability and fitness for a particular purpose.

The entire risk as to the quality and performance of BASIC APPLICATIONS and

CODE SNIPPETS resides with you. BASIC APPLICATIONS and CODE SNIPPETS may

be used only as a part of a commercial device based on TIBBO hardware. Modified

code does not have to be released into the public domain, and does not have to

carry a credit for TIBBO. BASIC APPLICATIONS and CODE SNIPPETS are provided

solely as coding aids and should not be construed as any indication of the

predominant, representative, legal, or best mode of use for any PROGRAMMABLE

DEVICE.

4. BASIC-programmable modules ("PROGRAMMABLE MODULES"), such as the EM1000

device, are shipped from TIBBO in either a blank state (without any BASIC

APPLICATION loaded), or with a simple test BASIC APPLICATION aimed at verifying

correct operation of PROGRAMMABLE MODULE's hardware. All other BASIC-

programmable products including boards, external controllers, and developments

systems ("NON-MODULE PRODUCTS"), such as the DS1000 and NB1000, are

normally shipped with a BASIC APPLICATION pre-loaded. This is done solely for the

3Taiko R2

©2000-2011 Tibbo Technology Inc.

convenience of testing by the customer and the nature and function of pre-loaded

BASIC APPLICATION shall not be construed as any indication of the predominant,

representative, or best mode of use for any such NON-MODULE PRODUCT.

5. All specifications, technical information, and any other data published by TIBBO are

subject to change without prior notice. TIBBO assumes no responsibility for any

errors and does not make any commitment to update any published information.

6. Any technical advice provided by TIBBO or its personnel is offered on a purely

technical basis, does not take into account any potential legal issues arising from

the use of such advice, and should not be construed as a suggestion or indication

of the possible, predominant, representative, or best mode of use for any Tibbo

PRODUCT.

7. Any advance product or business information posted as news or updates of any

kind (including Tibbo Blog posts, Tibbo Newsflashes, site news, forum posts and

any other timely information posted by Tibbo personnel) shall not be construed as

obligatory to TIBBO in any way, shape or form. TIBBO may change or delay any of

its plans and product roadmaps without prior notice, and shall not be held liable for

such changes to the extent permissible by the applicable law.

8. Neither TIBBO nor its employees shall be held responsible for any damages resulting

from the creation, manufacture, or use of any third-party product or system, even

if this product or system was inspired, fully or in part, by the advice provided by

Tibbo staff (in an official capacity or otherwise) or content published by TIBBO or

any other third party.

9. TIBBO may make non-English documentation or other information available at its

discretion. Such texts may be the result of work done by third parties, and may

not always be reviewed by TIBBO personnel. As such, these are not to be

considered official statements by TIBBO. Any apparent inaccuracies, conflicts or

differences in meaning between English-language and non-English texts shall

always be resolved in favor of the English-language version.

10.TIBBO reserves the right to halt the production or availability of any of its

PRODUCTS at any time and without prior notice. The availability of a particular

PRODUCT in the past is not an indication of the future availability of this PRODUCT.

The sale of the PRODUCT to you is solely at TIBBO's discretion and any such sale

can be declined without explanation.

11.TIBBO makes no warranty for the use of its PRODUCTS, other than that expressly

contained in the Standard Warranty located on the Company's website. Your use

of TIBBO PRODUCTS is at your sole risk. TIBBO PRODUCTS are provided on an "as

is" and "as available" basis. TIBBO expressly disclaims the warranties of

merchantability, future availability, fitness for a particular purpose and non-

infringement. No advice or information, whether oral or written, obtained by you

from TIBBO shall create any warranty not expressly stated in the Standard

Warranty.

12.LIMITATION OF LIABILITY. BY USING TIBBO PRODUCTS YOU EXPRESSLY AGREE

THAT TIBBO SHALL NOT BE LIABLE TO YOU FOR ANY DIRECT, INDIRECT,

INCIDENTAL, SPECIAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES, INCLUDING, BUT

4 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

NOT LIMITED TO, DAMAGES FOR LOSS OF PROFITS, GOODWILL, OR OTHER

INTANGIBLE LOSSES (EVEN IF TIBBO HAS BEEN ADVISED OF THE POSSIBILITY OF

SUCH DAMAGES) RESULTING FROM THE USE OR THE INABILITY TO USE OF TIBBO

PRODUCTS.

13."Tibbo" is a registered trademark of Tibbo Technology, Inc.

14.Terms and product names mentioned on TIBBO website or in TIBBO documentation

may be trademarks of others.

Overview
Below is a summary of the major fundamentals and theory behind TIDE. This may
sound intimidating, but it's actually quite simple. You should at least skim over the
material herein, because it explains much of what comes next. In here you will find:

Our Language Philosophy

System Components

Objects (a very brief overview)

Events

Our Language Philosophy
Several principles have guided us through the development process of Tibbo Basic.
Understanding them would help you understand this manual better, and also the
language itself. See below:

A Bit of History

Years ago, programming for the PC was the nearly exclusive domain of engineers.
The languages traditionally available, such as C, simply required you to be an
engineer to program.

However, one day something interesting happened. Visual Basic* and Delphi** saw
the light of day. And that changed quite a lot on the PC front. Suddenly, people
who were not engineers were finding out that they could actually create something
cool on their PC. You could say VB* and Delphi democratized the PC software
market.

The situation on the embedded systems market today is quite similar to the
situation which existed for the PC market in the pre-VB era. Many embedded
systems vendors do offer customizable or programmable solutions -- but to
implement those solutions, you would really have to be an engineer and know C/C+
+ quite well. So, there was clearly a need for an easy-to-use programming system
which would democratize this market, as well.

Principle One: Easy To Write, Easy to Debug

Choosing BASIC as our inspiration was the natural thing to do, for us. It's a
language which doesn't require you to be a professional engineer. It is easy to
understand. This is why it is embedded into many non-programmer products, such
as the Office suite. So we went for BASIC.

Another part of the user experience, and a major one, too, is debugging. Writing
your application is just half the job. You also need to debug it and for embedded
systems, this is where things typically start getting rough around the edges. Many
times you have to buy expensive tools, such as ICE machines (In-Circuit

4

7

8

8

5Overview

©2000-2011 Tibbo Technology Inc.

Emulators), just to figure out what your code is doing. Sometimes you don't even
have the luxury of such a machine, and you actually debug by guessing and trying
different things in your code.

With our system, one of our major goals was to offer a user experience which is
close to debugging on the PC -- without the need for special tools, such as an ICE
machine.

While your program is running on the target (embedded device), you actually see
how it runs on your PC. You can step through it, jump to specific functions, check
values of variables etc -- all from the comfort of your own PC.

Principle Two: Easy Doesn't Mean Sloppy

Some modern programming languages use certain techniques to make life 'easier' for
programmers. They might not require the programmer to explicitly declare the
variables he's going to use ('implicit declaration'), or might do away with the need
to specify the type for the variable (i.e, use 'variant variables' which can contain
anything).

This has several disadvantages. For one, it is just sloppy. After several days of
writing code like that, a programmer might not have a very clear-cut idea of what
his program is doing, or where things come from. While this is something which may
be subject to debate, the next disadvantage is quite real:

This is simply wasteful programming. These techniques can consume quite a lot of
resources, specifically memory. On the PC, a variant used to store just 2 bytes of
data might take up to 100 bytes. This isn't a problem, because PCs have so much
memory these days that it is barely felt.

However, embedded systems are often low-cost and bare-bones, so physical
memory is a truly valuable resource. Waste too much of it -- and you would find
that your code can do very little. But manage it prudently, and your code will be
capable of quite impressive feats even on your 'low-power' embedded system.

So our systems requires you to be more organized. The effort is worth it.

Principle Three: The Purity of Language

Programming systems on the PC usually make no clear distinction between the 'pure'
language constructs which perform calculations and control program flow, and
hardware-dependant input/output. For example, many languages contain a print
statement which prints something to the screen.

Since all PCs in the world are similar, this works. However, this makes little sense
for embedded platform, which have vastly different input/output resources.
Depending on the device, it may or may not have a screen, a serial port,
networking etc etc.

In our system, we separated the language itself (what we call the core language)
from the input/output of a particular device. Thus, the language itself remains the
same, no matter what device you are programming for. The input/output part is
hardware dependant, and changes from platform to platform.

When writing for a specific platform, you are provided with a set of platform-
specific objects. These provide rich functionality and allow you to do 'real' work,
such as printing messages to the serial port, communicating on the Internet or
controlling motors and sensors.

Ideally, Tibbo Basic could run on a fridge just as well as it could run on a time and
attendance terminal.

Principle Four: Thin and Agile

6 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

A lot of embedded systems are built by scaling down larger desktop systems, and it
shows. What's the point of using a super-fast processor if you load it with dozens
of layers of nested calls?

All the code TiOS includes has been designed from scratch for running on a very
simple processor, and optimized for control applications. It has been crafted to
have the minimum possible ROM and RAM footprint and to run as fast as possible.

We built TiOS with Pareto's principle in mind. In other words, if a certain
functionality is required by only 5% of applications and yet its existence adds 90%
overhead, we did not include it. For example, we decided to use a static memory
model for procedure variables. Memory is not allocated and deallocated dynamically
-- It is assigned on compile-time, which results in great performance improvements.

Principle Five: No B.S

... that is, no babysitting. Development systems intended for rapid application
development on the PC will often try to handle every little error or problem the
programmer may encounter. If a variable overflows, for example, they will halt
execution and pop up an error to let him know. This makes sense for a PC-based
product, because you are right there to see it halt.

However, when you are creating an embedded system, you expect it to run at all
times, without halting. Nobody will be there to see any errors and babysit your
system. Your device is simply expected to work.

This is a major difference also for the development process. In essence, since the
whole language is built this way, you will also get much less errors even when doing
seemingly 'strange' things, such as putting large values into variables that cannot
hold them. The language will deal with it silently, in a very predictable and logical
way -- but will not pop up an error.

Principle Six: Event-Driven Programming

Users of VB and Delphi and other Windows-based tools will find this principle
familiar. However, if most of your experience with BASIC was under DOS, you might
find this slightly odd. Under DOS, you would expect a program to begin from the
beginning, then continue and stop. They execute from top to bottom. This may be
called linear execution.

For Tibbo Basic, this is not the case. The programs you will write will be event-
driven. Your program will consist of a number of event handlers which will be fired
(invoked) in response to specific things which happen to your system in real life. If
your platform was a fridge, you might want to write a handler for a 'door opening'
event. When the door is opened, an event is generated, and an event handler, with
your code in it, is fired.

So, you could say that your event-driven application has no beginning and no end.
Event handlers are called when events are generated, and in the order in which
they were generated.

* Windows, Visual Basic and VB are registered trademarks of Microsoft Corporation
Inc.

** Delphi is a registered trademark of Borland Inc.

7Overview

©2000-2011 Tibbo Technology Inc.

System Components
Taiko is a compound system. It consists of the following components:

TIDE is an acronym for Tibbo Integrated Development Environment. This is the PC
program in which you will write your applications and compile them, and from which
you will upload them to your target and debug them.

The compiler is a utility program, used by TIDE. The compiler processes your
project files and creates an executable binary file (with a .tpc suffix, for Tibbo
PCode).

The target is a separate hardware device, on which your program actually runs.
When debugging code, it is connected to your computer running TIDE (see the link
above) and TIDE can monitor and control it. This is called cross-debugging.

As covered under Our Language Philosophy , Tibbo Basic is capable of running on
various hardware devices. Each type of hardware device on which Tibbo Basic runs
is called a platform.

And now, the anatomy of the target:

The target runs an operating system called TiOS (Tibbo Operating System).

TiOS runs two processes. One is the Master Process. This is the process which is
in charge of communications (including communications with TIDE) and of
generating events. The second process, which is under the control of the Master
Process, is called the VM (Virtual Machine).

The VM is what actually executes your application. In essence, the VM is a
processor implemented in firmware, which executes the compiled form of your
application. The instructions it understands are called P-Code, which is short for
pseudo-code. This is what the compiler produces. It is called pseudo-code because

4

8 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

it is not native binary code which the hardware processor can understand directly;
instead, it is interpreted by the VM.

Since the VM is under the complete control of the Master Process, the actual
hardware processor will not crash because of an error in your Tibbo Basic
application. Your application may operate incorrectly, but you still will be able to
debug it. The Master Process can stop or restart the Virtual Machine at will, and
can exchange debug information with TIDE, such as report current execution state,
variable values, etc.

Simply put, you can think of the VM as a sort of a 'sandbox' within the processor.
Your application can play freely, without the possibility of crashing or stalling TiOS
due to some error.

The queue is used to 'feed' your program with events which it should handle.
The Master Process monitors the various interfaces of the platform and generates
events, putting them into the queue. The Virtual Machine extracts these events
from the other side of the queue and feeds your program with them. Various parts
of your program execute in response to events.

Objects

Objects represent the various component part of your platform. For example, a
platform with a serial port might have a ser object. A platform can be described as
a collection of objects.

Under Tibbo Basic, the set of object you get for each platform is fixed. You cannot
add new objects or create multiple instances of the same object.

Objects have properties, methods and events. A property can be likened to an
attribute of the object, and a method is an action that the object can perform.
Events are described in the next section.

Objects are covered in further detail under Objects, Events and Platform Functions
.

Events

An event is something which happens to an object. Plain and simple. A fridge might
have door object with an on_door_open event, and a paper shredder might have a
detector object with an on_paper_detected event.

Events are a core concept in Tibbo Basic. They are the primary way in which code
gets executed.

The target device maintains an event queue. All events registered by the system
go into this queue. On the other end of the queue, the Virtual Machine takes out
one event at a time and calls an event handler for each event.

Event handlers are subroutines in your code which are 'fired' (executed) to handle
an event. Often, event handlers contain function calls which run other parts of the
program.

While processing an event, other events may happen. These events are then
queued for processing, and patiently wait for the first event to complete before
beginning execution.

All Tibbo Basic programs are single-threaded, so there is only one event queue. All
events are executed in the exact order in which they were queued.

It may sometimes seem that some events should get priority over other events.
This functionality is not supported under Tibbo Basic. This is not crucial, as events

8

8

82

9Overview

©2000-2011 Tibbo Technology Inc.

tend to execute very quickly, and the queue ensures events are not forgotten.

Getting Started
Below is a walk-through for a starter project which is written specifically for the
EM202-EV and DS202.

Once you are done with this project, you will be able to press the button on the
EM202-EV or DS202 and watch the LEDs blink "Hello World!" in Morse code.

This project would actually run also on the EM202, EM200 and EM120
modules. However, these modules cannot work on their own, and you
cannot easily test with them.

Preparing Your Hardware

Preparing a DS202

Before starting to use TIDE, you should upload the correct firmware to a DS202.
Perform the following steps:

Get tios_EM202_xxx.bin firmware file (the latest version) from the Tibbo website.
_100 in this filename stands for version 1.00, for example.

Connect the DS202 to power (preferably, use adaptor supplied by Tibbo).

Connect the DS using a network cable (WAS-1499 or similar) to the same hub
your computer is connected to, or directly to the computer with a cross network
cable (WAS-1498 or similar).

Make sure your local firewall (such as the XP SP2 firewall) is disabled or does not
block broadcast UDP messages. This is essential for communications between
TIDE and the DS202 while debugging.

Run Device Explorer (Start > Programs > Tibbo > Tibbo IDE > Device Explorer).

You should see your device on the list. Select it.

Click Upload > Load Firmware Through the Network.

Select the firmware file, and click OK.

The firmware will now be uploaded.

For some firmware versions, you now have to manually reboot the DS (Disconnect
and reconnect the power cable). The red Status LED should now blink rapidly.
This is OK -- it means the TiOS firmware is loaded and the application program
memory is empty.

Proceed to Starting a New Project .

Of course, once you upload a device with the TiOS firmware, it is no longer a
Device Server! So you cannot see it under DS Manager. You could program it
so it would respond to DS Manager -- but by default it is a 'clean slate', and
does not respond to DS Manager broadcasts.

If for some reason you cannot perform a network upload, you can perform a
serial upload by selecting Upload > Load firmware Through the Serial Port. You

10

10 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

will then be prompted to select a COM port, turn the device off and turn it
back on while pressing the SETUP button. Upload will then commence.

Starting a New Project
To begin a new project, select File > New. You will be presented with the following
dialog:

Platform: Select EM202 (you can use EM1000 as well)

Available project types: Select Empty Project.

Project name: Type 'Hello World'.

Location: Leave untouched, unless you have a good reason to change it.

Transport: leave it as is ("Taiko UDP Broadcast Transport")

Target Address: Click Browse. You will be presented with the following dialog:

11Getting Started

©2000-2011 Tibbo Technology Inc.

The number (hopefully) displayed is the MAC address of your target. If you select it
and click Buzz, you should see the LED pattern on your target switch off
momentarily. This means it is correctly detected.

If you see nothing in this dialog, it means your target isn't in
communication with the computer. This is probably a power problem, or
a networking problem. Perhaps you have a local firewall on the computer
which blocks UDP broadcasts, such as the Windows XP Firewall. To fix
this, disable the firewall or configure it to open a specific port.

Once you have located your target, click Select. You will be returned to the
previous dialog, and the MAC address for your target will appear under Target
Address.

You have now specified all of the required settings for a new project. Click OK and
proceed.

Writing Code
Once you have started your new project, you will be presented with a blank file
(main.tbs).

We will now begin writing the actual code in this file. We will construct this project
from beginning to end, step by step. For your convenience, the end of this section
contains a complete copy of the project without comments. You can copy and
paste the whole thing into TIDE, or just copy and paste the commented sections
one by one as they appear below.

Here goes:

' Comments cannot spill over to the next line. If you see this happening in
this manual, it is a result of the help system -- not an actual feature.

Dim hello_world As String ' define a variable which will hold the whole
pattern we will play.

Dim length, play_position As Integer ' length is a calculated integer which
will contain the whole length of the string we will play, and play_position

12 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

will contain our current position in this string (how much we have played so
far).

Const PAT_PLAY_CHUNK_LENGTH = 15 ' define a constant for the size of the
chunk we will play. We will play one chunk of the pattern at a time, and
then move on to the next chunk. Each chunk is 15 'steps' long.

Declare Sub play_Next ' let the compiler know that there is a sub called
play_next. This sub will be used in code before being created so we must
declare it.

Notice that we are defining a chunk above. The reason for this is that we are going
to play quite a long and complex pattern (over 130 steps in length), but the pattern
object (pat.) used to play the pattern only supports patterns of up to 16 steps. So
we have to play our pattern in parts, one after the other, and track our progress
through the pattern (this is what the counters are for).

So far, we have prepared the ground. Let us move to the first piece of executable
code:

sub on_sys_init ' event handler for the init event. Fires whenever the
device powers on.

hello_world = ' here we define the contents of our string, in morse.

'R is Red LED, G is Green LED. GGG means a long pulse of the
green LED (line). R means a short pulse of the Red LED (dot). Line (-) means
both off.

'HELLO-.. .-.. ---
"R-R-R-R---R---R-GGG-R-R---R-GGG-R-R---GGG-GGG-GGG" +
"-------" + ' A period of silence between words
'WORLD .-- --- .-. .-.. -..
"R-GGG-GGG---GGG-GGG-GGG---R-GGG-R---R-GGG-R-R---GGG-R-R" +
"-------" +
'! ..--..
"R-R-GGG-GGG-R-R-"

length = len(hello_world) ' Calculate total length of string.
play_position = 1 ' Initialize play_position as we haven't played

anything yet.
end sub

We will now write the event handlers for our code.

First, we want the pattern to start playing whenever you press the button. For
this, our platform offers a button object, which generates an on_button_pressed
event. Instead of typing, you can create the event handler for this event by
double-clicking on the event name in the project tree .

sub on_button_pressed ' event handler fired whenever the button is pressed
play_position = 1 ' start playing from the beginning of the pattern
play_next ' call the routine which plays the next chunk (the first

chunk, in this case)
end sub

134

13Getting Started

©2000-2011 Tibbo Technology Inc.

Notice that the play_next routine is not yet defined. In our code, it is first used and
then defined. This is why we have to declare it at the beginning.

Now, let us move on to the next event handler:

sub on_pat ' this fires whenever a pattern (a chunk, in our case) finishes
playing.

play_next ' call the routine which plays the next chunk
end sub

We have now completed writing our event handlers. Our program now knows what
it's supposed to do whenever you press the button, and whenever a chunk of the
pattern finishes playing. It just doesn't know how to do it yet. This comes next:

sub play_next ' plays the next chunk of our large pattern.
if length < play_position then exit sub ' if we have reached the end of

the pattern, stop.

dim chunk_len as integer ' internal integer for the length of current
chunk to be played.

chunk_len = length - play_position + 1 ' calculate how much of the
large string is left.

if chunk_len > PAT_PLAY_CHUNK_LENGTH then chunk_len =
PAT_PLAY_CHUNK_LENGTH ' if too much is left, we bite off only a chunk we can
process.

dim chunk as string ' will contain the chunk which will actually play
now.

chunk = mid(hello_world, play_position, chunk_len) ' chunk is the part
of hello_world which begins at play_position and is as long as chunk_len.

pat.play(chunk, YES) ' Play this chunk. YES means the pattern may be
interrupted -- you can press the button while the pattern is playing, and it
will start again from the top.

play_position = play_position + chunk_len ' advance play_position to
account for the chunk we played.

end sub

Here is the whole project, without comments:

'==
===
' HELLO WORLD IN MORSE CODE (for EM202-EV, DS202)
'==
===

dim hello_world as string
dim length, play_position as integer

const PAT_PLAY_CHUNK_LENGTH = 15

84

14 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

declare sub play_next

'--

sub on_sys_init

hello_world =
"R-R-R-R---R---R-GGG-R-R---R-GGG-R-R---GGG-GGG-GGG" +
"-------" +
"R-GGG-GGG---GGG-GGG-GGG---R-GGG-R---R-GGG-R-R---GGG-R-R" +
"-------" +
"R-R-GGG-GGG-R-R-"

length = len(hello_world)
play_position = 0

end sub

'--

sub on_button_pressed

play_position = 1
play_next

end sub

'--

sub on_pat

play_next
end sub

'--

sub play_next

if length < play_position then exit sub

dim chunk_len as integer
chunk_len = length - play_position + 1
if chunk_len > PAT_PLAY_CHUNK_LENGTH then chunk_len =

PAT_PLAY_CHUNK_LENGTH

dim chunk as string
chunk = mid(hello_world, play_position, chunk_len)
pat.play(chunk, YES)
play_position = play_position + chunk_len

end sub

Building, Uploading and Running
Once you are done with writing your project, it is time to build, upload and run it.
These three operations can be done by pressing F5.

Press F5 and wait. You will see your project compiling. The output pane will
display any errors (if you copied the project as it is, there should be no errors).

The status bar will show you the project building, uploading, and running.

133

130

15Getting Started

©2000-2011 Tibbo Technology Inc.

Once the status bar says RUNNING, you may press the button on your device to
see it blink "Hello World" in Morse.

For further information about these topics, please see Making, Uploading and
Running an Executable Binary and Debugging Your Project below.

Compiling a Final Binary
The binary executable file you compiled in the previous step is called a debug binary

. This type of binary is used while creating your project and debugging it.

When you decide your project is ready to be deployed in the real world, you should
compile a release binary . To do this, select Project > Settings and uncheck the
Debug version checkbox.

Use Project > Build and Upload to upload the compiled binary into the target. It will
automatically start running whenever the device is powered up, and all debug
functions will be disabled.

This compiled application binary file will also remain on your hard drive, inside your
project folder (see Starting a New Project). You may upload it to any number
of devices using the Device Explorer .

You can optionally protect the firmware and application loaded into your device
with a password (strongly recommended).

Programming with TIDE
The topics below attempt to give you a general understanding about working with
TIDE. An attempt has been made to lay them out as logically as possible; it would
be advised to just read the section from top to bottom and follow the links every
time you don't understand a term.

The section called Managing Projects provides an overview of the general
structure of a Tibbo Basic project, and also discusses the debugging process.

The next section, Programming Fundamentals , then delves into the specifics of
Tibbo Basic programming, including the differences between Tibbo Basic and other
languages you may know.

Managing Projects
Each program you will make with Tibbo Basic is actually a project. Projects include
certain files, and have a specific structure. They are compiled into binary files,
uploaded onto your target and debugged.

In this section:

The Structure of a Project

Creating, Opening and Saving Projects

Adding, Removing and Saving Files

Resource Files

Built-in Image Editor

Coding Your Project

Making, Uploading and Running an Executable Binary

Debugging Your Project

Project Settings

Device Explorer

26 28

27

27

10 41

39

41

15

43

16

17

18

20

20

22

26

28

38

39

16 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Protecting Your Device with Password

The Structure of a Project

A project is a collection of related files and resources, which are then compiled into
one final binary file, uploaded onto a target and run. Projects include actual source
files, HTML files (if any), images (if any), etc.

Your project's files come from two distinctive places: the project folder and the
source libraries folder. Files in the project folder are really "your" project's files.
Your project may (and should) make use of free libraries provided by Tibbo. You
don't have to copy library files into your project folder -- you can add them directly
into you project (see Adding, Removing, and Saving Files , "Adding existing files
to your project").

Want to modify a library? Then you really better copied this library's files
into your project's folder. It is a very bad practice to modify the files in the
library folder.

Here are the files that form a project:

Project file: A single file with a .tpr extension. Contains project settings,
and a list of all files included with the project. You don't have to edit this
file manually -- TIDE handles it for you. This file is always kept in the
project folder.

Header files: Multiple files with a .tbh extension. Used for inclusion into
other files; usually contain declarations for global variables, constants,
etc.

BASIC files: Multiple files with a .tbs extension. Contain the actual body
of your program.

HTML files: Multiple files with an .html extension (displayed with the
currently associated icon). Contain webpages to be displayed by the
embedded webserver of your device. These can include blocks of Tibbo
Basic code. See Working with HTML .

(Any
icon

)

Resource files: Multiple files without any preset extension. Contain
resources (such as images) needed for other files. Some resource files
(.cfg, .txt, .ini) can be edited from within TIDE:

.cfg, .txt, and .ini files are considered to be text files and can be edited
using TIDE's built-in text editor.

.bmp, .jpg, and .png files are graphical files; these will be opened using
TIDE's built-in image editor .

Note that the only really fixed extension is the one for the project file --
tpr. This file contains references to other files within the project. These
may use any extension, as long as their type is correctly stated in the
project file (this is selected when adding the file, as described here).

The extensions above are the default extensions which are associated with
TIDE, and we recommend keeping them.

41

580

18

79

20

18

17Programming with TIDE

©2000-2011 Tibbo Technology Inc.

Creating, Opening and Saving Projects

To create a new project, select File > New. The following dialog will appear:

Platform: The platform on which your project will run.

Source library set: Tibbo libraries come in sets. Each set has a version number.
Once you choose the library set for your project, it will be used until you change it.
Tibbo will keep releasing new library sets. With each new release we will check if
backward compatibility has been lost due to new features. If backward compatibility
is lost, we will publish the new library set under the new version number. Old library
sets will still be distributed and your project will keep compiling without any errors.
For new projects, always choose the current library set as defined in the Library
Reference .

Available project types: Only an Empty Project template is currently offered.

Project name: A short name for your project. TIDE will use this name to create a
folder for your project, and also to create a project file (.tpr) within this folder.

Location: The folder which will contain your project folder.

Target address: Platform-specific. See platform documentation. The address of
the target you will use for debugging and testing this project. This should be a
reachable address with a live target. Your project will still be created even if you do
not specify this parameter, but you will not be able to upload or debug until you
specify the target using the Project Settings dialog.

138

580

138

38

18 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Adding, Removing and Saving Files

Files tab

You can see what files are included in your project at any given time using the Files
tab of the Project pane . Notice that the project structure includes a separate
branch for library files . These come from the currently selected library set.
Library set is defined when creating new project or editing project settings .

Adding New Files to Your Project

To add new files to your project, click Project > Add New File or click the
Add new file button on the Project Toolbar.

You will be presented with the following dialog:

Specify a name for your file under Filename. If you also specify an extension, the
Type listbox will update, too. Automatically recognized file types are:

.bas -- basic files

.tbh -- header files

134

580

17 38

19Programming with TIDE

©2000-2011 Tibbo Technology Inc.

.htm, .html -- HTML files

.bmp, .jpg, .png, .gif, .ico, .pcx -- resource graphics files

.txt -- resource text files

all other file extensions are classified as binary resource files by default.

You can still set the file type regardless of the extension -- just select what you
need in the Type listbox.

Adding image files to the project will prompt an additional request for size in
pixels, etc.

Adding Existing Files to Your Project

To add existing files to your project, click Project > Add Existing File or click
the Add existing file button on the Project Toolbar.

You will be presented with the following dialog:

Under Base location you can select either Project Folder or Source Library Set
Folder. In the latter case the file you add is expected to reside in the source
libraries folder, inside the currently selected library set. You defined the set to be
used when creating the project. You can also change it through the Project
Settings dialog.

Once you selected the location, browse for the filename.

You may need to make an appropriate selection of file Type and Format.

Removing Files from Your Project

To remove a file from your project, first select (single-click) it in the project
tree. Then click Project > Remove File or click the Remove button on the
Project Toolbar.

You will be presented with a prompt. If you're sure you want to remove the file,

20

17

38

20 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

select OK, and the file will be removed from the project. Note that it is not
physically deleted -- only removed from the project tree.

Saving Files

To manually save your work, select File > Save, press Ctrl+S, or click the
Save button on the Project Toolbar.

Any of these actions would save all open and modified files in your project, including
the project file itself.

In addition, every time your project is compiled, all open and modified files are
saved.

Resource Files

Sometimes a project may need access to certain files which are not Tibbo Basic
code per se; these may be image files, sound files or any other fixed binary data
which is not to be interpreted or modified by the Tibbo Basic compiler but simply
used as-is within the project.

These files are not modified or compressed in any way; they are merely included
within the final, compiled binary file and may be accessed from within the
program or by the built-in HTTP server.

Resource files are included in the project tree under the Resource Files branch.

Built-in Image Editor

Beginning with release 2.0, TIDE features a simple image editor that "knows" how to
work with .bmp, .jpg, .png, and .gif files. The editor is primarily intended for
bitmap-level jobs such as preparing "screens" for a device with an LCD display.

All features of the image editor are fairly standard and we see no need in discussing
image editor's functionality in details. Image files are added to the project as
any other resource files. When adding an image file to the project you will be
presented with a choice of selecting RGB or palette color mode for this file.
Depending on your choice the Colors pane for this image will display available
palette colors...

20

26

134

18

135

21Programming with TIDE

©2000-2011 Tibbo Technology Inc.

... or RGB color selector:

Double-clicking on the image file with .bmp, .jpg, .png, or .gif extension opens the
image editor.

All image-related editing functionality is concentrated within Image menu ...

...and Image Editor toolbar :

124

127

22 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Coding Your Project

TIDE contains a code editor with the following facilities:

Syntax highlighting

Auto-Completion

Hinting

Tooltips for properties, events, functions, and even user-configurable tooltips
for user-defined functions.

4.1.6.1Project Browser

The Project Browser contains a tree of all objects in the platform (with their
methods, properties and events), as well as all procedures and global variables of
your project. The tree is updated in real time, using a dynamic background parser
which constantly analyzes your source code.

The tree features icons for the various constructs.

An icon next to an event is grayed (inactive) if this event does not have an event
handler implemented in the project. The icon becomes "active" when the event
handler is created. An icon next to a procedure is grayed if this procedure is merely
declared but does not yet have a body. The icon becomes active once the
procedure is implemented ("gets" a body). Same applies to global variables -- gray

23

24

24

136

23Programming with TIDE

©2000-2011 Tibbo Technology Inc.

icon next to variables that are declared but not yet defined, active icon for defined
global variables.

Double-clicking on an event which does not yet have an event handler will create
an empty event handler procedure for this event at the bottom of the currently
active file. Double clicking on an event which already has an event handler will
make the cursor jump to this event handler.

Double-clicking on a procedure which does not yet have a body will make the cursor
jump to the location where this procedure is defined. Double-clicking on a procedure
which already has a body will make the cursor jump to this body.

Double-clicking on a global variable which is not yet defined (using the dim s
tatement) will make the cursor jump to the location where this variable is
declared (using the declare statement). Double-clicking on a defined global
variable will make the cursor jump to the location where this variable is defined.

Hovering the cursor over an item in the displays a tooltip for this item.
Additionally, when in debug mode, hovering the cursor over global variables and
object properties displays their current values.

Notice, that currently selected platform is displayed next to the project name in the
topmost tree node.

4.1.6.2Code Auto-completion

If you type an object name followed by a dot, the TIDE will pop-up a code-
completion box. It looks like this:

This list also supports tooltips -- they are displayed as you scroll down the list.
You can also hover the mouse over an item in the list to see its tooltip.

Code completion box is also displayed for the structures in your project:

You can also get a list of constants related to your construct. For example, by

86 86

86

84 84

24

24

58

24 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

typing "ser.enabled=" you will get a list of possible values of this property:

By pressing Alt+Ctrl+T when the cursor is directly to the right of any
meaningful Tibbo Basic construct, you will get a pop-up list with the
appropriate contents for the current context. If the cursor isn't immediately
to the right of any such construct, you will get a list containing all platform
enumeration types, constants, objects and events.

4.1.6.3Code Hinting

Code hinting is a feature which helps you see what are the arguments for a
function, while writing the code for it. It appears as soon as you type the opening
parentheses for a procedure. It looks like this:

You can see the number of arguments required and their types, as well as the
return type (if any). The highlighted part shows what syntax element you should
type in next.

You may invoke code hinting manually by pressing Ctrl+Shift+space.

4.1.6.4Tooltips

When you hover your mouse over event handlers, object properties and methods,
constants, procedures, and variables the TIDE displays tooltips. These look like
this:

The tooltips are displayed when hovering over constructs in the code editor, the
Project Browser , Watch , and the Stack pane. They show a formal
construct definition and a comment, if available.

In the code editor, you may also display a tooltip with the keyboard by

134 33 133

25Programming with TIDE

©2000-2011 Tibbo Technology Inc.

pressing Ctrl+T when the cursor is within an event handler, a procedure, a
constant or a global variable.

Tooltip text for properties, methods, and events comes from the platform file for
the platform selected in your project. You can add your own custom comments
to the tooltips displayed for procedures and variables of your projects. What's
more, you can use HTML formatting to make these comments look more readable!
Here is an example:

function blink(num as integer) as boolean ' Blinks the lights. Input:

num- pattern # to "play". Do not set to 0.</
font>.

'... your code here ...

End Function

This would yield the following tooltip when hovering over the "blink" identifier (notice
how HTML formatting improves tooltip readability):

Supported HTML Tags section details which tags you can use to beautify your
tooptips.

Your comment must be on the same line as the function definition, or immediately
following it. The comment can contain multiple lines, if every line begins with a
comment character. These lines must be consecutive -- with no blank lines in
between. For example:

function blink(num as integer) as boolean ' USER-DEFINED. Blinks the lights.
' This is a very important function.

' And must be included in every application.

'... your code here ...

End Function

This would yield a tooltip with the text "USER DEFINED. Blinks the lights. This is a
very important function." This would be as one paragraph -- line breaks are not
displayed within the tooltip, unless you use
 element. The third comment
would not be included because it is preceded by a blank line.

As we will explain in the Introduction to Procedures , there is a procedure
definition (procedure body) and procedure declaration that merely states that the
procedure exists. If both have comments than the comment in the procedure
definition wins (takes precedence) over the comment in the procedure declaration.

82

26

66

26 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Variables also have declaration (declare statement) and definition (dim s
tatement). Comment in the definition wins.

Finally, your own comment placed in the event handler definition takes over the
comment for this event that comes from the platform file.

Supported HTML Tags

Here are the tags (HTML elements) that you can use:

Presentation markup tags: , <i>, <big>, <small>, <s>, <u>,

Headings <h1>...<h6>

Line break

Comments: <!-- -->

All other tags (elements) cannot be used. Most of these tags are simply ignored,
but some lead to scrambled text output.

One peculiarity of the HTML renderer used in the TIDE software is that it
often requires you to add an extra space before the closing tag in the tag
pair. For example, if you write "Bold text" then you will get this
output: "Boldtext". Writing "Bold text" or Boldtext will
produce correct result: "Bold text".

Making, Uploading and Running an Executable Binary

An Executable Binary File is a file (.tpc type) which contains your project in
compiled form, along with any resource files. It is uploaded to the target, where it
is actually executed by the TiOS Virtual Machine.

Making a Binary

Once you have the code which you wish to try out, you may build it by
selecting Project > Build, by pressing the shortcut key F7 or by clicking the
Build button on the Debug toolbar.

If this is not the first time you're building this project, the build process will skip any
files which were unmodified since the last time the project was built. This optimizes
build speed.

To force the build of all files, even those which were not modified since the last
time, select Project > Rebuild All.

On build, the Output pane will display any errors. You can double-click on the
line describing an error to jump directly to the problematic line in your code.

Uploading a Binary

Before uploading a binary, you must select the target device. You can do so using
the Device Explorer .

84 84 86

86 86

133

39

27Programming with TIDE

©2000-2011 Tibbo Technology Inc.

To upload your project, you must select Project > Upload or click the Upload
button on the Debug toolbar.

Before uploading, TIDE checks if the project has been changed since it was last
built. If so, it builds the project again and attempts to upload the new build.

Also, the current project hosted on the target will be checked. If it is the same
(same project and same build number) as the project you are trying to upload,
uploading will not occur. Thus, trying to upload a project twice without making any
change in the project will not result in a second upload. Also, before uploading, the
firmware version is checked and if it is incompatible with the firmware version
specified in the platform file, the upload is aborted with an error message.

As of version 2.20.33, TIDE supports incremental uploads. It caches
the previous build on the computer; when you make a modification, it
(1) makes sure the previous build is indeed what's currently running on
your device, and then (2) compares the current build with the previous
build, block by block. It then attempts to upload only what's changed.
This can make rebuild times significantly faster. Your device needs to be
running TiOS 3.10.00 or later to be able to take advantage of this
feature.

Running a Binary

For a debug version (the default version type), uploading the binary does not
automatically start its execution on the target. Once uploaded, it just sits there,
waiting to be executed.

To begin execution, select Debug > Run, press the shortcut key F5 or click
the Run button on the Debug toolbar.

This action optionally builds and uploads your application, if needed. If a new upload
was just performed, it also reboots the target before running it. This ensures that
target starts running the newly uploaded program from a 'fresh' state.

You may also reboot your device manually at any time by selecting Debug >
Restart or clicking the Restart button on the Debug toolbar.

These actions are incremental. This means that when uploading, a build is
performed if needed. When running, a build and an upload are performed if
needed.

4.1.7.1Two Modes of Target Execution

When you execute a program on the target, it can run in either of two modes
(depending on the setting selected under Project Settings) :

Debug Mode

In debug mode, your project runs with the assumption that you are right there,
watching the monitor and trying to see what's going on. This means that the Debug
menu is active. You can set up breakpoints , or step through your project,
watch the variables, etc.

This also means the project might stop if there's an error, such as division by 0.
And you can pause execution, stop it, etc.

Also, when uploading a project in debug mode, it does not begin to run by default.

38

38

30 33

28 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

By default, it waits for you to run it.

Selecting Debug > Run, pressing F5 or clicking the Run button on the Debug
toolbar would send an explicit command to the target, to start running the
project.

If the device reboots while a project is running in Debug Mode, the project will not
start running automatically after the reboot. You would have to run it explicitly.

Release Mode

Release mode means business. This is the mode in which you compile the final files,
deployed in the field. Under this mode, the working assumption is that you, or
anybody else, isn't there. Your box is just supposed to run and run, despite any and
all problems and errors.

This means that a release version does not respond to any debug commands. You
cannot stop it. It does not stop even when critical errors occur. It also means that
when you upload a release version to your target, it starts running immediately.

Even if you reboot your device, when it has a Release Mode binary in memory, it will
start running.

Debugging Your Project

One of the most common operations you will perform during your development
process is debugging. In essence, this involves controlled execution of your project.
While debugging you can step through your program, set breakpoints, watch and
change the state of various variables, see how control and decisions statements
are executed, etc.

One of the aspects of TIDE is that it employs a technique called cross-debugging.
Simply put, this means your code runs on a different machine than the one on
which you wrote it, and you can debug it from the computer on which you wrote
the program.

Thus, code is not debugged using some PC emulator or anything of this sort. It is
truly uploaded and run on your target -- just like it would run in real life.

As covered above , the first thing you would have to do to begin debugging a
debug binary would be to run it, using F5. Once you press F5 (or Debug > Run),
your project will be built (if necessary), uploaded (if necessary) and started.

Once execution has started, there are several ways in which you may control and
inspect it. These are listed below.

4.1.8.1Target States

In debug mode, your target may be in one of several states at any given moment.

For this, the status bar displays several different status messages:

Run: This message means your program is currently running. It
doesn't mean any specific code is actually being executed -- perhaps
the target device is just sitting idle, waiting for an event to happen.
But the program is still running -- not paused. This state is entered by
pressing F5 or Debug > Run.

Break: This message occurs when the Virtual Machine on the target
was stopped while executing code. The easiest way to get to this
state is by setting and reaching a breakpoint in code. You might
also get to this state by selecting Debug > Pause, if you happen to
catch the Virtual Machine in the midst of code execution. Once in this

26

130

30

29Programming with TIDE

©2000-2011 Tibbo Technology Inc.

state, the program pointer (a yellow line) is displayed and indicates
the next instruction that the Virtual Machine will execute when
started. You can now inspect and change various properties and
variables (both global and local) using the watch . This is the only
state which allows stepping .

Pause: This message occurs when the Virtual Machine on the target
was stopped while not executing code (in other words, it was caught
between events). No program pointer is displayed in this state,
because no code is being executed. You can check and modify the
state of properties and global variables, etc using the watch. This
state is entered by selecting Debug > Pause.

Abort (exception): This message indicates that an internal error has
occurred. The message in parentheses is a short error code. If you
hover your mouse over it, you will see a more detailed report of the
error. The program pointer will appear at the problematic line. This
state is similar to a break, only it is not caused by a breakpoint but by
an abnormal condition. All possible causes for exception are listed in
Exceptions .

Communication States

While TIDE is in communication with the target, the status bar displays a moving
indicator of the communication state.

Communication in progress: The circle is green, and moves from side
to side. It advances one step whenever TIDE gets a reply to a debug
command.

Communication problem: The circle is yellow, and does not move. This
state means TIDE did not receive any reply to debug commands for more
than 6 seconds. The program may be still running on the target.

No Communication: The circle is red, and does not move. Occurs when
TIDE did not receive any reply to debug commands for more than 12
seconds. The program may be still running on the target.

Exceptions

Exceptions are "emergency" halts of program execution. Exceptions are generated
when the Virtual Machine encounters something that really prevents it from
continuing normal operation. When exception happens you see "ABORT" target state
in the status bar, like this:

"(DIV0)" is an abbreviated problem description. Hover the mouse over this and you
will get a more detailed description.

Listed below are all possible exceptions. When you are in the debug mode any
exception from the list below causes the Virtual Machine to abort execution. In the
release mode, some "lesser" problems do not cause the halt. The logic here is
that there will probably be nobody to restart the problem or check what happened
anyway, so the Virtual Machine just tries to continue operation.

Cod
e

Description Halt in
debug

Halt in
release

30

33

33

29

27

27

30 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

mode? mode?

DIV
0

Division by zero Yes No

OO
R

Out of range (attempt to access past the
highest array member)

Yes No

FPE
RR

Floating point error Yes No

IOC Invalid opcode* Yes Yes

OU
M

Access outside of user memory* Yes Yes

TDL
F

Failed to load binary library* Yes Yes

*This exception indicates that either TiOS or Tibbo Basic compiler is not
functioning properly. Let us know if you encounter this exception!

4.1.8.2Program Pointer

The program pointer is a line, highlighted in yellow, which shows the present
location of program execution. It looks like this:

This means that the yellow line is now pending execution. It hasn't been executed
yet. The machine is waiting for you to tell it what to do. You can now control it by
stepping .

This line is displayed whenever the Virtual Machine has been paused while executing
code. This can be achieved by setting a breakpoint , or simply selecting Debug >
Pause at the "right" time.

The program pointer will only stop on lines which contain actual executable code.

dim x as byte ' the program pointer won't stop here, as this isn't
executable code.
x = 1 ' the program pointer will stop here -- this is an actual instruction
to do something.

4.1.8.3Breakpoints

A breakpoint is a point marking a line of code in which you wish to have the
debugger pause. It is seen as a little red dot on the left margin of the code. Like
this:

This is what it looks like when the code is not executing.

33

30

31Programming with TIDE

©2000-2011 Tibbo Technology Inc.

Once the code begins to execute and the breakpoint is reached, the program
pointer is displayed at the line in which the breakpoint is placed:

The yellow arrow over the red dot merely marks the program pointer; a breakpoint
is always marked by a red dot.

Where a Breakpoint May Be Placed

A breakpoint may be placed only on a line which contains executable code; before
compiling your project, you could place breakpoints anywhere. However, on
compile, these breakpoints will be shifted to the nearest lines following them which
contain executable code.

You could add breakpoints to your code at any time -- even while the code is
running. However, while the code is running, you may only add breakpoints next to
lines which contain executable code. If you click next to a line which does not
contain executable code, the closest line following this line which does contain
executable code will get a breakpoint.

You may have up to 16 breakpoints in your entire project. Breakpoints are saved
when the project is saved.

Adding breakpoints slows down the performance of the Virtual Machine.
Having 16 breakpoints will have a noticeable effect on the speed of execution
of your program.

Toggling Breakpoints

Breakpoints may be toggled (set/cleared) by putting the cursor in the line in which
you wish to place (or remove) the breakpoint and pressing F9 or selecting Debug >
Toggle Breakpoint. Alternatively, you may also toggle a breakpoint by clicking on
the margin of the code at the point in which you wish to have a breakpoint.

You may remove all breakpoints from an entire project (including any files which are
not currently open) by selecting Debug > Remove All Breakpoints.

4.1.8.4The Call Stack and Stack Pointer

During the execution of a program, procedures usually call other procedures. The
calling procedures are not just left and forgotten; they are placed on the call stack.

The call stack can be toggled by View > Call Stack. It lists the sequence of
procedure calls which lead to the current procedure (the one in which the Program
Pointer is located). The current procedure is listed at the top of the stack. Once
it finishes executing, execution returns to the caller (the procedure one line below
in the stack). In the caller procedure, execution resumes from the line immediately
following the one which called the procedure which has just ended.

So, if the procedure (event handler, actually) on_timer called the procedure
error_handler, which in turn called the procedure write_logfile, our call stack
would look like this:

30

30

32 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

When pausing a program in the midst of code execution, the program pointer
appears. In the Call Stack pane, the function which currently contains the program
pointer is highlighted in yellow. It is the currently executing function, so it is always
the first one on the Call Stack list.

Technically speaking, the top function on the call stack isn't actually a part
of the stack itself, because it is currently executing, and the real stack only
contains functions to which execution should later return. It still appears on
the same list, for consistency and convenience.

The Stack Pointer

Double-clicking on any procedure within the call stack which is not the currently
executing procedure would display the stack pointer. This pointer would be
displayed in the source code, within the procedure you double-clicked, and would
highlight the line from which execution would resume once control returns to this
procedure. The watch pane would also interpret variables as relative to the
procedure you've just highlighted.

The stack pointer is light blue in color. On the call stack list, it looks like this:

In the code editing pane, it looks like this:

Once again, double-clicking on the functions in th call stack does not move actual
execution (the program pointer). Any sort of stepping would bring back the yellow
program pointer, both in the source code and in the call stack.

30

33

33Programming with TIDE

©2000-2011 Tibbo Technology Inc.

4.1.8.5Stepping

The following commands in the Debug menu control stepping into, through and out
of various sections of your code:

A step is an instruction to move the program pointer to another line in source
code. Stepping allows you to execute your code in a very controlled way, and work
your way along the program in a pace which you can analyze and understand.

Step Into: Steps through your code line by line. When the program pointer
reaches a procedure call, you would actually see it step into this procedure
(hence, the name). You could then see the inner workings of this procedure as
it is being executed, line by line.

Step Over: Steps through your code line by line. When the program pointer
reaches a procedure call, it executes this entire procedure, but just does it all
at once, and stops at the next line after the procedure call. This is useful
when you want to debug a body of code which contains a call to a complex or
lengthy procedure, which you do not want to debug right now.

Step Out: If you are currently stepping through a function and wish to exit it
while you're still in the middle, use Step Out. This would bring you to the line
immediately following the line which called the function you were in. This
option is disabled when you cannot step out of the current function (i.e, when
your other function calls it -- such as in the case of an event handler).

Run to Cursor: The cursor, in this case, is the text insertion point. The little
blinking black line. You can place the cursor anywhere within the body of your
program and have the program execute until it reaches that point. When, and
if, that point is reached, the program pointer would display.

Jump to Cursor: This command makes the program pointer unconditionally
move to the point where the cursor is. It will just jump there, possibly skipping
the execution of some code. This is explicit control of program flow.

4.1.8.6The Watch

The watch is a facility which allows you to inspect and change the current value of
variables and object properties. You can only use this facility when you are in
debug mode and when the program execution is stopped. TIDE is unable to fetch
variable values while the Virtual Machine is running. Depending on the scope of the
variable, there may be additional limitations as to when you can inspect this
variable's value.

The watch updates variable values by reading them from the target every time the
Virtual Machine is stopped. If any item on the list changed its value since the
previous fetch, this item will be displayed in red.

Watch facility may be accessed by three different ways:

30

8

37

34 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

The Watch Pane

The watch can be toggled by View > Watch. It looks like this:

On the above screenshot we can see the status of a short, a string, a property
of an object, a member of an array, one user-defined structure, and an undefined
variable. Notice, that the "x(y)" is displayed in red indicating that its value has
just changed. Notice also that this line shows an array indexed by another variable
(y). This is not the limit of the watch pane's abilities -- try entering more complex
expressions, it will work!

There are several ways of adding variables and object properties to the watch
list. You can:

Press Insert while the watch pane has focus -- this will bring up an Add to
Watch List dialog. Type the name of a variable or property to watch and
press OK.

Alternatively, double-click on the empty space in the watch pane to obtain
the same result.

You can also select Debug > Add to Watch List from the Menu.

Additionally, there is an Add to Watch List button on the Debug toolbar.

You can right-click on the variable or property in the source code and select
Add to Watch List from the context-sensitive menu.

You can also right-click on the property in the Project pane (Browser tab)
and select Add to Watch List.

In the Add to Watch List dialog you may type multiple items to be added to the
watch by separating their names with commas (i.e. "i, j, k, ser.num"). For objects
you will get a drop-down list of available members:

35Programming with TIDE

©2000-2011 Tibbo Technology Inc.

Double-clicking the Name column in the watch pane will allow you to edit the name
of the item you want to watch.

The watch pane also allows you to change the value of any variable or object
property (provided it is not a read-only property). Double-click on the value field -
you will be prompted for a new value.

For numerical variables, you may use hex or binary notation (&h, &b). For strings,
you will be presented with the "HEX editor" allowing you to modify the string or the
HEX codes of its characters:

Once a new value is entered, it will be actually written to memory on the target,
and will be read again before being displayed in the watch. So when you see your
new value in the value column, that means it's actually in memory now -- what you

36 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

see is what you get.

The watch pane is one of the places where enumeration types become very useful.
Look at sys.runmode above. Because its possible values are described through an
enum, you can see a meaningful state description, rather than just a number. This
is one of the main reasons for the existence of enumeration types in Tibbo Basic.

To remove a variable from the watch, select it and press Delete, select Debug
> Remove from Watch List or click the Remove from Watch List button on the
Debug toolbar.

The Watch Tooltip

This is the watch tooltip:

When you hover the mouse cursor over an identifier in the source while in debug
mode you will see a tooltip with the current value for this identifier.

For now, this won't work for arrays. If you want to inspect the values of an
array add this array to the watch list.

The Project Browser

The Project Browser is a tab in the Project pane, which can be toggled by View >
Project. It displays all objects for your platform, with the properties and methods
for each object. It also displays all procedures and global variables in your project.

While debugging, you can see the value of an object property or a global variable
by hovering over its identifier in the tree.

37Programming with TIDE

©2000-2011 Tibbo Technology Inc.

Scopes in Watch

The watch facility is only active when the Virtual Machine is not running, i.e. the
execution is stopped. Naturally, the TIDE cannot fetch variable values while the
Virtual Machine is executing your program.

You already know that when the Virtual Machine it stopped, the state of your
target may be either "BREAK" or "PAUSE". Properties and global variables may be
inspected in the either state. Local variables only exist in their context. Hence, a
particular local variable can only be inspected when the state is "BREAK" (the
Virtual Machine is in the middle of a code execution -- there is an execution pointer
visible) and when this variable exists in the current context.

For example:

sub sub_one
dim x as byte
x = 1

end sub

sub sub_two
dim x as byte
x = 2

end sub

sub sub_two
dim i as integer
i = 5

end sub

Let us say you add x to the watch list.

When the execution pointer highlights the end sub keyword for sub_one, the value
of x in the watch would be 1. When the pointer highlights the end sub for sub_two,
the value of x in the watch would be 2. Note that these are two different local
variables!

Similarly, when the execution pointer is at the end sub of sub_three, the x variable
in the watch will be undefined -- it will display a question mark.

These same rules apply to the watch tooltip, as well. Even if you hover the mouse
over the x of sub_one when the program pointer is at the end of sub_two, the
value displayed would be the one set in sub_two -- because this is the current
context!

4.1.8.7Code Profiling

Code Profiling is the practice of measuring how long it takes for different portions of
your program to execute.

This is the timer, located on the Status Bar.

Each time execution begins or resumes in debug mode, the timer is reset and starts
counting. Once execution is stopped for whatever reason, the timer displays the
time elapsed since execution has begun or resumed.

Remember, as covered above , every additional breakpoint somewhat slows

28

30

38 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

down the speed of execution of your project.

Project Settings

The Project Settings dialog is platform specific. It can look like this:

Platform: This is the platform selected for the project. In the image above, the
EM1000 platform is selected.

Customize: click to access the list of option available for your platform. These are
"global defines" (for a preprocessor) , which typically include options such as
whether a display is present, display type, etc. For example, on the EM1000
platform you can enable/disable display support (lcd. object), flash disk support
(fd. object), and keypad support (kp. object). Additionally, you get to choose
the type of the display panel. Disabling objects when they are not in use reduces
the size of your compiled application binary.

Source Libraries Version: Tibbo libraries come in sets. Each set has a version
number. Once you choose the library set for your project, it will be used until you
change it. Tibbo will keep releasing new library sets. With each new release we will
check if backward compatibility has been lost due to new features. If backward
compatibility is lost, we will publish the new library set under the new version
number. Old library sets will still be distributed and your project will keep compiling
without any errors. For new projects, always choose the current library set as
defined in the Library Reference .

Project name: A descriptive name for the project.

Debug version: If checked, the compiler will build a version of this project which
can be debugged using the various debugging facilities within TIDE, such as step,
watch, etc. Also, debug versions do not automatically start running after the
upload or reboot. Release versions run automatically and can't be debugged. By
default, this option is checked. Once you've debugged your project and wish to
deploy it, uncheck this and build your final version.

143

76

317

236 304

580

39Programming with TIDE

©2000-2011 Tibbo Technology Inc.

Output binary file name: The name for the .bin file of the compiled project.

Transport: Selects the way that TIDE will use to communicate with your target.
Available selections are platform-specific. See your device's platform documentation
for more information on available debugging means. Also, Debug Communications
topic lists all currently available debug transports.

Target address: Different platforms may use different communication media
between TIDE and target. Thus, their target address may be expressed differently.
For devices with Ethernet port, the target address is the MAC address of the
device.

Select button: click it to select the target device's address. For Ethernet devices,
clicking the button brings up the Device Explorer .

Device Explorer

The Device Explorer is actually a standalone program. It can be found in the TIDE
installation folder and launched independently. It is also accessible from within TIDE
as a dialog (Project > Select/Manage Target).

The Device Explorer shows all Tibbo devices found on the current network segment.
These may include serial-over-IP devices and programmable devices running TiOS.
Some discovered devices may have two entries -- this happens when you have a
TiOS device running serial-over-IP Tibbo BASIC application.

Only TiOS devices can be debug targets.

Device list columns

Icon: The icon to the left of the MAC address shows the status of the device. It
can be any of the following:

Serial-over-IP device, valid IP address.

204

39

40 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Serial-over-IP device, invalid (unreachable) IP address.

<%TIOS% device, no Tibbo BASIC application in its memory.

<%TIOS% device, Tibbo BASIC application is loaded and running (executing).

<%TIOS% device, Tibbo BASIC application is loaded and stopped.

<%TIOS% device, Tibbo BASIC application is loaded and paused (for
debugging).

MAC: This is the current MAC address of the device. It can be changed.

IP: The current IP address of the device. It can be changed for serial-over-IP
devices. On <%TIOS% devices the IP can only be changed via Tibbo BASIC code.

Version: The version of the firmware this device is running.

Comment: Additional information. For serial-over-IP devices, this is the owner and
device names. For <%TIOS% devices, this is the name of the Tibbo BASIC project
currently loaded in memory.

You can click on any column header to sort the list by this column.

Can't see your device in the list? It may not be connected to the same LAN
segment (there is a router between your PC and the device), or your PC's
firewall may be interfering. To fix this, configure the firewall to allow
broadcast UDP datagrams from TIDE.

Buttons

Button functions apply to the device currently selected (highlighted) in the device
list. You can select several devices at once -- Buzz, Upload, and Reboot can be
applied to multiple devices simultaneously!

Buttons are...

Refresh: repeat the search for devices.

Buzz: Make the selected device identify itself by "playing" a pattern on its status
LEDs . This is useful for finding out which physical device corresponds to the
selected entry in the list. Serial-over-IP devices identify themselves by quickly
flickering their red and green LEDs several times. <%TIOS% devices respond by
turning their LEDs off for two seconds, but this only happens when Tibbo BASIC
application is not executing. <%TIOS% devices that are running an application will
not respond to buzz at all.

Set Password: you can protect the firmware and compiled Tibbo BASIC application
loaded into your device by setting an access password (strongly recommended).
This password will then be required for MAC address changing, as well as firmware
and/or application uploading.

Change MAC: Change the MAC address of the device. Note that you have to
reboot the device for the change to become effective.

Change IP: Change the IP address of the device. This function is only available for
serial-over-IP devices.

Upload: see Upload Function .

Reboot: reboot the device.

Abort: Aborts the current operation. Device Explorer operations never time out --

200

41

41

41Programming with TIDE

©2000-2011 Tibbo Technology Inc.

you must abort them manually.

Select: This button is only shown when accessing the Device Explorer from within
TIDE. Selecting the device means that TIDE will use the device as its debug target
for the currently opened project. You can achieve the same by double-clicking on
the device in the list.

Close: Close the dialog.

4.1.10.1Upload Function

Upload button has a fly-out menu:

Load Firmware Through the Network: Upload new firmware, optionally with
compiled Tibbo BASIC application binary attached, through the Ethernet interface.
This can be simultaneously applied to a group of devices.

Load Application Through the Network: Upload compiled Tibbo BASIC
application through the Ethernet interface. This can be simultaneously applied to
a group of devices.

Load Firmware Through the Serial Port (X-modem): Upload firmware,
optionally with compiled application binary attached, through the serial port of the
device. For this to work, the device must be in the firmware upload mode.

Load Firmware Through the Debug Serial Port: No publicly released Tibbo
devices currently support this function.

Load Application Through the Debug Serial Port: No publicly released Tibbo
devices currently support this function.

Loading firmware vs. loading application

"Load firmware" functions allow you to load the following:

Firmware for "traditional" fixed-function serial-over-IP devices such as DS203.

Firmware for TiOS devices.

Firmware for TiOS devices combined with the compiled Tibbo BASIC application
binary. This is a single file that in fact contains two parts.

"Load Application" function allows you to load compiled Tibbo BASIC application
binary into TiOS devices.

Protecting Your Device with a Password

Once you have created your Tibbo application, you can start deploying it into
multiple devices. At this point, you are recommended to password-protect your
device. Since Tibbo devices can be uploaded to and debugged through the
network, anyone with the basic understanding of TIDE software can "mess up" with
you device in many different ways and without even touching it physically. "They"
can simply render the device unusable or, even worse, replace your application with
a hacked one one that has additional undesirable "features". All this can be
prevented by setting the device password.

Setting device password

Passwords are set with the Device Explorer . Select the device in the list, click39

42 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Password button to bring up Change Device Password dialog. Enter any
password you want. From that point on, firmware and application uploads to the
device will require this password. TIDE will prompt you to Enter Device Password
every time it is needed. Check Save password for this device in the Enter
Device Password dialog and TIDE will memorize the password (it will be stored in
an encrypted file). This way, you won't have to input the password over and over
again.

Your Tibbo BASIC application can also set the password on its own. This can spare
you the trouble of manually protecting each device.You can find a code example in
Special Configuration Section of the EEPROM .

Clearing the password

To remove the password, use the Password button of the Device Explorer and set
an empty password. This, however, will require you to input the old (current)
password as well. And what if you don't remember it? Read on...

When you forgot the password

Simply press (and keep pressed) the MD button of your device while clicking OK
button in the Change Device Password or Enter Device Password dialog. This
will make you device accept any password you enter. Pressing the MD button will
not erase the password, but rather bypass it. This way you can change the old
password (or remove it completely) without knowing what it was.

How secure is it?

When the password is being set or changed, it is transmitted across the network "in
the open". Therefore, set passwords in the secure environment where you can
make sure that no one is "eavesdropping". Subsequent transmissions of the
password to "login" onto the device (in order to upload firmware, etc.) are "safe".
No data is transmitted in the open and eavesdropping on the data transmission will
not reveal the password or render any useful data.

How to remove passwords stored by TIDE

Open the Device Explorer and click on its icon (top left corner of the window).
Select Advanced Settings. Click on Clear Password Cache. You are done.

197

201

43Programming with TIDE

©2000-2011 Tibbo Technology Inc.

Programming Fundamentals
This chapter attempts to provide a very quick run through the fundamentals of
creating a program in Tibbo Basic. It was written under the assumption that the
reader has some experience in programming for other languages.

There is a marked resemblance between Tibbo Basic and other types of BASIC that
you may already know. Thus, we stressed the differences between Tibbo Basic and
other BASIC implementations. Some sections begin with a seemingly introductory
statement, but the material quickly escalates into more advanced explanations and
examples.

This is not a programming tutorial. We do not attempt to teach you how to
program in general. There are many excellent books which already exist on this
subject, and we did not set out to compete with any of them. This is a mere
attempt at explaining Tibbo Basic -- no more, no less.

Good luck!

Program Structure

A typical Tibbo Basic source code file (a compilation unit with the .tbs
extension) contains the following sections of code:

Include Statements

These are used to include other files from the same project (such as header files
[.tbh] containing global variable definitions or utility functions). See:

include "global.tbh"

Global Variables Definitions

136 16

95

16

44 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Here you define any variables you wish to be accessible throughout the current
compilation unit:

dim foo, bar as integer

Subs and Functions

These are procedures which perform specific tasks, and may be called from other
places within the project.

sub foo
...
end sub

function bar (a as integer) as byte
...
end function

Event Handlers

Tibbo Basic is event-driven . Event handlers are platform-dependent subs, that
are executed when something happens. This 'something' depends upon your
platform. If your Tibbo Basic program runs on a refrigerator, you would probably
have an event handler for the door opening.

sub on_door_open
light = 1 ' turn on the light when someone opens the door to your

fridge.
end sub

Just like any other sub, events can have arguments (input parameters):

sub on_door_state(state as byte)
 ' turn the light on and off as the fridge door gets opened and closed
 if state=0 then
 light=0
 else
 light=1
 end if
end sub

Event handles are always subs and never functions (i.e. they never return any
value as there is nobody to return it to)!

8

45Programming with TIDE

©2000-2011 Tibbo Technology Inc.

Code Basics

There are several important things you should know about writing in Tibbo Basic:

You Can Put Comments in Your Code

The apostrophe character marks the beginning of a comment. Anything following
this character until the end of a line is considered to be a comment, and will not be
processed by the compiler .

x = 1 + 1 ' I am a comment!
' x = y/0 <--- this line would not cause an error, because it won't even
execute! It is commented.

The only exception to this is that when including an apostrophe within a string
(between double quotes) it is not counted as a comment. See:

s = "That's a string!" ' Notice that the word that's contains an apostrophe.

Comments cannot span multiple lines. A line break terminates a comment. If you
want to make a multi-line comment, each line of your comment must begin with an
apostrophe.

Tibbo Basic Doesn't Care About Spaces!

See:

y = x + 5 ' is just like

y=x+5 ' and even this is OK:

y =
x
+
5

So, spaces, tabs and linefeeds carry no special meaning in Tibbo Basic. Use them or
lose them, as you like. The only exceptions are the If.... Then... Else Statement
and comments.

Tibbo Basic Is Not Case Sensitive!

See:

Z = X + Y ' is just like
z = x + y
r = Q + KeWL ' even something like this is legal.
DiM MooMoo As iNTeGER ' this, distatesful as it may be, is still legal. :)

136

94

46 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Capital letters just don't matter. Really.

How to Use Double Quote Marks

Double quote marks are used for marking string literals. Simply put, a string literal is
a constant string value -- like "hello world".

s = "I am a string literal!"
s1 = s

How to Use Single Quote Marks

These are different than the apostrophes which begin a comment. An apostrophe
looks like this ' while a single quote mark looks like this ̀and is usually located on
the tilde (~) key. Single quote marks are used to define a numerical constant which
contains the value for an ASCII code. For example:

dim b as byte
dim w as word
b = `q` ' the variable b now contains the value 113, which is the character
code for q.
w = `LM` ' this is also legal, see below.

The notation used in the second example above actually places the ASCII value of
L into the higher byte of a word-type variable, and the ASCII value of M into the
lower byte of that variable. It may seem confusing at first, but it is also legal.

Note that a this isn't the same character as an apostrophe. An
apostrophe is ' and a single quote-mark is a .̀ Usually, the single quote
mark is found on the tilde (~) key, and the apostrophe is found on the
double-quote (") key.

How to Define Constants In Different Bases

Tibbo Basic allows you to assign values to constants using decimal, hexadecimal or
binary notation. Decimal notation is the default. To assign a hexadecimal value, you
must use the prefix &h before the first hexadecimal digit of your value. To assign a
binary value, you must use the prefix &b in the same manner. So:

q = 15 ' this is 15, in decimal.
q = &hF ' this is still 15, just in hex.
q = &b1111 ' and this is also 15, just in binary notation.

These prefixes hold true whenever values are used -- there are no exceptions to
this rule. Whenever a numeric value is used, it may be preceded by one of these
prefixes and will be interpreted correctly.

48

47Programming with TIDE

©2000-2011 Tibbo Technology Inc.

How to Use Colons

Colons are actually not necessary in most parts of Tibbo Basic. They are a
traditional part of many BASIC implementations, and are often used to group several
statements in one line. However, since Tibbo Basic doesn't really care about spaces
anyway, they lose their relevance.

No Tibbo Basic statements require the use of colons.

Naming Conventions

Identifiers

An identifier is the 'name' of a constant, a procedure or a variable. It is case
insensitive. It may include letters (A-Z, a-z), digits (0-9) and the following special
characters: . ~ $!. It must start with a letter, and cannot contain spaces.

For example:

dim a123 as integer ' A legal example
dim 123a as integer ' An illegal example
dim a.something as integer ' Can contain dots.
sub my_sub (ARG1 as integer, ARG2 as string) ' This is also legal

Platform Objects, their Properties and Methods

The name of an object is used as a prefix, followed by a dot, followed by the name
of the property or the method you would like to access. For example:

ser.send ' Addressing the 'send' method of a 'ser' object.
x = ser.baudrate ' Assigning variable X with the value of the 'baudrate' of
a 'ser' object

Events

Events are related to specific objects, just like properties and methods. However,
events are named differently. The pattern is on_objectname_eventname. Such as
on_door_open.

sub on_ser_data_arrival ' event names may contain more than one word after
the object name.

Introduction to Variables, Constants and Scopes

Variables and constants are a major part of any programming language, and Tibbo
Basic is no exception; below you will find explanations on the following:

Variables And Their Types

Type Conversion

48

50

48 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Type Conversion in Expressions

Compile-time Calculations

Arrays

Structures

EnumerationTypes

Understanding the Scope of Variables

Declaring variables

Constants

4.2.4.1Variables And Their Types

Variables are used to store values during the execution of an application. Each
variable has a name (the identifier used to refer to the value the variable
contains) and a type, which specifies how much data this variable can contain, and
also what kind of data it may contain.

Not every variable type is supported on every platform. You will find related
information in the "Supported Variable Types" topic in the platform
documentation (for example, EM1000's is here). If you attempt to use a
type which is not supported by your platform you will most probably get
"platform does not export XXX function" error during compilation.

Variables are defined using the Dim Statement prior to being used in code. The
simplest syntax for defining a variable would be something like:

dim x as integer ' x is a variable of type 'integer'.
dim str as string(32) ' str is a variable of type 'string' with a maximum
length of 32 characters (bytes).

A variable name must begin with a letter, and must be unique within the same
scope, which is the range from which the variable can be referenced.

When you define a variable, some space is reserved for it in memory; later, while
the program executes, this memory space can hold a value.

Variables are assigned values like so:

x = 15 ' x is now 15.
x = y ' x is now equal to y.
str = "foobar" ' str now contains the string 'foobar' (with no quotes).

Types of Variables

Tibbo Basic supports the following variable types:

Name Description

byte Hardware-level. Unsigned. Takes 1 byte in memory. Can
hold integer numerical values from 0 to 255 (&hFF).

52

53

54

58

59

61

64

65

137

143

86

49Programming with TIDE

©2000-2011 Tibbo Technology Inc.

word Hardware-level. Unsigned. Takes 2 bytes in memory. Can
hold integer numerical values from 0 to 65535 (&hFFFF).

dword (new in
V2.0, not
available on all
platforms)

Hardware-level. Unsigned. Takes 4 bytes in memory. Can
hold integer numerical values from 0 to 4294967295
(&hFFFFFFFF).

char Hardware-level. Signed. Takes 1 byte in memory. Can hold
integer numerical values from -128 to 127.

short Hardware-level. Signed. Takes 2 bytes in memory. Can hold
integer numerical values from -32768 to 32767.

integer Compiler-level. Synonym for short; substituted for short at
compilation. Exists for compatibility with other BASIC
implementations.

long (new in
V2.0, not
available on all
platforms)

Hardware-level. Signed. Takes 4 bytes in memory. Can hold
integer numerical values from -2147483648 to 2147483647

real (new in
V2.0, not
available on all
platforms)

Hardware-level. Signed, in standard "IEEE" floating-point
format. Can hold integer and fractional numerical values
from +/- 1.175494E-38 to +/- 3.402823E+38. Real
calculations are intrinsically imprecise. Result of floating-
point calculations may also differ slightly on different
computing platforms. Additionally, floating-point calculations
can lead to floating-point errors: #INF, -#INF, #NaN. In the
debug mode, any such error causes an FPERR exception .

float (new in
V2.0, not
available on all
platforms)

Compiler-level. Synonym for real; substituted for real at
compilation. Exists for compatibility with other BASIC
implementations.

string Hardware-level. Takes up to 257 bytes in memory (max
string size can be defined separately for each string
variable). Strings can actually be up to 255 bytes long but
always begin with a 2-byte header -- 1 byte specifies
current length, and 1 byte specifies maximum length. Each
character is encoded using an ASCII (single-byte) code.

boolean Compiler-level. Intended to contain one of two possible
values (true or false). Substituted for byte at compilation.

user-defined
structures(new
in V2.0)

Each user-defined structure can include several member
variables of different types. More about structures here .

user-defined
enumeration
types

Compiler-level. These are additional, user-defined, data
types. More about these under User-Defined Types .

Hardware-level types are actually implemented on the machine which is
used to run the final program produced by the compiler.

Compiler-level types are substituted by other variable types on compile-
time. The actual machine uses other variable types to represent them;
they are implemented for convenience while programming.

29

58

59

50 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

4.2.4.2Type Conversion

Variables can derive their value from other variables; in other words, you can assign
a variable to another variable. A simple example of this would be:

dim x, y as byte
x = 5 ' x is now 5
y = x ' y is now 5 as well

However, as covered above, there are several types of variables, and not all of
them can handle the same data. For example, what would happen if you assigned a
variable of type byte the value intended for a variable of type word?

Table below details all possible conversion situations.

C o n v e r t i n t o

C
o
n
v
e
r
t

f
r
o
m

Byte Word Dword Char Short Long Re
al

Strin
g

Byt
e

--- OK OK Reinter
pret

OK OK OK OK
str

Wo
rd Trun

cate

--- OK Reinter
pret

Trunca
te

Reinter
pret

OK OK OK
str

Dw
ord Trun

cate
Trunc
ate

Trunca

te
Trunca

te

Reint
erpre

t

OK OK
lstr

Cha
r

Reint
erpre

t

Reinte
rpret

Reinter
pret

--- OK OK OK OK
stri

Sho
rt

Reint
erpre

t
Trun
cate

Reinte
rpret

Reinter
pret Trunca

te

--- OK OK OK
stri

Lon
g

Reint
erpre

t
Trun
cate

Reinte
rpret Trunca

te
Trunca

te
Trunca

te

--- OK OK
lstri

Rea
l

Fract
ion
???

Fracti
on
???

Fractio
n

???

Fractio
n

???

Fractio
n

???

Fract
ion

????

--- OK
fstr*

Stri
ng

OK
val

OK
val

OK
lval

OK
val

OK
val

OK
lval

OK
str
tof

*fstr is a functional equivalent of ftostr , but without mode and rnd parameters.

Conversions without loss

225

225

216

226

226

217

229

229 218 229 229

218

228

211

51Programming with TIDE

©2000-2011 Tibbo Technology Inc.

Conversions marked as "OK" incur no loss -- the value being passed from variable of
one type to variable of another type remains unchanged. For example, conversion
from word into dword is done without any loss, because 32-bit word variable can
hold any value that the 16-bit word variable can hold.

Conversions that cause reinterpretation

Conversions marked with "Reinterpret" mean that although binary data held by the
receiving variable may be the same this binary variable may be interpreted
differently on the destination "side". As an example, see this conversion from byte
into char:

dim x as byte
dim c as char
x = 254
c = x ' c now contains the binary value of 254, which is interpreted as -2

In the above example, both x and c will contain the same binary data. However, c
is a signed 8-bit value, so binary contents of 254 mean -2. Strictly speaking, this
reinterpretation will only happen if the value of x exceeds maximum positive number
that c can hold -- 127. If x<=127 conversion will not cause reinterpretation. For
example, if x=15 then doing c=x will result in c=15 as well.

In fact, in some cases, conversion from unsigned type to a signed time will never
result in the reinterpretation. This is when the maximum value that the source
unsigned variable can hold can always fit in the range of positive values that the
signed destination variable can hold. Example: conversion from byte (value range 0-
255) to short (value range -32768 to 32767) will never result in the
reinterpretation.

Conversion from signed type into unsigned type will always cause reinterpretation if
the source variable contained a negative value.

Conversions that cause truncation

Conversions marked with "Truncate" mean that part of the binary data (on the most
significant side) may be lost during the conversion. For example, converting from
word type into byte type will only leave 8 bits of the original 16-bit value:

dim x as byte
dim w as word
w = 12345 'hex representation of 12345 is 3039
x = w ' now x contains 57. Why? Because only '39' of '3039' could fit in,
and decimal of &h39 is 57.

Notice, that some conversions will cause reinterpretation and truncation at the
same time!

Conversions that round the number (remove fractions)

Conversions from real type into any other numerical type will cut off the fraction, as
real is the only type that can hold fractions. Such conversions are marked as
"Fraction" in the table above.

52 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Conversions that implicitly invoke functions available to the user

Some conversions automatically invoke functions (syscalls) available for use in your
program. In such cases the table above lists the name of the function invoked. For
example, conversion from byte into string relies on the str function. Two ways of
conversion below produce identical result:

dim x as byte
dim s as string
s = str(x) ' explicit invocation
s = x ' implicit invocation. Compiler is smart enough to use str for this
conversion

Conversion of Boolean Variables

Boolean variables are actually stored as byte type variables; thus, all notes above
for byte type variables hold true for boolean variables as well.

Conversion of Enumeration Types

User-defined enumeration types are held in various variable types, depending on the
values associated with the constants within the enumeration type. This is described
in detail under User-Defined Types . Thus, they are converted according to the
variable type used to store them (described above).

4.2.4.3Type conversion in expressions

In the Type Conversion we already explained what happens when you assign the
value of a variable of one type to a variable of another type. This section deals the
cases where variables of different types are used in expression. For example, if x is
byte and i is integer, what will happen when you do "x+i"?

The Virtual Machine operates on 16-bit values by default

Native data width for the Virtual Machine is 16 bits. When you are performing
calculations on 8-bit and/or 16-bit variables, result is always truncated to 16 bits.
Also, all intermediary calculations are done using 16-bit arithmetic. Consider the
following example first:

dim x,y,z as byte
x=150
y=200
z=(x+y)/10 ' result of 35 is within byte variable's range, but intermidiary
calculations require 16-bit ariphmetic.

The above example will give correct result. Even though all three variables are of
byte type, internal calculations are 16-bit, so when x+y produces 350, which is
beyond the range of the byte variable, the Virtual Machine handles this in the right
way. Now, let's see another example:

225

59

50

53Programming with TIDE

©2000-2011 Tibbo Technology Inc.

dim i,j,k as word
i=50000
j=60000
k=(i+j)/10 ' result will be 4446, which is incorrect. 32-bit ariphmetic was
not automatically used!

This example requires 32-bit calculations because i+j will produce a number which is
outside the scope of 16-bit calculations. However, our compiler will not invoke 32-
bit calculations automatically. Read on, this is not all...

Mixing in a 32-variable will cause the compiler to use 32-bit calculations

For the example above, turn i or j into a dword. Now, your calculations will be
correct. Mixing in any 32-bit variable will aotumatically upgrade calculations to 32
bits!

dim i,k as word
dim d as dword
i=50000
d=60000
k=(i+d)/10 ' result will be 11000. This is correct!

String and non-string variables cannot be mixed!

Yes, sorry, but you cannot do the following (compiler will generate type mismatch
 error):

'Wrong!!!
dim x as byte
x=5+"6"

In case you are wondering why x="6" would work but x=5+"6" doesn't: the latter is
a mixed expression in which the compiler cannot decide what is implied: conversion
of string to value and then addition, or conversion of value to string and then string
concatenation!

4.2.4.4Compile-time Calculations

Tibbo Basic always tries to pre-calculate everything that can be pre-calculated
during compilation. For example, if you write the following code:

dim x,y as byte
y=5
x=5+10+y 'compiler will precalculate 5+10 and then the Virtual Machine will
only have to do 15+y

Pre-calculation reduces program size and speeds up execution.

110

54 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

When processing a string like "x=50000" compiler first determines the variable of
what type would be necessary to hold the fixed value and chooses the smallest
sufficient variable type. For example, for 50000 it is, obviously, word. Next,
compiler applies the same rules of type conversion as between two actual
variables. Hence, in our example this will be like performing byte= word.

One additional detail. Large fixed values assigned to variables of real type must be
written with fractional part, even if this fractional part is 0. Consider the following
example:

dim r as real
r=12345678901 'try to compile this and you will get "constant too big"
error.

Compiler will notice that this constant does not fit even into dword and will
generate an error. Now, try this:

dim r as real
r=12345678901.0 'that will work!

On seeing ".0" at the end of the value compiler will realize that the value must be
treated as a real one (floating-point format) and process the value correctly.

So, why is it possible for compiler to automatically process values that fit into 8,
16, and 32 bits, but at the same time requires your conscious effort to specify that
the value needs to be treated as a floating-point one?

This is because floating-point calculations are imprecise. The value "12345678901",
when converted into a floating-point format, will not be exactly the same! The
floating-point value will only approximate the value we intended to have!

For this reason we require you, the programmer, to make a conscious choice when
specifying such values. By adding ".0" you acknowledge that you understand
potential imprecision of the result.

4.2.4.5Arrays

An array is a single variable which contains several elements of the same type.
Each element has a value and an index number, and may be accessed using this
number.

An example of a simple array would be:

Index: 0 1 2 3 4

Value: 15 32 4 100 -30

The code to produce such an array in Tibbo Basic would look like this:

dim x(5) as char
x(0) = 15
x(1) = 32
x(2) = 4

50

55Programming with TIDE

©2000-2011 Tibbo Technology Inc.

x(3) = 100
x(4) = -30

The first index in an array is 0. Thus, the array above contains 5 values, with
indices from 0 to 4.

This is different from some BASIC implementations that understand x(5) as
"array x with the maximum element number of 5" (that is, with 6 elements).
In Tibbo Basic declaring x(5) means "array of 5 elements, with indices from 0
to 4".

Variable Types For Arrays

In the example above, the array was assigned the type char. This means that each
element within this array will be stored in a variable of type char . Starting from
Tibbo Basic V2.0 you can have arrays of variables of any type.

Accessing a Value Within an Array

To access a specific value within an array, include its index immediately after the
name of the array, in parentheses. The index may also be expressed through a
variable.

y = x(4) ' y would get a value of -30, according to the previous array
y = x(z) ' y would get the value of index z within array x.

As an example, you could iterate through an array with a loop (such as a For...
Next Statement) and execute code on each element in the array, by using a
variable to refer to the index of an element. Let's see how to calculate the sum of
the first three elements in the array we previously defined:

dim x(5) as char
x(0) = 15
x(1) = 32
x(2) = 4
x(3) = 100
x(4) = -30

dim sum as integer
sum = 0

for i = 0 to 4 ' note that you do not necessarily have to iterate through
all elements in the array.

sum = sum + x(i)
next i
' now, at the end of this loop, sum contains the sum for the first three
elements (51)

The TIDE and Tibbo Basic V2.0 introduced correct handling of array indices. It is no
longer possible for your program to point to an array element that does not exist.
For example, if your array only has 5 elements and you try to access element
number 5 the Virtual Machine will:

48

90

56 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Generate an OOR (Out Of Range) exception and halt if your program is in the
debug mode. If you attempt to continue the Virtual Machine will access x(4) --
the element with maximum available index.
When in the release mode, the OOR exception will not be generated but "index
limiting" will still occur.

Example:

dim x(5) as char
dim f as byte

f=5
x(f)=3 'index limiting will happen here (preceded by the OOR exception if
you are in the debug mode)

Compiler is smart enough to notice out-of-range situations even at compile time.
For example, the following code will generate an error during compilation:

dim x(5) as char

x(5)=3 'compiler will determine that this operation will be eccessing an
array element which does not exist!

Multi-Dimensional Arrays

The array in the example above is called a one-dimensional array. This is because
every element in the array has just a single index number. However, we could also
have an array which looks like this:

Index: 0 1 2 3 4

0 15 32 4 100 -30

1 78 15 -3 0 55

2 32 48 97 5 22

3 13 18 9 87 54

4 32 35 79 124 3

5 7 -9 48 8 99

This is called two-dimensional array. Each element in the array is now identified by
an index consisting of two numbers (two coordinates). For example, the element 2,
0 contains the value 32. To create such an array, you would use the following
code:

dim x(5,6) as char
x(0,0) = 15
x(0,1) = 32
x(0,2) = 4

29

27

27

57Programming with TIDE

©2000-2011 Tibbo Technology Inc.

......
x(5,2) = 48
x(5,3) = 8
x(5,4) = 99

Iterating through such an array would be done using a nested loop for each
dimension in the array. The array above contains only two dimensions, so we would
nest one loop within another. For an array containing six dimensions, we would have
to use six such nested loops. See:

dim x(5,6) as char
x(0,0) = 15
x(0,1) = 32
x(0,2) = 4
......
x(5,2) = 48
x(5,3) = 8
x(5,4) = 99

dim i, j, sum as integer
sum = 0
for i = 0 to 5

for j = 0 to 4
sum = sum + x(i,j)

next j
next i
' here, sum would be equal to the sum of the whole array. How much is that?
Try and see.

In Tibbo Basic, you may define up to 8 dimensions in an array.

Alternative way of defining arrays

We have already explained that the following string means "an array x containing 10
elements of type byte":

dim x(10) as byte

In Tibbo Basic, the same can be expressed in a different way:

dim x as byte(10) 'you can think of it as '10 times of byte type' :-)

Both ways of defining arrays are completely identical and you can even mix them
together, as we can see on the following examples of 2-dimensional arrays:

58 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

dim i(20,10) as byte 'two-dimensional array, 20x10 elements
dim i2(20) as byte(10) 'same! that is, 20 groups of byte x 10 -- exactly same
meaning
dim i3 as byte(20,10) 'yet another way -- same result!

Now, Tibbo Basic strings can be defined with an optional parameter specifying
maximum string length, for example:

dim s as byte(30) 'this string will have maximum length of 30 characters
(bytes)

So, how do we declare an array of string variables? Here are some examples:

dim s(20,10) as string(30) 'two-dimensional array of 30-byte strings, 20x10
elements
dim s2(20) as string(30)(10) 'same!
dim s2 as string(30)(20,10) 'same!

Arrays introduce slight overhead

Each array occupies more space than the sum total of space needed by all
elements of an array. This is because each array also includes housekeeping data
that, for instance, defines how many elements are there in an array, array of what
type that is, etc.

4.2.4.6Structures

Beginning with V2, Tibbo Basic supports structures. Structure is a combinatorial
user-defined data type that includes one or several member variables. Structures
are declared using type ... end type statements, as shown in the example
below:

'this is a structure with three members
type my_struct

x as byte
y as Long
s as string

end type

In the above example, we declared a structure my_struct that has three member
variables: x, y, and s. This is just a declaration -- you still have to define a variable

100

59Programming with TIDE

©2000-2011 Tibbo Technology Inc.

with the new type you have created if you want to use the structure of this type
in your program:

dim var1 as my_struct 'this is how you define a variable with type
'my_struct'

After that, you can address individual elements of the structure as follows:

var1.x=5
var1.y=12345678
var1.s="Test"

Structures you define may include members that are arrays or other structures.
Structure variables like var1 above can be arrays as well, of course. In total, Tibbo
Basic supports up to eight nesting levels (as in "array within a structure within a
structure within and array" -- each structure or array is one level and up to 8
levels are possible). Here is a complex example:

type foo_struct 'structure with two members, and both are arrays
 x(10) as byte
 s(10) as string(4)
end type

type bar_struct 'structure with two members, one if which is another
structure
 foo as foo_struct 'so, this member is a structure
 w as word
end type

dim bar(20) as bar_struct 'we define an array of type 'bar_struct'

bar(1).foo.s(2)="test" 'oh-ho! we address element 2 of member s of member
foo of element 1 of bar!

Structures introduce slight overhead

Each structure occupies more space than the sum total of space needed by all of
its members. This is because each structure also includes housekeeping data that,
for instance, defines how many members are there, what type they have, etc.

4.2.4.7Enumeration Types

At times, it may be useful for a programmer to define his own enumeration data
types; for example, when working with the days of the week, it may be useful to
refer to them by name in code, rather than by number:

dim i as integer
i = 2 ' i is an integer, and can only be assigned a numerical value. you
would have to remember that 2 is Monday.

60 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

dim d as dayofweek
d = monday ' now d is a user-defined type, dayofweek, and can be assigned a
value using the symbol Monday.

Enumeration definitions are made like this:

enum dayofweek
 sunday = 1, ' if 1 is not specified, the default value associated with
the first constant is 0.
 monday, ' by default, increments the previous value by 1. can also
be explicitly specified.
 tuesday,
 wednsday,
 thursday,
 friday,
 saturday,
 holiday = 99, ' as described above, values can be explicitly associated
with any constant in the list.
 holiday2 'this will have the value of 100
end enum

An enumeration type would then be used within the code as shown above (d =
Monday). Note that even though Monday is an identifier (i.e., an actual word,
and not just some number) it does not have to be surrounded by quote marks
(because it's not a string).

The value associated with each identifier within the enumeration type doesn't
necessarily have to be unique; however, when you associate the same value with
several constants, the distinction between these constants will be lost on compile
time.

enum dayofweek
Sunday = 1,
Monday,
Tuesday,
Wednsday,
Thursday,
Friday,
Saturday,
holiday = 99
bestdayofweek = 7 ' bestdayofweek and Saturday are actually the same!
fridaythethirteenth = -666 ' a negative constant.

end enum

Note that above, saturday was implicitly (automatically) associated with the value
7, and bestdayofweek was explicitly associated with the same value. Now, on
compile-time, they would both be considered to be just the same.

Type Mapping for Enum Types

When the project is being compiled, all enumeration types are substituted with plain
numerical values. the platform on which the code is running doesn't have to know
anything about Saturday or about the best day of the week; for the platform, the
number 7 is informative enough.

137

61Programming with TIDE

©2000-2011 Tibbo Technology Inc.

Hence, enumeration types are converted to various built-in numerical variable
types. The actual numerical type used to store the enumeration type depends on
the values associated with the constants within this enumeration type:

Values associated with constants
do not exceed range

Actual variable type used to store
enum type

-128 to 127 char

0 to 255 byte

-32768 to 32767 short

0 to 65535 word

-2147483648 to 2147483647 long

0 to 4294967295 dword

Notice, that enumeration types cannot be converted into real values, so you
cannot use fractional numbers in you enums.

Some examples:

enum tiny
tinyfoo,
tinybar

end enum ' this enum will be associated with a char type

enum medium
mediumfoo = 254
mediumbar

end enum ' this enum will be associated with a byte type

enum impossible
baddy = -1

cruise = 4294967295
end enum ' this enum will raise a compile error, as no single variable type
can hold its values

enum nofractions

thisisok = 4294967295
thisisnot = 125.25

end enum ' compiler won't accept this! Integer values only, please!

Enumeration types are helpful when debugging your code

For each enumeration type variable, the watch facility of the TIDE shows this
variable's current numerical value with a correct identifier associated with this
value. This usually proves to be very useful during debugging! After all, seeing
"dayofweek= 2- Monday" is much less cryptic than just "dayofweek= 2"!

4.2.4.8Understanding the Scope of Variables

A scope is a section of code, from which you can 'see' a variable (i.e, assign it a
value, or read its value). For example:

33

62 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

sub foobar(x as byte)
dim i, y as byte
y = x * 30
for i = 1 to y

dim r as short
r = x + 5

next i
r = x + 5 ' this would produce a compiler error

end sub

So, in the example above, x and y could be seen from anywhere within the sub
procedure called foobar. However, r could be seen only from within the for... next
statement. Thus, trying to assign r a value from outside the for... next statement
would result in a compiler error, because it actually doesn't exist outside of that
loop.

One identifier can refer to several different variables, depending on the scope in
this identifier is used:

dim x as byte ' this creates the variable x in the global scope.

sub foobar(x as byte) ' here we create x once more, in the scope of the
local sub (x as an argument).

dim f, y as byte
x = 5 ' right now, only the locally-created x (foobar agrument) equls

5; global x remains unchanged.
y = x * 30
for f = 1 to y

dim x as byte
x = 30 ' the argument x outside the for... next statement still

equals 5. only this local x equals 30.
next f

end sub

Tibbo Basic supports several scopes:

Global Scope

Every compilation unit has, in itself, one global scope. Variables declared in this
scope are accessible from within any sub or function in this compilation unit.

dim s as string

sub foo
s = "foo" ' assigning a value to the global string variable s.

end sub

sub bar
dim i as short
i = 0
s = "" ' initialize s, in case it contains anything already (such as

'foo').
for i = 1 to 5

63Programming with TIDE

©2000-2011 Tibbo Technology Inc.

s = s + "bar" ' note
next i

end sub ' at this point, s contains 'barbarbarbarbar'.

Local Scope

This is the scope which is between the beginning and the end of each of the
following statements:

Beginning End Notes

sub end sub Cannot be nested.

function end function Cannot be nested.

for next

while wend

if... then... else end if No exit statement for
if... then... else.

do loop

Variables declared in this scope are accessible from within the construct in which
they were declared. Local scopes may be nested, for example, for...next scope
inside sub...end sub scope.

A locally defined variable with the same name as a global variable takes precedence
in its context over any variable with the same name which is defined in a 'wider'
scope.

Local variable names also take precedence over procedure names. For example:

sub prc1(x as byte)
 'some code here
end sub

sub prc2
 dim prc1 as byte 'define a local variable with the same name as one
procedure we have
 prc1=0 'this will generate no error -- in the current scope prc1 is a
variable
 prc1(2) 'here, we try to invoke sub prc1 and this will cause a compiler
error.
end sub

HTML Scope

This section applies only to platforms which include an HTTP server.

This is a special scope, implemented in Tibbo Basic. HTML files included within a
project may contain embedded Tibbo Basic code. This code is executed when the
HTTP server processes an HTTP GET (or POST) request. Statements within an
HTML file are considered to be within one scope -- similarly to a function or sub
scope, with the exceptions that include and declare statements are
allowed.

95 84

64 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD W3 HTML//EN">
<HTML>
<BODY>

BEGINNING OF OUTPUT

<?
include "global.tbh"
declare i as integer ' i is defined somewhere else
for i = 1 to 10
?>

<i> Foo </i>

<?
next i
?>

END OF OUTPUT

</BODY>
</HTML>

Designing dynamic HTML pages always presents you with a choice: what to do-
include the BASIC code right into the HTML file or create a set of subs and
functions and just call them from the HTML file? In the first place you put a lot of
BASIC code into the HTML file itself, in the second case you just call subs and
functions from the HTML file. So, which way is better?

Generally, we recommend to use the second way. First of all, this style of
programming is cleaner- a mixture of BASIC code and static HTML text usually looks
messy. Second, the second method consumes less variable memory.

Although the HTML scope is similar to a local scope of a function or a sub, its
variables get exclusive memory allocation as if they were global. When you avoid
writing a lot of BASIC code in the HTML file itself you usually avoid having to create
a lot of variables in the HTML scope and this saves you memory!

4.2.4.9Declaring Variables

Usually, a variable is first defined by the dim s tatement and then used in
code; however, at times, a single global variable must be accessible from several
compilation units. In such cases, you must use the public modifier when defining
this variable, and use the declare statement in each compilation unit from
which this variable needs to be accessed.

For example, let us say this is the file foo.tbs:

public dim i as integer ' the integer i is defined in this file, and made
into a public variable. It can now be used from other compilation units.

And this is the file bar.tbs:

86 86 86

104

84 84

65Programming with TIDE

©2000-2011 Tibbo Technology Inc.

i = i + 5 ' this would cause a compiler error. What is i?

' the correct way:
declare i as integer ' lets the compiler know that i is defined elsewhere.
i = i + 5

Also, if for some reason you would attempt to use a variable in a single compilation
unit before defining it using the dim statement, you will have to use a declare
statement before using it to let the compiler know that it exists. For example:

declare i as integer
i = 7 ' i has not been defined yet, but we let the compiler know that it is
defined elsewhere.

...

dim i as integer ' we now define i. Note that here it doesn't have to be
public, because it is used in the same compilation unit.

' this example is rather pointless, but just illustrates this single
principle.

4.2.4.10Constants

Constants are used to represent values which do not change throughout the
program; these values may be strings or numbers. They may either be stated
explicitly, or be derived as the result of an expression.

Some examples:

const universal_answer = 42
const copyright = "(c) 2005 Widget Systems Inc." ' this is a string constant
const escape_char = `@` ' this constant will contain a numerical value --
the ASCII code for the char @.

const hexi = &hFB ' would create a constant with a value of 251 (&hFB in
hex)
const bini = &b00110101 ' would create a constant with a value of 53
(&b00110101 in binary)

const width = 10
const height = 15
const area = width * height ' constants may contain expressions which
include other constants

dim x as byte
const foo = x + 10 ' this will produce a compiler error. Constant
expressions may contain only constants.

Constants can be useful when you have some values which are used throughout
the code; with constants, you can define them just once and then refer to them by
their meaningful name. This has the added benefit of allowing you to easily change
the value for the constant any time during the development process -- you will just
have to change the definition of the constant, which is a single line of code.

66 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

When defining a list of related constants, it is often convenient to use the
Enum Statement and create one data type which contains this list of
constants. See also User-Defined Types above.

When defining a constant within a scope , this constant is visible only from within
this scope. It is a good idea to define all constants within header files, and include

 these files into each compilation unit.

String constants

String constants can include escape sequences to define unprintable characters.
This functionality is borrowed from C. Adding unprintable characters to the string
has always been rather inconvenient in BASIC language. The only way to do so was
like this:

s = "abc"+chr(10)+chr(13) 'add LF/CR in the end

In Tibbo Basic you can achieve the same by using escape sequences -- C style:

s = "abc\n\f" ''\n' means LF, '\f' -- CR
const STR1 = "abc\x10\x13" 'same result can be achieved using HEX codes of
the characters

The following standard escape sequences are recognized:

"\0" for ASCII code 0

"\a" for ASCII code 7 (&h7)

"\b" for ASCII code 8 (&h8, BS character)

"\t" for ASCII code 9 (&h9)

"\n" for ASCII code 10 (&hA, LF character)

"\v" for ASCII code 11 (&hB)

"\f" for ASCII code 12 (&hC)

"\r" for ASCII code 13 (&hD, CR character)

"\e" for ASCII code 27 (&h1B, ESC character)

Any ASCII character, printable or unprintable, can be defined using its HEX code.
The following format should be used: "\x00" where "00" is the HEX code of the
character. Notice, that two digits should be present on the code, for example:
"\x0A" -- leading zero must not be omitted.

\

Introduction to Procedures

A procedure is a named piece of code, which performs a designated task, and can
be called (used) by other parts of the program. In Tibbo Basic, there are two types
of procedures:

88

59

61

95

67Programming with TIDE

©2000-2011 Tibbo Technology Inc.

Function Procedures

A function is defined using the Function Statement . Functions can optionally
have one or several arguments. Functions always return a single value. They can,
however, change the value of the arguments passed to them using ByRef and
thus indirectly return more than one value. This would be an example of a function:

function multiply(a as integer, b as integer) as integer
multiply = a * b

end function

Note how the function above returns a value: via a local variable with the same
name as the function itself. Such a variable is automatically created by the compiler
for each function.

Sub Procedures

Sub is short for subroutine; just like a function, a sub procedure can optionally
accept one or more arguments. However, unlike functions, sub procedures do not
return a value. It is defined using the Sub Statement . This would be an example
of a sub:

dim a(10) as byte ' a is a global variable -- outside the scope of the
function.

sub init_array
dim i as integer
for i = 0 to 9

a(i) = 0 ' the global variable gets changed.
next i

end sub

Subs change the value of the arguments passed to them using ByRef and thus
indirectly return a value, or even several values. Of course, they may also change
the value of global variables.

Event handlers are like subs

Event handlers defined in the platform work exactly like sub procedures. Event
handler subs can accept arguments. Event handlers can never be function
procedures as each function has to return a value and the event handler has
nobody to return this value to.

Declaring Procedures

Usually, a procedure is first defined by the function or sub statements and
then used in code; however, at times, functions can reside in a different
compilation unit. In such a case, you must use the public modifier when defining
this function, and use the declare statement to let the compiler know that
the function exists.

For example, let us say this is the file utility_functions.tbs:

91

68

99

68

91 99

104

84 84

68 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

public function multiply(a as integer, b as integer) as integer ' the value
returns by this function is an integer

multiply = a * b
end function

And this is the file program.tbs:

declare function multiply(a as integer, b as integer) as integer ' declaring
just the name isn't enough. Include also the arguments and the types.
dim i as integer
i = multiply(3, 7)

Declare statements are usually used within header files which are then included
into compilation units. Also, if for some reason you would attempt to use a
procedure in a single compilation unit before defining it, you will have to use a
declare statement to let the compiler know that it exists. For example:

declare function multiply(a as integer, b as integer) as integer
dim i as integer
i = multiply(3, 7)

...

function multiply(a as integer, b as integer) as integer ' now this function
doesn't have to be public.

multiply = a * b
end function

Event handler subs require no declaration as they are already declared in your
device's platform.

No Recursion

One thing you have to know is that procedures cannot call themselves. Also, two
procedures cannot call each other. This is due to TiOS not using dynamic memory
allocation. Such allocation would create a serious overhead for the system, and
would drastically slow everything down -- not just recursive procedures. For more
information, see Memory Allocation for Procedures .

4.2.5.1Passing Arguments to Procedures

When calling subroutines or functions, it is often necessary to pass a certain value
for processing within the procedure. An example of this would be a function which
calculates the sum of two values; naturally, such a function would need to get two
arguments -- the values which are to be added up.

There are two different ways to pass arguments to such a procedure:

The Default: Passing By Value

When passing an argument to a procedure by value, this argument is copied to a
location in memory which was reserved for the local variables of this function.
Processing is then done on this local copy -- the original remains untouched. For

70

69Programming with TIDE

©2000-2011 Tibbo Technology Inc.

example:

sub foo(x as byte)
...
x = 1
...
end sub

sub bar
dim y as byte
y = 2
foo(y)
' at this point in code, y is still 2.

end sub

This way of passing variables is the default used in Tibbo Basic.

Passing By Reference

In certain cases, copying is not the preferred solution; for example, when a
procedure has to modify several arguments passed to it and these later have to be
accessible. Another example would be when processing large strings -- copying
them would cause significant overhead.

In such cases, arguments are passed by reference. When passing by reference, the
actual values are not copied. Instead, the procedure receives a reference to the
location of the original values in memory -- hence, the name. For example:

sub foo(byref x as byte)
...
x = 1
...
end sub

sub bar
dim y as byte
y = 2
foo(y)
' at this point in code, y is 1!

end sub

When passing arguments by reference, the code within the procedure will access
these arguments using indirect addressing. This may cause possible overhead. The
only case where it does not cause overhead (relative to passing by value) is when
working with large strings; in this case, passing them by reference saves the need
to copy the whole string to another location in memory.

Here is our advice: when dealing with strings it is usually better (in terms
of performance) to pass them by reference. For all other types, passing by
value yields better performance.

Strict byref argument match is now required!

70 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Beginning with Tibbo Basic release 2.0, strict match is required between the type of
byref argument and the type of variable being passed. For example, trying to pass a
string for a byte will now cause a compiler error:

sub bar(byref x as byte)
 ...
end sub

sub foo
 bar("123") 'attempt to pass a string will generate a compiler error
 bar(val("123")) 'this will work!
end sub

In the above example, sub bar takes a byte argument and we are trying to pass a
string. Wrong! Compiler understands that byref arguments can be manipulated by
the procedure that takes them. Therefore, it is important that actual variables
being passed match the type of argument that procedure expects. Automatic type
conversion won't apply here.

4.2.5.2Memory Allocation for Procedures

Variable memory (RAM) allocation in TiOS is not dynamic . Memory is allocated for
variables at compile-time.

The compiler builds a "tree" reflecting procedure calls within your project. When two
different procedures never call each other, it is safe to allocate the same memory
space for the variables of each of them. They will never get mixed.

Let us say we have two event handlers in our project: on_event_1, which needs 7
bytes of memory, on_event_2, which needs 5 bytes of memory. They do not call
each other. In this case, the total memory required for our project will be 7 bytes
-- they will share the same memory space because only one will be executing at
any given time.

However, sometimes procedures call other procedures. This affects memory
allocation.

50

48

71Programming with TIDE

©2000-2011 Tibbo Technology Inc.

As seen above, the event handler on_event_1 calls procedure A, which in turn calls
procedure B. The memory required for each procedure is listed in brackets. Since
on_event_1, procedure A and procedure B call each other, they may not share the
same memory space. If procedure A keeps a variable in memory, then obviously
procedure B cannot use the same space in memory to store its own variables,
because procedure A may need its variable once control returns to it after
procedure B has completed. Thus, the total memory required for this tree is 11
bytes.

Now, let us say we also have on_event_2 in our project, which calls procedure C,
which in turn calls procedure D. This is a completely separate chain:

As can be seen, this chain takes up 7 bytes of memory. However, this memory can
be the same memory used for the on_event_1 chain, because these two chains will
never execute at the same time. Thus, the total memory required for our project
remains at 11 bytes.

A typical project usually includes a number of global variables . Naturally, these
variables are allocated their exclusive space that is not shared with local variables
of procedures. Variables of HTML scope, which are local by nature, are allocated
exclusive memory space as if they were global (this is an unfortunate byproduct of

61

72 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

the way compiler handles HTML pages). Hence, it is more economical to implement
necessary functionality in procedures invoked from HTML pages rather than include
BASIC code directly into the body of HTML files.

Introduction to Control Structures

Control Structures are used to choose what parts of your program to execute,
when to execute them, and whether to repeat certain blocks of code or not (and
for how many iterations).

The two main types of control structures are decision structures and loop
structures .

4.2.6.1Decision Structures

Decision Structures are used to conditionally execute code, according to the
existence or absence of certain conditions.

Common uses for decision structures are to verify the validity of arguments, to
handle errors in execution, to branch to different sections of code, etc.

An example of a simple decision structure would be:

dim x, y as byte
dim s as string

if x < y then
s = "x is less than y"

else
s = "x is greater than, or equal to, y"

end if

The following decision structures are implemented in Tibbo Basic:

If.... Then... Else Statement

Select-Case Statement

4.2.6.2Loop Structures

Loop structures are used to iterate through a certain piece of code more than
once. This is useful in many scenarios, such as processing arrays, processing
request queues, performing string operations (such as parsing), etc.

An example of a simple loop structure would be:

dim f, i as integer

f = 1

for i = 1 to 6
f = f * i

next i
' f is now equal to 1*2*3*4*5*6 (720).

72

72

94

97

73Programming with TIDE

©2000-2011 Tibbo Technology Inc.

The following loop structures are implemented in Tibbo Basic:

Do... Loop Statement

For... Next Statement

While-Wend Statement

4.2.6.3Doevents

Although under Tibbo Basic, event-driven programming is the norm, there may be
special cases in which you just have to linger an overly long time in one event
handler. This will block execution of other events. They will just keep accumulating
in the queue (see System Components).

To resolve this, a doevents statement has been provided. When this statement
is invoked within a procedure, the execution of this procedure is interrupted. The
VM then handles events which were present in the queue as of the moment of
doevents invocation. Once these events are handled, control is returned to the
procedure which invoked doevents.

If new events are added to the queue while doevents is executing, they will not be
processed on the same doevents 'round'. Doevents only processes those events
present in the queue at the moment it was invoked.

To summarize, doevents provides a way for a procedure to let other events
execute while the procedure is doing something lengthy.

'calculate sum of all array elements -- this will surely take time!
dim sum, f as word
sum = 0
for f = 0 to 49999

sum = sum + arr(f)
doevents 'don't want to stall other events so allow their execution

while we are crunching numbers
next f

Multiple Doevents Calls

Let us say we are in event handler on_event_1. This event handler executes a
doevents call. The VM begins processing other events in the queue, and starts
executing an event handler on_event_3, which also contains a doevents statement.

In this case, a new doevents round will begin. Only when it completes, control will
be returned to event handler on_event_3, which will complete, and then return
control to the previous doevents (the one from event handler on_event_1).

87

90

101

7

87

74 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

The point here is that control will not be returned to on_event_1 until on_event_3
fully completes execution, since on_event_3 contains a doevents statement in
itself.

Memory Allocation When Using Doevents

When a procedure utilizes doevents, it means its execution gets interrupted, while
other procedures get control. We have no way to know which other procedures will
get control, as this depends on the events which will wait in the queue.

As a result, a procedure which utilizes doevents, and any procedures calling it
(directly or through other procedures) cannot share any memory space with any
other procedure in the project. This would lead to variable corruption -- procedures
newly executed will use the shared memory and corrupt variables which are still
needed for the procedures previously interrupted by doevents.

Above we have the same two chains of procedures which appear under Memory
Allocation for Procedures , with one noticeable difference: Procedure C includes a
doevents statement. The on_event_1 chain takes up 11 bytes. But on_event_2 and
procedure C (which together take up 5 bytes) cannot share the same space with
the on_event_1 chain, because when the doevents statement is invoked, the state
of variables for on_event_2 and procedure C must be preserved. So these two get
their own exclusive memory space.

Procedure D, which is also a part of the on_event_2 chain, does not get its own
exclusive memory space. This is because it comes later on the chain than the
procedure which contains the doevents statement. There will never be a situation

70

75Programming with TIDE

©2000-2011 Tibbo Technology Inc.

where the variables of procedure D must be preserved while other chains are
executing.

Thus, the total memory requirements of the project depicted above would be 16
bytes -- 11 shared bytes plus 5 exclusive bytes. This is more than would have been
required had we not used doevents.

Sharing Procedures Which Utilize Doevents

Procedures which contain doevents statements, as well as all procedures which call
them (directly or through other procedures) cannot be shared between chains.

Let us say event handler on_event_1 calls procedure A. Procedure A calls
procedure B. Procedure B contains a doevents statement, and also calls procedure
C.

Next, we have event handler on_event_2. It cannot call procedure A or B, because
procedure B contains a doevents statement (and A calls B). If it could call
procedure A, we might get a situation whereby event handler on_event_1 fires,
calls procedure A. In it, procedure B is called, and doevents is executed. During
doevents, an event handler on_event_2 fires, and calls procedure A again -- while
the previous instance of A still holds variables in memory, waiting for control to
return to it. This would corrupt the values of variables used by the first A (if you
try to do something like this, the compiler will raise an error).

However, note that in the example above we also have procedure C (which is called
by procedure B). This procedure can be shared by everyone -- because it is later
on the chain than the procedure which contains the doevents statement.

Doevents for Events of The Same Type

For some events, only one instance of the event may be present in the queue at
any given time. The next event of the same kind may only be generated after the
current one has completed processing. For other events, multiple instances in the
queue are allowed.

Let us say that for event_1, multiple instances are allowed, and that this event's
handler contains a doevents statement. When this statement executes, it may
happen that another instance of event_1 will be found on the queue, waiting to be
processed. If this happens, this new instance will just be skipped -- execution will
move on to the next event on the queue. Otherwise, we would once again get
recursion (execution of an event handler while a previous instance of this event
handler is already executing), which is not allowed under Tibbo Basic.

76 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Using Preprocessor

Tibbo Basic compiler includes a preprocessor that understands several directives.

#define and #undef

The #define directive assigns a replacement token for an identifier. Before
compilation, each occurrence of this identifier will be replaced with the token, for
example:

#define ABC x(5) 'now ABC will imply 'x(5)'
ABC=20 'now it is the same as writing x(5)=20

The #undef directive "destroys" the definition made earlier with #define :

#define ABC x(5) 'define
...
#undef ABC 'destroy
...
ABC=20 'you will get a compilation error on this line (compiler will try to
process this as "=20")

#if - #else - #elif -- #endif

These directives are used to conditionally include certain portions of the source
code into the compilation process (or exclude from it). Here is an example:

#define OPTION 0 'set to 0, 1, or 2 to select different blocks of code for
compilation
...
#If OPTION=0
 s="ABC" 'will be compiled when OPTION=0
#elif OPTION=1
 s="DEF" 'will be compiled when OPTION=1
#Else
 s="123" 'will be compiled when OPTION=2, 3, etc.
#endif

You can improve on this example and add meaning to 0, 1, and 2:

#define RED 0
#define GREEN 1
#define BLUE 2
...
#define OPTION BLUE
...
#If OPTION=RED
 s="ABC" 'will be compiled when OPTION=RED (0)

77Programming with TIDE

©2000-2011 Tibbo Technology Inc.

#elif OPTION=GREEN
 s="DEF" 'will be compiled when OPTION=GREEN (1)
#Else
 s="123" 'will be compiled when neither RED, nor GREEN
#endif

You can also write like this:

#If OPTION
 x=33 'will be compiled in if OPTION evaluates to any value except 0. Will
not be compiled in if OPTION evaluates to 0.
#endif

Preprocessor directives are not "strict". You don't have to define something before
using it. During #if evaluation, all undefined identifiers will be replaced with 0:

#If WEIRDNESS 'undefined identifier
 x=33 'will not be compiled in
#endif

Do not confuse compile-time definitions such as "#define OPTION 2" and actual
application code like "const COLOR=2" or "x=3". They are from two different worlds
and you can't use the latter as part of #if directives. For example, the following will
not work:

#define OPTION 0 'preprocessor directive
Const COLOR=2 'constant used by your application

#If OPTION=COLOR 'to a confused programmer, this looks like 0=2, but COLOR
is not #defined, hence, it will be evaluated to 0
 'hence, this code will be compiled in!
#endif

The #if directive also understands expressions, for example:

#define RED 0
#define GREEN 1
#define BLUE 2
...
#define OPTION 2
...
#If OPTION=GREEN+1
 'will be compiled in, because GREEN=1, hence the entire expression
evaluates to 2, and OPTION=2
#endif

78 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

#ifdef - #else - #endif

#ifdef and #ifndef# are like #if, but instead of evaluating an expression they simply
checks if specified definition exists:

#ifdef OPTION
 s="X" 'will be compiled if OPTION is defined
#Else
 s="1" 'will be compiled if OPTION is not defined
#endif

#ifndef is like #ifdef, but in reverse:

#ifndef OPTION
 s="X" 'will be compiled if OPTION is not defined
#Else
 s="1" 'will be compiled if OPTION is defined
#endif

4.2.7.1Scope of Preprocessor Directives

Each preprocessor directive applies only to its own compilation unit , not the
entire project. So, a #define directive in main.h will not be "visible" in main.tbs
unless the latter includes the main.h.

The only exception to the above are platform defines. These are globally visible
throughout your entire project. Platform defines determine options such as the
presence or absence of a display, display type, etc. These options are selected
through the Customize Platform dialog, accessible through the Project Settings
dialog.

43

131

79Programming with TIDE

©2000-2011 Tibbo Technology Inc.

Working with HTML

One of the strengths of Tibbo programmable devices is that they feature a built-in
webserver (of course, this is only true for devices that have a network interface
and support TCP communications). You can use this webserver as an engine for
server-side scripting; simply put, you can output dynamic HTML content by
including Tibbo Basic instructions within HTML pages.

Here is a simple example:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD W3 HTML//EN">
<HTML>
<BODY>

BEGINNING OF OUTPUT

<?
dim i as integer
for i = 1 to 10
?>

<i> Foo </i>

<?
next i
?>

END OF OUTPUT

</BODY>
</HTML>

80 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

In effect, this file would cause the following to appear in the browser window of the
user accessing this page:

BEGINNING OF OUTPUT

foo

foo

foo

foo

foo

foo

foo

foo

foo

foo

END OF OUTPUT

When to Use HTML Pages In Your Project

For an embedded device, built-in webserver can provide a convenient interface to
this device; in fact, it is one of the best ways to allow your users to access your
device remotely. They would just have to enter an address in a web browser, and
voila, up comes your interface.

HTML support, as implemented in the Tibbo Basic, allows you complete control over
page structure. You can use client-side technologies such as JavaScript, CSS etc.,
while still being able to dynamically generate HTML content within Tibbo device.

Further information about creating HTML files with dynamic content can be found in
the next topic as well as Using HTTP topic (part of the sock object
documentation).

4.2.8.1Embedding Code Within an HTML File

As covered in Understanding the Scope of Variables , each HTML file has a
special scope, and all code within the file resides within this scope.

To begin a block of Tibbo Basic code within an HTML file, you must use an escape
sequence -- <? . To close the section of code, use the reverse escape sequence
-- ?> .

When the embedded HTTP server receives a GET (or POST) request, it begins to
output the requested HTML file. It simply reads the HTML file from top to bottom,
and transmits its contents with no alteration. However, the moment is encounters a
block of Tibbo Basic code, it begins executing it.

Tibbo Basic code inside HTML files does not differ from the code in "basic" files, but
it may not contain procedures. This is because the Tibbo Basic code in the HTML
file is considered to constitute a procedure in itself. Notice, that all code in one
HTML file is considered to be a single procedure, even if there are several fragments
of code in this HTML file. Consider this example:

80 461 421

61

81Programming with TIDE

©2000-2011 Tibbo Technology Inc.

<!DOCTYPE HTML public "-//W3C//DTD W3 HTML//EN">
<HTML>
<BODY>

 BEGINNING OF OUTPUT

<?
'<--------------- BASIC procedure starts here
dim i as integer
for i = 1 to 10
?>

 <i> Foo </i>

<?
next i
'<--------------- procedure ends here
?>

end OF OUTPUT

</BODY>
</HTML>

There two code fragments, yet they both form one procedure. For example,
variable i declared in the first fragment is still visible in the second fragment.

The fact that entire code within each HTML file is considered to be a part of a
single procedure has implications in the way events are handled (reminder: there is
a single queue for all events). The next event waiting in the event queue won't
be executed until the end of the HTML procedure is reached. Just because the
HTML procedure consists of two or more fragments does not mean that other
events will somehow be able to get executed while the HTTP server outputs the
static data between those fragments ("<i> Foo </i>
" in our example). Use
doevents if you want other event handlers to squeeze in!

Tibbo Basic code in the code fragments may include decision structures or loop
structures that may cause various segments of HTML code to be output more
than once, to be skipped altogether, or to be output only when certain conditions
are true or false. In the above example the line "<i> Foo </i>
" will be output
10 times because this line resides between two code fragments that implement a
cycle!

The same result could be achieved in a different manner:

<!DOCTYPE HTML public "-//W3C//DTD W3 HTML//EN">
<HTML>
<BODY>

 BEGINNING OF OUTPUT

<?
dim i as integer
dim s as string

s="<i> Foo </i>
"

7

73

72

72

82 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

for i = 1 to 10
 while sock.txfree<len(s) 'these free lines can be omitted for simple
 doevents 'tests but are actually essential for
 wend 'reliable output of large data chunks

 sock.setdata(s) 'this prepares data for output
 sock.send 'and this commits it for sending (see sock
object)
next i
?>

end OF OUTPUT

</BODY>
</HTML>

Here we have a single code block and "printing" the same line several times is
achieved by using sock.setdata and sock.send methods of the sock
object.

So, which of the two examples shows a better way of coding? Actually, both ways
are correct and equally efficient. The first way will have an advantage in case you
have large static blocks that may be harder to deal with when you need to print
them using sock.setdata method.

Further information about creating HTML files with dynamic content can be found
in Using HTTP (part of the sock object documentation).

Understanding Platforms

As an embedded language, Tibbo Basic may find itself within many various hardware
devices; each such device may have different capabilities in terms of storage,
physical interfaces, processing power, and other such parameters.

Thus, Tibbo Basic is not a one-size-fits-all affair; it is customized specifically for
every type of physical device on which TiOS runs. A function which initializes a WiFi
interface would make very little sense on a device which does not support WiFi.
The same would go for a function which clears the screen -- what if you have no
screen? This holds true even for string functions -- some platforms are so tiny,
they do not even need to support string processing!

Because of this, the 'core' of the Tibbo Basic language is actually very minimalistic
-- we call it "pure" -- it contains only the statements listed under Statements
below. Any other functionality is implemented specifically for each platform, and is
documented in detail for your platform under Platforms .

4.2.9.1Objects, Events and Platform Functions

Each platform provides the following types of custom language constructs:

Objects

These provide a way to access the various facilities and subsystems of the host
platform. For example, in a platform which supports networking, we would have a
socket object that handles TCP/IP communication.

Each object has properties, methods and events:

A property of an object allows you to read or change an internal variable for this
object. For example, a serial port object may have a baudrate property. Change

500 500 421

461 421

83

138

138

83Programming with TIDE

©2000-2011 Tibbo Technology Inc.

the value of this property, and the actual physical baudrate changes. There are
also read-only properties which only provide information.

ser.baudrate = 3 ' set the baudrate
x = ser.numofports ' find out how many serial ports the device has.

A method of an object is a way to make the object perform a certain action. It is
basically a procedure. It can optionally take arguments or return values. Our ser
object could have getdata and setdata methods, for instance.

s = ser.getdata(50) ' gets up to 50 bytes of data into variable s.
ser.setdata(s) ' prepares up to 50 bytes of data for sending.
ser.send ' no arguments, returns nothing. Sends data.

An event of an object is something that 'happens' to this object in reality. When
TiOS registers an event, an event handler for it is automatically called, if it exists in
your source code. Event handlers are simply subs with no arguments.

sub on ser_data_arrival
' ... do something! ... <-- will be called when data arrives into the serial
port.
end sub

Platform Functions

Many functions commonly available in other BASIC versions are implemented in
Tibbo Basic on the platform level and not on the "pure" language level; these
include also seemingly universal functions, such as string processing, or various
date and time functions. This is done so because not every platform would actually
need these functions, universal as they may seem. Some platforms may have very
limited resources, and not every platform needs to know what the time is, or how
to parse strings.

Language Reference
The text below provides a complete rundown of all built-in language statements ,
keywords and operators . If you can't find something here, that means it is
platform-specific, and you would find it in your platform documentation.

The examples provided herein may not work on your platform -- they are given for
reference only.

Statements
Statements are used for directing the machine to perform a specific operation. A
statement is the smallest possible unit of code which would compile by itself. You
could say they are the programming-language equivalent of a sentence in human
speech.

8

83

102 105

138

84 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Statements are built into Tibbo Basic itself, and are not platform-specific.

Const Statement

Function: Declares constants for use in place of literal values.

Syntax: const name = value

Scope: Global, HTML and local

See Also: Enum Statement

Part Description

name The name of the constant, later used to refer to this
constant in code.

value The value for the constant; this can be an expression.

Details

This statement defines an identifier, and binds a constant value to it. During
compilation, when the compiler finds an identifier, it substitutes the identifier with
the value given for the constant.

When defining a constant, you can use any valid constant expression; this can be
another constant, a string, or a mathematical expression. Of course, constant
expressions cannot include variables, functions, or other elements of code which
are not constant (and, hence, cannot be resolved during compilation).

Global constants are usually declared in the header file .

Examples

const foo = "abc" + "fddf"
const bar = 123 + 56 * 56
const foobar = "dfdffgfg"

Declare Statement

Function: Declares a function or a subroutine or a variable for later
use.

Syntax: declare function name [([byref] argument1 as type1,
[byref] argument2 as type2,...)] as ret_type

or:
declare sub name [([byref] argument1 as type1,
[byref] argument2 as type2,…)]

or:
declare name [(bounds1)] [, name2 [(bounds2)]]
as type [(max_string_size)]

88

16

85Language Reference

©2000-2011 Tibbo Technology Inc.

Scope: Global and HTML

See Also: Function Statement , Sub Statement , Dim Statement

Part Description

function Optional. Used to specify that you are declaring a function
procedure .

sub Optional. Used to specify that you are declaring a sub
procedure . If neither sub nor function appear, it is
assumed that the declare is used to declare a variable.

name Required. Used to specify the name of the function, sub or
variable you are declaring.

byref Optional. If present, arguments are passed by reference .
If not, arguments are passed By Value .

argument1[1,
2...]

Optional. The name of the argument to be passed to the
procedure. Only used if sub or function appear.

as Required. Precedes the type definition.

type[1, 2...] Optional (required if arguments are present). Specifies the
type of the argument to be passed to the procedure.

ret_type Optional (required for functions, cannot be used for subs).
Used to specify the type of the return value from the
procedure.

bounds[1, 2...] Optional (used only when declaring variables). Specifies the
boundary (finite size) of a dimension in an array.

Details

In large projects, you often define a function or variable in one compilation unit,
and use it from other units, so it is external to those units.

The unit which uses this external variable or function should refer to it in a way
which lets the compiler know that it does indeed exist externally.

The declare statement is used to refer to a variable or function in this manner, but
doesn't actually allocate any memory or produce any code; rather, it tells the
compiler about this external entity, so that the compiler knows about it and can
deal with it (see Dim Statement).

Usually, variables and functions which are shared between compilation units are
declared in a header file, and this header is then included in the units (see Include
Statement).

Example

declare function hittest(x as integer, y as integer) as boolean
declare sub dosomething (s as byref string)
declare devicestate as integer

91 99

86

66

66

68

68

48

86

95

86 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Dim Statement

Function: Defines a variable and allocates memory for it.

Syntax: [public] dim name1 [(bounds1)] [, name2 [(bounds2)
]]
as type [(max_string_size)]

Scope: Global, HTML and local

See Also: Declare Statement

Part Description

public Optional; may only be used in a global scope. If present,
makes the variable(s) public .

name[1, 2...] Required. Specifies the name for the variable.

bounds[1, 2...] Optional. Specifies the boundary (finite size) of a dimension
in an array. Several comma-delimited boundary values make
a multi-dimensional array.

as Required. Precedes the type definition.

type Required. Specifies the type of the variable.

max_string_size Optional (can be used only when type is string). Sets the
maximum size for a string (default size is 255 bytes).

Details

The dim statement creates a variable in the current scope. It reserves memory
space for this variable. Hence, as part of a dim statement, you have to specify
the type of the variable; specifying the type also defines how much memory will be
allocated for this variable.

When creating strings, you can explicitly define their maximum size by including it in
parentheses immediately following the string keyword. The default maximum size of
strings is 255 bytes, but if you're sure a string will contain less than 255 bytes of
data, it is better to constrain it to a lower size (and thus reduce the memory
footprint of your program).

The dim statement can also be used to create arrays . This is done by
specifying the number of elements in the array in parentheses immediately following
the name of the variable. Multi-dimensional arrays are created by specifying the
number of elements in each dimension, separated by commas.

Note that creating a variable using dim does not assign any value (i.e, 0) to this
variable.

There are alternative ways of specifying the number and size of each array
dimension in an array. Please, examine the examples below.

Examples

dim x, y(5) as integer ' x is an integer; y is a one-dimensional array of 5
integers.
dim z(2, 3) as byte ' a two-dimensional array, 2x3 bytes.

84

61

48

54

87Language Reference

©2000-2011 Tibbo Technology Inc.

dim z2(2) as byte(3) ' same -- a two-dimensional array, 2x3 bytes
dim z2 as byte(2,3) ' same again -- a two-dimensional array, 2x3 bytes

dim s as string(32) ' s is a string which can contain up to 32 bytes
dim s(10) as string(32) 'array of 10 strings with 32-byte capacity
dim s as string(32)(10) 'alternative way to make the same definition

Doevents Statement

Function: Interrupts the current event handler and processes all
events in the queue at the moment of invocation.

Syntax: doevents

Scope: Global, HTML and local

See Also: Declare Statement

Details

Executes events pending in the queue, then returns execution to current event
handler. See doevents above.

Examples

'calculate sum of all array elements -- this will surely take time!
dim sum, f as word
sum = 0
for f = 0 to 49999

sum = sum + arr(f)
doevents 'don't want to stall other events so allow their execution

while we are crunching numbers
next f

Do... Loop Statement

Function: Repeats a block of statements while a condition is True or
until a condition becomes True.

Syntax: do [while | until] expression
statement1
statement2
…
[exit do]
...
statementN

loop

or:

do
statement1

84

73

88 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

statement2
…
[exit do]
...
statementN

loop [while | until] expression

Scope: Local and HTML

See Also: For... Next Statement , While-Wend Statement , Exit
Statement

Part Description

expression A logical expression which is evaluated either before or after
the first time the statements are executed.

statement[1,
2...]

Lines of code to be executed.

Details

The do-loop statement repeats a block of code. If the condition (while or until) is
included at the end of the loop (after the loop keyword), the block of code is
executed at least once; If the condition is included at the beginning of the loop
(after the do keyword), the condition must evaluate to true for the code to
execute even once.

Any number of exit do statements may be placed anywhere in the do... loop as
an alternate way to exit the loop. These can be used as an alternate way to exit
the loop, such as after evaluating a condition mid-loop using an if... then
statement. Exit do statements used within nested do-loop statements will transfer
control to the loop which is one nested level above the loop in which the exit do
occurs.

Examples

dim i as int eger

' example of t he first synt ax:
i = 0
do

i = i + 1
loop u nt il i = 10

' example of t he second synt ax:
i = 0
do u nt il i = 10

i = i + 1
loop

Enum Statement

Function: Declares a type for an enumeration.

Syntax: enum name

90 101

89

89

94

89Language Reference

©2000-2011 Tibbo Technology Inc.

const1 [= value1],
const2 [= value2],
…

end enum

Scope: Global and HTML

See Also: Const Statement

Part Description

name Required. The name of the enum type. The name must be
a valid Tibbo Basic identifier, and is specified as the type
when declaring variables or parameters of the enum type.

const[1, 2...] Required. The name for the constant in the enum.

value1 Optional. A value associated with the constant.

Details

Enum types can be useful for debugging purposes. When you add an enum type to
a watch, you will see the constant name within the enum, and not a meaningless
number.

By default, constants get incremental values, starting from 0 for the first item. You
can think of this as a counter, enumerating the items in the list. Explicit values may
be specified for any constant on the list. This also sets the counter to this explicit
value. The counter will continue to increment from this new value.

Examples

enum my_enum
my_const1, ' implicit value -- 0 is assumed
my_const2 = 5, ' explicit value of 5, counter is set to 5 too.
my_const3 ' Counter increments to 6,implicit value of 6.

end enum

Exit Statement

Function: Immediately terminates execution of function or a loop.

Syntax: exit do
exit for
exit function
exit sub
exit while

Scope: Local and HTML

See Also: Do-Loop Statement , For... Next Statement , Function
Statement , Sub Statement , While-Wend Statement

84

87 90

91 99

101

90 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Part Description

exit do Provides an alternative way to leave a do... loop
statement. Can be used only from within such a loop. exit
do transfers the control to the statement following the loop
statement. When used within nested do... loop statements,
exit do transfers control to the loop which is one nested
level above the loop in which exit do occurs.

exit for Provides a way to exit a for loop. Can be used only within
for... next or for each... next loops. When using exit for,
control is passed to the statement which is immediately
after the next statement. When used within nested for
loops, exit for transfers control to the loop which is one
nested level above the loop in which exit for occurs.

exit function Exits the current function. Execution resumes from the point
where the function was originally called.

exit sub The same as exit function, only used for subroutine
procedures.

exit while Exists a while loop before the condition it is dependant
upon evaluates as false.

Details

Do not confuse exit (which just quits) with end (which defines the end of a section
of code).

Examples

function send_data as integer
' before sending data, we want to make sure Ethernet interface is OK
if net.failure <> 0 then

send_data = 1 ' this way we notify the caller of an error
exit function

end if
' Ethernet interface is OK, proceed with sending data

end function

For... Next Statement

Function: Repeats a block of statements while a counter increments
until it reaches a set value.

Syntax: for name = start_expression to end_expression [step
step_number]

statement1
statement2
…
[exit for]
…
statementN

next name

91Language Reference

©2000-2011 Tibbo Technology Inc.

Scope: Local and HTML

See Also: Do-Loop Statement , Exit Statement , While-Wend
Statement

Part Description

name Required. The name of the counter. This has to be a
numeric variable, which was previously explicitly defined
using a Dim Statement .

start_expression Required. The initial value of the counter. This actually sets
the value of the name counter to the result of this
expression. Can be a numerical constant, or a more complex
expression.

end_expression Required. The end value for the counter; once the counter
reaches it, execution of the for... next loop stops. Can be a
numerical constant, or a more complex expression.

step_number Optional. Defines the intervals in which the name counter is
incremented on every pass of the loop. This must be a
numerical constant, and can be either positive or negative.

statement[1,
2...]

Required. Lines of code to be executed as long as the
counter is 'in range' -- between the start_expression and
the end_expression.

Details

It is not advised to change the value of the counter while within a for... next loop.
You might get unexpected results, such as infinite loops.

For... next loops may be nested, using different counter variables (name above).
There is also an exit statement which can be used to terminate them abruptly.

Under Tibbo Basic, you are required to explicitly state the name of the cycle
variable to be incremented immediately following the next keyword.

Examples

dim a(10) as integer
dim f as byte

for f = 0 to 9 ' in a 10-member array, element indices are 0 to 9
sum = sum + a(f)

next f

Function Statement

Function: Used to define functions -- distinct units in code which
perform specific tasks and always return a value.

Syntax: [public]
function name [([byref] argument1 as type1, [byref]
argument2 as type2…)]
as ret_type

87 89

101

86

89

66

92 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

statement1
statement2
…
[exit function]
…
statementN

end function

Scope: Global

See Also: Declare Statement , Exit Statement , Sub Statement

Part Description

public Optional. If set, allows other compilation units (files in a
project) to access the function.

name Required. Specifies the name for the function (used to call
it, etc).

byref Optional. If present, the argument immediately following this
modifier will be passed by reference .

argument[1, 2...] Optional. The name of the argument(s) passed to the
function; arguments must have a name which is a valid
identifier. This is a local identifier, used to refer to these
arguments within the body of the function.

as Optional (required if arguments are specified). Precedes the
type definition.

type[1, 2...] Optional (required if arguments are specified). Specifies the
data type for the argument. Each argument name must
be followed with a type definition, even when specifying
several arguments of the same type.

ret_type Required. Specifies the type of the value the function will
return. In effect, this is the data type of the function.

statement[1,
2...]

Required. The body of code executed within the function;
specifies the actual 'work' done by the function.

Details

Functions cannot be nested (which is why their scope is defined as global or HTML)
. Function always return a single value. Functions can call other functions and
subroutines.

The return value of a function must be explicitly set from within the body of the
function, by referring to the name of the function as a variable (of type ret_type)
which is then assigned a value.

Examples

'this is just an example to show how functions call each other. It's not
actually useful.
declare subtract (x as byte, y as byte) as integer ' have to declare,
because it's invoked before its body.

84 89

99

68

48

93Language Reference

©2000-2011 Tibbo Technology Inc.

function distance(x as byte, y as byte) as integer
if x>y then

distance = subtract(x,y)
else

distance = subtract(y,x)
end if

end function
...
function subtract (x as byte, y as byte) as integer

subtract = x - y
end function

Goto Statement

Function: Jumps to a specific point in code, marked by a label.

Syntax: goto label
...
label:

Scope: Local and HTML

See Also: ---

Part Description

label Required. Marks a specific point in code.

Details

Unconditionally jumps to label in code. Notice that all goto labels are local -- you
cannot use goto statement to jump from within one procedure into another
procedure!

Examples

dim arr1(5),arr2(5),f as byte

sub on_sys_init

arr1(0) = 1
arr1(1) = 2
arr1(2) = 3
arr1(3) = 4
arr1(4) = 5

arr2(0) = 1
arr2(1) = 2
arr2(2) = 2
arr2(3) = 4
arr2(4) = 5

'compare arrays and jump if not exactly the same
for f=0 to 4

94 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

if arr1(f)<>arr2(f) then goto not_the_same
next f
'here when both arrays contain the same data
exit sub

'here when arrays are not the same
not_the_same:
'... place code here ...

If.... Then... Else Statement

Function: A way to conditionally execute code.

Syntax: if expression then
statement1
statement2
…

[else
statement1
statement2
…

]
end if

or:

if expression then true_statement1 : true_statement2 …

Scope: Local and HTML

See Also: Select-Case Statement

Part Description

expression Required. The result of this expression (true or false) is
then used to determine what code will execute.

statement[1,
2...]

Required. Statements to execute.

: Optional. Separator for multiple statements on a single line.
Covered under Programming Fundamentals .

Details

When the expression evaluates to true, the block of code immediately following
the then keyword is executed. If it evaluates to false, the code immediately
following the else keyword is executed; if there is no else keyword, program flow
resumes from the line immediately following the end if keyword.

When using the single-line syntax (as in the lower example above), an if statement
must not be terminated using an end if. This is the only construct under Tibbo
Basic where line end matters. So, if you want to have several statements in such a
construct, you need to place them all in the same line, and separate them with
colons.

97

43

95Language Reference

©2000-2011 Tibbo Technology Inc.

If... then... else statements may be nested.

Currently, single-line if... then statements cannot contain an else clause.

The elseif syntax is not currently supported at all (even on multi-line if...
then statements).

Examples

if net.failure=1 then
if sys.runmode=0 then ser.setdata("Ethernet failure!"):ser.send

'massage when in debug mode
sys.halt

else
if net.linkstate=0 then

ser.setdata("No Ethernet link!")
else

if net.linkstate=1 then
ser.setdata("Linked at 10Mbit/s.")

else
ser.setdata("Linked at 100Mbit/s.")

end if
end if
ser.send

end if

Include Statement

Function: Includes a file (such as a header file) at the point of the
statement.

Syntax: include “filename”

Scope: Global and HTML

See Also: Includepp Statement

Part Description

"filename" Contains the filename to be included. The path can be a
relative path to the project path , an absolute path (such
as c:\myfolder\myfile.tbs) or even a UNC path (such as \
\MY-SERVER\Main\myfile.tbs).

Details

Makes compiler include the contents of a file at the point of the include statement.
Usually used to include header files with declarations , definitions for constants

, enum types , etc.

Examples

File: global.tbh (a header file)

96

16

84

84 88

96 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Declare Function multiply(x As Byte, y As Byte) As Integer
Const k=3 'a crucially vital global constant.

File: main.tbs (a source code file)

Include "global.tbh" ' now we have access to multiply and to K.

Sub on_sys_init
' ...

Dim result As Integer
result = multiply(k, 3)

' ...
End Sub

File: library.tbs (a source code file)

Include "global.tbh"

Public Function multiply(x As Byte, y As Byte) As Integer

multiply = x * y

End Function

Includepp Statement

Function: Includes preprocessor directives found in a specified file
at the point of the statement.

Syntax: includepp “filename”

Scope: Global and HTML

See Also: Include Statement

Part Description

"filename" Contains the filename to be parsed for preprocessor
directives. The path can be a relative path to the project
path , an absolute path (such as c:\myfolder\myfile.tbs)
or even a UNC path (such as \\MY-SERVER\Main\myfile.tbs).

Details

Makes compiler parse the specified file and include all lines that start with "#". This
is mainly intended to facilitate inclusion of preprocessor directives from library
configuration files.

Examples

As an example, consider the setting configuration file , which defines the list of
settings to be maintained by the STG library . The file is supposed to provide a

76

95

16

670

668

97Language Reference

©2000-2011 Tibbo Technology Inc.

list of #define statements to override default #define statements of the STG
library.

File: global.tbh (a header file)

includepp "settings.xtxt"
include "settings\trunk\settings.tbh"

File: settings.xtxt (setting descriptor file) -- actual contents

>>BT E B 1 0 255 A 0 This is a Byte setting
>>WD E W 1 0 65535 A 0 This is a word setting
>>ST E S 1 0 16 A ^ This is a String
setting
>>DD E D 1 0 4 A ^ This is a dot-decimal
String setting
#define STG_DESCRIPTOR_FILE "settings.xtxt"
#define STG_MAX_NUM_SETTINGS 4
#define STG_RAM_ARRAY_SIZE 0
#define STG_MAX_SETTING_NAME_LEN 2
#define STG_MAX_SETTING_VALUE_LEN 16

As a result, all #define statements from settings.xtxt will be included. Lines that do
not start with "#" will be ignored.

Select-Case Statement

Function: A way to conditionally execute code.

Syntax: select select_expression
case expression1_1 [, expression1_2, …] [:]

statement1_1
statement1_2
…

case expression2_1 [, expression2_2, …] [:]
statement2_1
statement2_2
…

…
[case else [:]

statementN_1
statementN_2
…

]
end select

Scope: Local and HTML

See Also: If.... Then... Else Statement

Part Description

76

94

98 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

select_expression Required. The expression which is evaluated first;
subsequent expressions are tested to match this expression.
If a match is found, the statements contained within this
case clause are executed, and execution then resumes from
the line immediately following end select.

expression[1_1...
N_1]

Required. An expression to evaluate; If it matches the
select_expression, the statements included in this case
clause are executed.

statement[1_1...
N_1]

Required. Statements to execute when expression[1_1...
N_1] matches select_expression.

: Optional. Maintained for backwards compatibility -- some
versions of BASIC in the past required a colon following
every case expression.

case else Optional. Precedes a block statements which is executed if
neither of the earlier case clause match the
select_expression. If present, must be the last case clause.

Details

It is of note that once a matching case clause is found, no other case clauses are
tested; the code within the matching clause is simply executed, and execution
resumes from the line following end select.

Also, remember that writing two select_expressions at the same time does not
mean that there will be a shared code for both of them. Rather, it means that the
first expression will have no code associated with it!

...
case 1 : 'this expression has no code associated with it
case 2 : 'code 'x=5' belongs to this expression
 x=5
...

Correct way to have a single block of code for two expressions is as follows:

...
case 1,2 : 'x=5 will be done both for 1 and 2
 x=5
...

Examples

sub print_weekday (weekday as byte)
select case weekday

case 1 : ser.setdata("Monday")
case 2 : ser.setdata("Tuesday")
case 3 : ser.setdata("Wednesday")
case 4 : ser.setdata("Thursday")
case 5 : ser.setdata("Friday")
case 6 : ser.setdata("Saturday")

99Language Reference

©2000-2011 Tibbo Technology Inc.

case 7 : ser.setdata("Sunday")
case else : ser.setdata("Did you just invent a new day?")

end select
ser.send

end sub

Sub Statement

Function: Used to define subs -- distinct units in code which
perform specific tasks. These never return any value.

Syntax: [public]
sub name [([byref] argument1 as type1, [byref]
argument2 as type2…)]

statement1
statement2
…
[exit sub]
…
statementN

end sub

Scope: Global

See Also: Declare Statement , Exit Statement , Function
Statement

Part Description

public Optional. If set, allows other compilation units (files in a
project) to access the function.

name Required. Specifies the name for the function (used to call
it, etc).

byref Optional. If present, the argument immediately following this
modifier will be passed by reference .

argument[1, 2...] Optional. The name of the argument(s) passed to the
function; arguments must have a name which is a valid
identifier. This is a local identifier, used to refer to these
arguments within the body of the function.

as Optional (required if arguments are specified). Precedes the
type definition.

type[1, 2...] Optional (required if arguments are specified). Specifies the
data type for the argument. Each argument name must
be followed with a type definition, even when specifying
several arguments of the same type.

statement[1,
2...]

Required. The body of code executed within the function;
specifies the actual 'work' done by the function.

Details

Subroutines cannot be nested (which is why their scope is defined as global or
HTML). Subroutines do not return values. Subroutines can call other subroutines

66

84 89

91

68

48

100 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

and functions.

Examples

sub print_to_serial(s as byref string)
ser.setdata(s)
ser.send
s = "OK" ' This sub actually returns something, if indirectly.

end sub

Type Statement

Function: Used to declare structures -- combinatorial data types
that includes one or several member variables.

Syntax: type type_name
name1 [(bounds1)] as type [(max_string_size)]
...
nameN [(boundsN)] as type [(max_string_size)]

end type

Scope: Global, HTML and local

See Also: Dim Statement

Part Description

type_name Required. Specifies the name for this structure type (not a
particular variable).

name[1, 2...] Required. Specifies the name for the member variable.

bounds[1, 2...] Optional. Specifies the boundary (finite size) of a dimension
in an array. Several comma-delimited boundary values make
a multi-dimensional array.

as Required. Precedes the type definition.

type Required. Specifies the type of the variable.

max_string_size Optional (can be used only when type is string). Sets the
maximum size for a string (default size is 255 bytes).

end type Required. Closes type declaration.

Details

Structures can include any number of members, and each member can be of any
type. Any member can also be an array or another structure. Nesting of up to 8
levels is allowed (i.e. "array within a structure within a structure within and array"
-- each structure or array is one level and up to 8 levels are possible).

Type...end type is only a declaration, not a variable definition! You still need to
use a regular dim statement to define a variable of the type you have declared.

Examples

'declare new type

58

86

48

86

101Language Reference

©2000-2011 Tibbo Technology Inc.

type my_struct
 x as byte
 y as Long
 s as string(10)
end type

'define a variable of this type
dim my as my_struct

While-Wend Statement

Function: Executes a block of code as long as an expression
evaluates to true.

Syntax: while expression
statement1
statement2
…
[exit sub]
…
statementN

wend

Scope: Local and HTML

See Also: Do-Loop Statement , For... Next Statement , Exit
Statement

Part Description

expression Required. The expression which is to be evaluated.

statement[1,
2...]

Required. The code to run when the expression is true.

Details

Makes a pre-conditional loop. First, the expression is evaluated and then if it is true
statement1, statement2, etc are executed. Then expression is evaluated again and
so on until expression becomes false.

Examples

function wait_char(ch as byte) as byte
' waits for specific character with ASCII code ch to arrive into the serial
port.
' returns 0 if char was encountered or 1 if this character was encountered

dim s as string(1)

' input data byte by byte for as long as there is some data left to
process

s = ser.getdata(255) ' will input byte by byte as s only can contain a
single char!

while len(s)<>0

87 90

89

102 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

if s = chr(ch) then
wait_char = 0 ' character encountered!
exit function

end if
s = ser.getdata(255)

wend

wait_char = 1 ' did not encounter ch character and there is no more
data to input (for now)!

End Function

Keywords
This chapter contains links from single keywords to the statements in which you
may find them. It is meant to be used as a resource for context-sensitive help.

As

A keyword designating data type. Appears as part of the following statements:

Declare Statement

Dim Statement

Function Statement

Sub Statement

Boolean

A data type. Please see Variables And Their Types .

ByRef

A keyword designating a way of passing arguments. Appears as part of the
following statements:

Function Statement

Sub Statement

For further details, see Passing Arguments to Procedures .

Byte

A data type. Please see Variables And Their Types .

ByVal

A keyword designating a way of passing arguments. Appears as part of the
following statements:

Function Statement

84

86

91

99

48

91

99

68

48

91

103Language Reference

©2000-2011 Tibbo Technology Inc.

Sub Statement

For further details, see Passing Arguments to Procedures .

Char

A data type. Please see Variables And Their Types .

Else

A keyword used to denote conditions. Appears as part of the following statements:

If.... Then... Else Statement

Select-Case Statement

End

This keyword is used in the following statements:

Enum Statement

Function Statement

Select Statement

Sub Statement

Type Statement

False

A byte constant with a value of 0, associated with boolean variables.

For

Appears as part of the following statement:

For... Next Statement

Integer

A data type. Please see Variables And Their Types .

Next

Appears as part of the following statement:

For... Next Statement

99

68

48

94

97

88

91

97

99

100

48

90

48

90

104 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Public

A keyword used to denote visibility. Appears as part of the following statements:

Dim Statement

Function Statement

Sub Statement

For further details, see Understanding the Scope of Variables .

Short

A data type. Please see Variables And Their Types .

Step

Appears as part of the following statement:

For... Next Statement

String

A data type. Please see Variables And Their Types .

Then

A keyword used to denote conditional execution. Appears as part of the following
statement:

If.... Then... Else Statement

Type

Appears as part of the following statement:

Type Statement

To

Appears as part of the following statement:

For... Next Statement

True

A byte constant with a value of 1, associated with boolean variables.

Word

A data type. Please see Variables And Their Types .

86

91

99

61

48

90

48

94

100

90

48

48

105Language Reference

©2000-2011 Tibbo Technology Inc.

Operators
Tibbo Basic supports the following operators:

+ Operator

Addition operator (applies to strings as well).

i = 1 + 2 ' this would be 3
s = "foo" + "bar" ' this would be "foobar"

* Operator

Multiplication operator.

i = 5 * 2 ' 10.

- Operator

Subtraction Operator.

i = 20 - 5 ' 15

/ Operator

Division operator.

i = 30 / 10 ' 3
i = 10 / 3 ' also 3 -- only integers are supported, decimal part is removed.

MOD Operator

Used to divide two numbers and return the remainder.

i = 10 mod 3 ' this would be 1

= Operator

(1) Equality operator. (2) Assignment operator.

if i = 5 then ' as an equality operator

i = 5 ' as an assignment operator

106 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

AND Operator

(1) Logical AND. (2) Bitwise AND.

if i = 5 AND j = 10 then.... ' as a logical AND

x =
&b01011001 AND
&b10101011 ' this would be
&b00001001

NOT Operator

(1) Logical NOT. (2) Bitwise NOT.

if NOT b then.... ' as a logical NOT -- b is a boolean value

x = NOT &b01011001 ' this would be &b10100110

OR Operator

(1) Logical OR. (2) Bitwise OR.

if i = 5 OR j = 10 then.... ' as a logical OR

x =
&b10110101 OR
&b01011001 ' this would be
&b11111101

XOR Operator

(1) Logical XOR. (2) Bitwise XOR.

if i = 5 XOR j = 10 then.... ' as a logical XOR

&b10110101 XOR
&b01011001 ' this would be
&b11101100

Error Messages
Below is a listing of all error messages which may appear when trying to build and
upload your Tibbo BASIC program onto a target.

107Language Reference

©2000-2011 Tibbo Technology Inc.

C1001

Description:

This error occurs when a source file contains an “illegal” character (like a special
character, a non-English letter, etc) outside of a string literal or a comment.

Example:

%dim x as byte ' error C1001: invalid char '%' (25)

See Also

Naming Conventions

C1002

Description:

This error occurs when source code contains a line break inside a string literal or a
character constant.

Example:

S = “I am a string
literal " ' error C1002: newline in constant

See Also

Variables And Their Types

C1003

Description:

Unlike string literals, character constants may not be empty.

Example:

x = `` ' error C1003: empty char constant

See Also

Constants

47

48

65

108 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

C1004

Description:

Character constants may contain two characters at most (in which case, the
constant type will be ‘word’).

Example:

x = `abc` ' error C1004: too many chars in constant

See Also

Constants

C1005

Description:

The compiler detected an attempt to specify a numerical constant using an
incorrect format.

Example:

x = &G12 ' error C1005: invalid numeric constant: unknown base 'G'
x = &b102 ' error C1005: invalid numeric constant
x = 10a ' error C1005: invalid numeric constant

See Also

Type Conversion

C1006

Description:

This error occurs when Tibbo BASIC syntax is violated. Refer to the documentation
of a particular statement to see its syntax.

Example:

select x ‘ error C1006: 'Case' expected
case 1: case 2:

b = true
case 3:

b = false

65

7

50

109Language Reference

©2000-2011 Tibbo Technology Inc.

case else:
sys.halt

end select

sub on_init
...

end function ‘ error C1006: 'End Sub' expected

See Also

Language Reference

C1007

Description:

A numerical constant does not fit in any supported numerical type.

Example:

x = 65536 ' error C1007: Constant too big
x = -32769 ' error C1007: Constant too big

enum my_enum
my_val1 = -32768,
my_val2 = 32768

end enum ' error C1007: enum range is too wide

See Also

Variables And Their Types

Constants

C1008

Description:

This error occurs when an expression which should be constant is not actually
constant.

Example:

dim x as integer
const a = 5 * x ' error C1008: constant expression expected

83

48

65

110 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

See Also

Constants

C1009

Description:

This error occurs when the requested operation cannot be performed using the data
types provided.

Example:

dim s as string
s = "abc" + 5 ' error C1009: type mismatch

See Also

Variables And Their Types

C1010

Description:

This error occurs when attempting to re-use an identifier that is already used (and
thus, cannot be reused in the current scope) in a definition or a declaration (of an
enumeration type, a constant, a variable or a function).

Example:

dim x as string
sub x ' error C1010: redefinition of identifier 'x'

…
end sub

See Also

Identifier

65

48

137

7

111Language Reference

©2000-2011 Tibbo Technology Inc.

C1011

Description:

This error occurs when attempting to define a procedure twice.

Example:

sub x
end sub

sub x ' error C1011: 'x' already has body
end sub

See Also

Sub Statement

Function Statement

C1012

Description:

The definition for a procedure does not match a previous declaration for that
procedure (a different number or type of arguments and/or a return value)

Example:

declare sub x

sub x(i as integer) ' error C1012: argument count mismatch (see previous
declaration of 'x')
end sub

See Also

Declare Statement

Sub Statement

Function Statement

C1013

Description:

This error occurs when a statement references an identifier which has not
previously been defined.

99

91

84

99

91

112 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Example:

dim x as integer
x = 15 * y ' error C1013: undeclared identifier 'y'

See Also

Dim Statement

C1014

Description:

Identifiers can refer to entities of different types: labels, variables, procedures,
enumeration types, constants. This error occurs when you cannot use identifier of
a certain type in the current statement.

Example:

dim x as integer
goto x ' error C1014: 'x' is not a label

See Also

Identifier

C1015

Description:

The next clause of a for/next statement must use the same index variable as the
for clause.

Example:

dim i,j as integer
for i = 1 to 10
next j ' error C1015: 'For'/'Next' arguments mismatch

See Also

For... Next Statement

86

137

90

113Language Reference

©2000-2011 Tibbo Technology Inc.

C1016

Description:

The exit statement may be used only from within certain statements (for, while,
do-loop, sub, function). This error occurs when the compiler encounters an exit
statement which is used not from within one of these statements.

Example:

for i = 1 to 10
exit while ' error C1016: 'Exit' is of scope

next i

See Also

Exit Statement

C1017

Description:

Assignment statements must contain a value on left side of the equal sign (called
an l-value). This can be a variable, an array element or a read-write property, and
may not be a constant.

Example:

1 = x ' error C1017: l-value expected on the left of '='

C1018

Description:

Assignment statements must contain a value on right side of the equal sign (called
an r-value). This error occurs when an expression on the right side of such a
statement does not return a value.

Example:

sub sub1
…
end sub

89

7

114 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

…
x = sub1 ' error C1018: subroutine cannot be on the right of '='

C1019

Description:

This error occurs when attempting to access a variable which is not an array as if it
were an array (by using an index number).

Example:

dim i,j as integer
i = j(3) ' error C1019: j is not array

See Also

Introduction to Variables, Constants and Scopes

Arrays

C1020

Description:

This error occurs when trying to define an array with more than 8 dimensions (a
maximum of 8 dimensions are allowed).

Example:

dim i(2,2,2,2,2,2,2,2,2) as integer ' error C1020: Too many array dimensions
(8 max)

See Also

Arrays

C1021

Description:

This error occurs when a property was defined for read-only or for write-only, but
the program tries to access this property in a different way.

47

54

54

115Language Reference

©2000-2011 Tibbo Technology Inc.

Example:

sys.runmode = PL_SYS_MODE_DEBUG ' error C1021: write access to property is
denied

See Also

Understanding Platforms

C1022

Description:

There are several system calls which the compiler uses directly, and are invoked
implicitly in code (string comparison, string copy, conversion from string to number,
etc). This error occurs when a platform does not export these functions, but source
code requires them.

Example:

doevents ' error C1022: platform does not export 'doevents' syscall

See Also

Type Conversion

C1023

Description:

The global scope may contain only declarations/definitions of procedures, variables,
enumeration types and constants. This error occurs when some other statement is
encountered at the global scope.

Example:

for i = 1 to 10 ' error C1023: Unexpected at global scope
next i

See Also

Understanding the Scope of Variables

82

50

7

61

116 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

C1024

Description:

This error occurs when an include statement references a file which cannot be
read. Most commonly, it means the filename was misspelled.

Example:

include “utileties.tbh” ' error C1024: unable to read file 'utileties.tbh'

See Also

Include Statement

L1001

Description:

This error is occurs when the linker tries to link two object files which have different
data base addresses.

Lower addresses are reserved for passing arguments and returning values from
platform syscalls. The data base address for program variables is calculated
according to how much memory platform syscalls require for arguments and return
values.

Most commonly, this error means that you are trying to link object files built for
different platforms.

See Also

System Components

L1002

Description:

This error occurs when the linker attempts to link two object files with different
counts of platform event handlers. Most commonly this error means that you are
trying to link object files built for two different platforms.

See Also

System Components

7

95

7

7

117Language Reference

©2000-2011 Tibbo Technology Inc.

L1003

Description:

During linking, one or more addresses remained unresolved. That means that these
addresses are referenced from one or more compilation units but are never defined.

See Also

Declare Statement

L1004

Description:

This error means that when linking two object files, the linker encountered a
situation where the import is a data address and the export is a code address or
vice versa.

L1005

Description:

Since all memory allocation is static, recursion is not supported. This error occurs
whenever the linker encounters recursion (direct or indirect).

See Also

Introduction to Procedures

Our Language Philosophy

L1006

Description:

The TiOS Virtual Machine may hold up to 255 stack locations. This error occurs
when the linker needs to reserve more stack locations. That does not necessarily
mean that the direct call chain in program is 255 calls long. Each independent
doevents statement approximately doubles the required needed stack locations.

84

66

4

118 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

See Also

Doevents

System Components

L1007

Description:

A function which contains a doevents statement may not be called from more than
one independent call chain.

See Also

Doevents

L1008

Description:

The amount of RAM needed to store variables for your project exceeds the
maximum possible size for this platform. In simple terms, your variables take up too
much space.

See Also

Platform Specifications

L1009

Description:

The amount of FLASH (program memory) needed to store your project exceeds the
maximum possible size for this platform. I.e, your program is too large.

See Also

Platform Specifications

73

7

73

7

138

7

138

119Language Reference

©2000-2011 Tibbo Technology Inc.

Objects, Properties, Methods, Events
Under Tibbo Basic, these are all platform-specific constructs.

Please refer to your Platform documentation for details about the objects,
properties, methods and events for your platform.

Development Environment
Below is an overview of the TIDE GUI.

As a general rule, those things which you know from common Windows programs
(such as Window > Tile) will work just as you would expect them to work. We will
concentrate on the more unique parts of the TIDE GUI.

Installation Requirements
The recommended system requirements for TIDE are:

800 MHz Intel Pentium III processor (or equivalent) and later

Windows 98, ME, 2000, XP, 2003

256 MB RAM

20MB of available disk space

A communication medium with your target (platform-specific)

At least one target device to work with (required for debugging)

1024 x 768, 24-bit display recommended

User Interface
The following is a systematic overview of the TIDE graphical user interface.

138

120 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Main Window

The main window for TIDE looks like this:

The parts in the screenshot above are:

(1) The Menu Bar

(2) The Project Toolbar

(3) The Debug Toolbar

(4) The Code Editor

(5) The Project Pane

(6) The Watch Pane

(7) The Output Pane

(8) The Call Stack Pane

(9) The Status Bar

Operation Modes

Essentially, the TIDE GUI has two primary modes: The Edit Mode, in which you write
the code for your application, and the Debug Mode, which is used while your code
is running on the target and you are debugging it.

In each of these modes you may show, hide or resize various interface elements.
The changes you make in one mode do not affect the other state. I.e, you could
display the Debug Toolbar while in Debug Mode and hide it while in Edit Mode.
Every time you will go into Debug Mode, the toolbar would appear. When you switch
back to the Edit Mode, the toolbar will disappear. Thus, you may customize your

121

126

126

120

134

135

133

133

130

126

121Development Environment

©2000-2011 Tibbo Technology Inc.

workspace so it would serve you best both while editing code and while debugging.

Another key difference is that while in Debug Mode you cannot enter any new
code. Whenever you try to type code while in this mode, you will be prompted to
stop program execution on the target and switch back to Edit Mode.

You can easily tell the two modes apart by the background color of the code editor
pane: When the background is white, you are in Edit Mode. When it's grey, you are
in Debug Mode.

Menu Bar

A standard bar, modeled after the classic Windows menu bar.

See below:

File Menu

Edit Menu

View Menu

Project Menu

Debug Menu

Image Menu (visible only when graphical resource is selected for editing)

Window Menu

Help Menu

6.2.3.1File Menu

New Project: Displays the New Project dialog.

Open Project: Opens an existing project

Save Project: Saves all modified files on this project. Happens automatically on
build.

121

122

122

123

124

124

125

125

132

122 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Close Project: Closes current project.

Save File: Saves the current file.

Close File: Closes the current file.

Print: Prints the current file.

Print Preview: Check output before printing.

Print Setup: Configure printing.

1... 4: Recent files.

Exit: Quits TIDE.

6.2.3.2Edit Menu

Undo: Cancels last action.

Redo: Cancels last undo.

Cut, Copy, Paste: Standard edit actions.

Select All: Select all text.

Find, Find Next, Find Prev, Find in Files, Replace: Standard find & replace
actions.

6.2.3.3View Menu

123Development Environment

©2000-2011 Tibbo Technology Inc.

Project Toolbar: Toggles (shows/hides) the Project toolbar.

Debug Toolbar: Toggles the Debug toolbar.

Status Bar: Toggles the Status Bar .

Project: Toggles the Project pane.

Output: Toggles the Output pane.

Clear Output: Clears the contents of the Output pane.

Watch: Toggles the Watch pane.

Call Stack: Toggles the Call Stack pane.

Auto-complete List: Show an appropriate auto-complete list for the current
context.

Argument List: Show a list of arguments for the current procedure call.

6.2.3.4Project Menu

Settings: Displays the Project Settings dialog.

Select/Manage Target: Shows the platform-specific dialog used to select a target
for your project and upload firmware.

Add File: Displays the Add file to project dialog.

Remove File: Removes the file currently selected in the Project Tree from the
project. Does not delete file from disk.

Rename File: Renames the file currently selected in the Project Tree.

Build: Builds project without uploading. Builds only files modified since last build.

Rebuild All: Rebuilds project including all files -- even those not modified since last
build.

Build and Upload: Builds if necessary, and uploads project to target without
running it.

Rebuild All and Upload: Rebuilds project including all files, uploads and does not
run.

Stop Build/Upload/Debug: Stops building, uploading or debugging. Exits debug
mode. If the target was running, it will continue running.

126

126

130

134

133

135

133

23

131

132

124 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

6.2.3.5Debug Menu

Restart: Reboots the target device. Rebooting the device will not resume
execution. Once the device has finished the reboot process, execution will be
paused, pending further debug instructions.

Run: Begins or resumes program execution on target. If switching from Edit mode,
this optionally compiles and uploads the project (when needed).

Pause: Pauses program execution. Covered under Target States above.

Step Into: Covered under Stepping above.

Step Over: Covered under Stepping above.

Step Out: Covered under Stepping above.

Run to Cursor: Covered under Stepping above.

Jump to Cursor: Covered under Stepping above.

Toggle Breakpoint: Covered under Breakpoints above.

Remove All Breakpoints: Covered under Breakpoints above.

Add to Watch List: Covered under The Watch above.

Remove from Watch List: Covered under The Watch above.

6.2.3.6Image Menu

This menu is visible only when a graphical resource is selected for editing. TIDE

28

33

33

33

33

33

30

30

33

33

125Development Environment

©2000-2011 Tibbo Technology Inc.

"knows" how to work with .bmp, .jpg, .gif, and .png files.

Resize: Changes the size of the image's "canvas". This is not re-sampling of the
image: existing image elements won't shrink or get larger, just the total image size
in pixels will change. If the new image size is smaller than portions of the image at
the right and on the bottom will be lost.

Zoom In: Selects higher magnification. x1, x2, x4, x8, x16 magnification levels are
available.

Zoom Out: Selects lower magnification. x1, x2, x4, x8, x16 magnification levels are
available.

Grid: Toggles image grid visible/invisible.

Flip H: Mirrors entire image or selected rectangular area (if selection is made)
horizontally.

Flip V: Mirrors entire image or selected rectangular area (if selection is made)
vertically.

Rotate Right 90: Rotates entire image or selected rectangular area (if selection is
made) 90 degrees clockwise.

Rotate Left 90: Rotates entire image or selected rectangular area (if selection is
made) 90 degrees counter-clockwise.

6.2.3.7Window Menu

Close: Closes current window. Can also be done with Ctrl+W.

Close All: Closes all open documents without closing projects.

Cascade, Tile: Standard window actions.

6.2.3.8Help Menu

Contents: Opens the help file at the contents.

Index: Opens the help file at the index.

Search: Opens the help file in search mode.

Context-Sensitive Help: Opens the help file at the topic for the currently selected
keyword in the code editor.

126 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Online Support: Open http://www.tibbo.com/taiko.php using the default browser.

About TIDE: Displays version information, etc.

Toolbars

The TIDE has the following toolbars:

Project Toolbar

Debug Toolbar

Image Editor Toolbar (visible only when graphical resource is selected for
editing)

Tool Properties Toolbar (visible only when graphical resource is selected for
editing, contents depend on the selected tool)

6.2.4.1Project Toolbar

New Project: Displays the New Project dialog.

Open Project: Opens an existing project

Save Project: Saves all modified files on this project. Happens automatically
on build.

Add File: Displays the Add file to project dialog.

Remove File: Removes current file from project. Does not delete file from
disk.

Settings: Displays the Project Settings dialog.

Copy: Self-explanatory.

Cut: Self-explanatory.

Paste: Self-explanatory.

Undo: Cancels last action.

Redo: Cancels last undo.

Find: Self-explanatory.

Find Next: Self-explanatory.

Find Prev: Self-explanatory.

Replace: Self-explanatory.

6.2.4.2Debug Toolbar

Select/Manage Target: Shows the platform-specific dialog used to select a
target for your project and upload firmware.

Build: Builds project without uploading. Builds only files modified since last build.

Build and Upload: Uploads project to target without running it. Builds prior to
upload, if required.

126

126

127

128

132

132

131

http://www.tibbo.com/taiko.php

127Development Environment

©2000-2011 Tibbo Technology Inc.

Restart: Reboots the target device. Rebooting the device will not resume
execution. Once the device has finished the reboot process, execution will be
paused, pending further debug instructions.

Run: Begins or resumes program execution on target. If switching from Edit
mode, this optionally compiles and uploads the project (when needed).

Pause: Pauses program execution. Covered under Target States above.

Stop Build/Upload/Debug: Stops building, uploading or debugging. Exits debug
mode. If the target was running, it will continue running.

Step Into: Covered under Stepping above.

Step Over: Covered under Stepping above.

Step Out: Covered under Stepping above.

Run to Cursor: Covered under Stepping above.

Jump to Cursor: Covered under Stepping above.

Toggle Breakpoint: Covered under Breakpoints above.

Add to Watch List: Covered under The Watch above.

Remove from Watch List: Covered under The Watch above.

6.2.4.3Image Editor Toolbar

This toolbar is visible only when graphical resource is selected for editing. When you
select a certain tool an additional Tool Properties Toolbar specifically for this tool
is displayed. This toolbar provides all options for the selected tool.

Selection Tool: Selects rectangular image area to move, copy, or transform.

Hand Tool: Allows you to scroll the image using "hand grip" (position the tool
over the image, click and hold left mouse button, then drag the image).

Paint Tool: Use this tool to do "freehand" painting over the image.

Eraser Tool: Erases portions of the image (paints with background color).

Text Tool: Adds text to the image.

Line Tool: Draws straight lines.

Rectangle Tool: Draws rectangles.

Ellipse Tool: Draws ellipses.

Eyedropper Tool: "Picks" the color off the image (left-click over the image to
pick the fore-color; right click to pick the background color).

Zoom Tool: Changes the zoom level (magnification). x1, x2, x4, x8, x16 zoom
levels are available.

28

33

33

33

33

33

30

33

33

128

128 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

6.2.4.4Tool Properties Toolbar

When you select a certain image edit tool an additional properties toolbar
specifically for this tool is displayed. This toolbar provides all options for the
selected tool. The following toolbars are available:

Selection Tool Properties Toolbar

Paint Tool Properties Toolbar

Eraser Tool Properties Toolbar

Text Tool Properties Toolbar

Line Tool Properties Toolbar

Rectangle Tool Properties Toolbar

Ellipse Tool Properties Toolbar

Zoom Tool Properties Toolbar

Selection Tool Properties

Transparency Mode: For drag/drop and copy/paste operations selects whether
pixels of background color will be copied to the destination as well. When the
transparency mode is OFF the rectangular image fragment being copied or
moved will overlay original image underneath completely. When the transparency
mode is ON the original image will still be visible through the copied data.

Flip Horizontally: Mirrors entire image or selected rectangular area (if selection
is made) horizontally.

Flip Vertically: Mirrors entire image or selected rectangular area (if selection is
made) vertically.

Rotate Left 90: Rotates entire image or selected rectangular area (if selection
is made) 90 degrees counter-clockwise.

Rotate Right 90: Rotates entire image or selected rectangular area (if selection
is made) 90 degrees clockwise.

Paint Tool Properties

Inversion Mode: Toggles paint tool's inversion mode on/off. When inversion is
OFF, left-clicking on an image pixel changes this pixel's color to fore-ground
color; right-clicking changes the color to background color. With inversion ON,
left-clicking causes the pixel to alternate between fore-ground and background
colors.

Size: "Pencil tip" width in pixels.

Eraser Tool Properties

127

128

128

128

129

129

129

130

130

129Development Environment

©2000-2011 Tibbo Technology Inc.

Size: "Eraser width" in pixels.

Text Tool Properties

Transparency Mode: selects whether original image will still be visible
underneath the text. When the transparency mode is OFF, original image will not
be visible. When the transparency mode is ON, original image will be visible.

Inversion Mode: Toggles text tool's inversion mode on/off. When inversion is
OFF, the text will always be printed in the fore-ground color. When inversion is
ON, the text will appear in fore-ground color over the areas originally painted in
background color and in background color over the areas originally painted with
non-background color.

Font Selector: Selects the font to print the text with.

Font Size: Selects the size of the font.

Bold: Toggles bold attribute for the font on/off.

Italic: Toggles italic attribute for the font on/off.

Underline: Toggles underline attribute for the font on/off.

Left: Selects left alignment for the text (result is visible with multi-line text
only).

Center: Selects center alignment for the text (result is visible with multi-line
text only).

Right: Selects right alignment for the text (result is visible with multi-line text
only).

Line Tool Properties

Inversion Mode: Toggles line tool's inversion mode on/off. When inversion is
OFF, the line will always be drawn in the fore-ground color. When inversion is
ON, the line will appear in fore-ground color over the areas originally painted in
background color and in background color over the areas originally painted with
non-background color.

Size: Line width in pixels.

Rectangle Tool Properties

Inversion Mode: Toggles rectangle tool's inversion mode on/off. When inversion
is OFF, the rectangle's border will always be drawn in the fore-ground color and
filling (for filled rectangles) will always be done with background color. When
inversion is ON, the rectangle's border will appear in fore-ground color over the
areas originally painted in background color and in background color over the
areas originally painted with non-background color. The color for the
"filling" (when enabled) will be exactly opposite.

130 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Solid Rectangle: Creates a rectangle filled with fore-ground color (+ inversion
mode effect is applied with enabled).

Filled Rectangle: Creates a rectangle with the border of fore-ground color and
filled with the background color (+ inversion mode effect is applied with enabled)
.

Unfilled Rectangle: Creates a rectangle with the border of fore-ground color
and no filling (+ inversion mode effect is applied with enabled).

Size: Border width (irrelevant for solid rectangles).

Corner rounding: Defines the radius of rectangle corners.

Ellipse Tool Properties

Inversion Mode: Toggles ellipse tool's inversion mode on/off. When inversion is
OFF, the ellipse's border will always be drawn in the fore-ground color and filling
(for filled ellipses) will always be done with background color. When inversion is
ON, the ellipse's border will appear in fore-ground color over the areas originally
painted in background color and in background color over the areas originally
painted with non-background color. The color for the "filling" (when enabled) will
be exactly opposite.

Solid Ellipse: Creates an ellipse filled with fore-ground color (+ inversion mode
effect is applied with enabled).

Filled Ellipse: Creates an ellipse with the border of fore-ground color and filled
with the background color (+ inversion mode effect is applied with enabled).

Unfilled Ellipse: Creates an ellipse with the border of fore-ground color and no
filling (+ inversion mode effect is applied with enabled).

Size: Border width (irrelevant for solid ellipses).

Zoom Tool Properties

Zoom Level: Selects one of available zoom (magnification) levels.

Status Bar

Below is a screenshot of the status bar:

Target: Shows selected debug transport and target address (in this case,
MAC address).

Progress Bar: Shows progress during long operations (uploading binary,
etc).

Communication State indicator: Covered under Target States
above.

28

131Development Environment

©2000-2011 Tibbo Technology Inc.

Target State indicator: Covered under Target States above.

Timer: Covered under Code Profiling above.

Cursor location: Lines and columns.

CAP, NUM, SCRL: Status indicators for Caps Lock, Num Lock and Scroll
Lock.

Dialogs

Not all dialogs are reviewed -- only the ones which are not self-explanatory.

In this section:

Project Settings

New Project

Add file to Project

Graphic File Properties Dialog

6.2.6.1Project Settings

This dialog has been covered under Project Settings above.

28

37

131

132

132

133

38

132 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

6.2.6.2New Project

This dialog has been covered under Starting a New Project above.

6.2.6.3Add File to Project

This dialog has been covered under Adding, Removing and Saving Files above.

10

18

133Development Environment

©2000-2011 Tibbo Technology Inc.

6.2.6.4Graphic File Properties Dialog

This dialog has been covered under Adding, Removing and Saving Files above.

Panes

Some panes may be toggled using shortcut keys or the View Menu . Colors pane
 is displayed automatically when an image resource file is opened for editing.

In this section:

Call Stack

Output

Project

Watch

Colors

6.2.7.1Call Stack

The Call Stack pane is covered under The Call Stack above.

6.2.7.2Output

Displays status messages while compiling, linking, uploading and debugging. Double
clicking on an error message would move the cursor to the line of code which

18

122

135

133

133

134

135

135

31

134 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

caused the error.

6.2.7.3Project

The Project pane contains two tabs: Browser and Files .

Browser

The Browser tab has been covered under Using the Project Browser and under
The Watch above.

Files

The Files tab has been covered under Adding, Removing and Saving Files above.

134 134

22

33

18

135Development Environment

©2000-2011 Tibbo Technology Inc.

6.2.7.4Watch

The Watch pane has been covered under The Watch above.

6.2.7.5Colors

Colors pane is displayed whenever a graphical resource is opened for editing in
TIDE. Depending on the color mode selection you've made when adding an image
file to the project, the pane will either show available palette colors...

... or RGB color selector:

33

136 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Language Element Icons

Throughout TIDE, many icons are used for various Tibbo Basic constructs. Below is
a complete listing:

Constants (see Constants)

Enumeration Types (see User-Defined Types)

System Calls (see Function Reference)

Objects (see Object Reference)

Properties (see Object Reference)

Methods (see Object Reference)

Event Handlers (Implemented in current project -- see Object Reference).
Grayed if no event handler exists for an event.

Procedures (see Introduction to Procedures). Grayed if a procedure is not
implemented (i.e. doesn't have a body).

Variables (see Introduction to Variables, Constants and Scopes). Grayed if
the variable is not defined.

Glossary of Terms
Below are several key definitions for terms used throughout the text.

Compilation Unit
A single file containing source code, to be processed by the compiler . Projects
may contain many compilation units. Under Tibbo Basic, BASIC source files (.tbs)
and HTML files (.html) are compilation units.

Compiler
For Tibbo Basic, a software program which takes compilation units and converts
each of them, individually, to executable P-Code . The Tibbo Basic compiler is a
single-pass compiler, which means it goes over each compilation unit from beginning
to end, and does it just one time.

Construct
A meaningful combination of language elements, including keywords, identifiers,
constants, etc. An example of a construct would be A = B + 5.

Cross-Debugging
This is the practice of using one device to observe and control the state of a
program running on another device, in order to find bugs in it. Under Tibbo Basic,
your computer displays various status messages and information about variables
etc, but the actual code is executed on the target . The target state is
periodically polled and displayed on your computer. Hence, cross-debugging.

65

59

205

231

231

231

231

66

47

136

137

137

137Glossary of Terms

©2000-2011 Tibbo Technology Inc.

Identifier
Any 'name' for a variable, a function, a subroutine, a constant, or any other 'thing'
you may call or refer to within a program. In the statement x = 5, x is an identifier.
An existing keyword cannot be used as an identifier, since it already has a fixed
meaning as part of Tibbo Basic syntax.

Keyword
A single word which carries a specific meaning within Tibbo Basic. Keywords are
listed under Keywords above.

Label
An identifier marking the beginning of a block of code which will then be called
using a Goto Statement . Labels are declared in code by writing their name,
followed by a colon, on a single line.

Linker
A software program processing the output of the compiler , to look for any cross-
references between the units. If compilation unit A calls a procedure which is in
compilation unit B, the linker associates between the two, and provides compilation
unit A with the proper memory addresses so that it could actually reach the
procedure it needs in unit B.

P-Code
Pseudo-Code. This is code which is not executed directly by a processor, but by a
'virtual processor' (called a Virtual Machine) which is a part of TiOS that emulates a
processor, interprets the P-Code and executes it.

The Tibbo Basic compiler produces P-Code.

Syscall
A system call. This is an internal platform function -- not to be used explicitly. It is
expressed as a numeric value. Syscalls are automatically invoked when you perform
certain operations in code, such as variable type conversion.

You do not have to invoke syscalls directly within your code -- it is not
recommended.

Target
The hardware device with which you are working. This is the device connected to
the computer while debugging. The code you are writing actually runs on this
device, and the debug messages originate from the device -- not from anywhere
within your computer.

Virtual Machine
This a part of TiOS. In essence, it is a processor implemented in software. It
executes the P-Code of your application (produced by the compiler).

Using a Virtual Machine, we can achieve full control over it code execution. You can
think of your application as if it runs in a designated 'sandbox' -- you can do

137

102

137

93

136

137

138 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

anything, but the Operating System will stay unharmed. So no code executed in the
Virtual Machine can crash TiOS itself.

This approach also greatly enhances your control over your program execution
during debugging.

Platforms
This section contains specifications for all platforms included into the current
documentation.

Each platform supports a number of functions (syscalls) and objects. Actual
functions and object description is not included into each platform's spec. Instead,
they are documented in the Function Reference and Object Reference
sections, while Platform Specifications section only contains the lists of
functions and objects supported. This is because most functions and objects are
shared by different platforms.

Platform Specifications
The following platforms are included into this documentation:

Platform Devices

EM500W EM500 + GA1000

EM1000 EM1000, DS1000

EM1000W EM1000 + GA1000

EM1202 EM1202, EM1202EV*, DS1202*

EM1202W EM1202 + GA1000

DS1100 DS1100

DS1101W DS1101 + GA1000

DS1102W DS1102 + GA1000

DS1202 EM1202EV*, DS1202*

EM1206 EM1206

EM1206W EM1206 + GA1000

DS1206 DS1206, DS1206N

* These devices can be used with the EM1202 or DS1202 platform. Notice,
however, that the EM1202EV and DS1202 interconnect certain pins of the EM1202.
See Programmable Hardware Manual for details.

EM500W

Memory space

RAM EM500W: 17,920* bytes for application variables and data

Flash 327,680 bytes for application storage, data cannot be stored in this
memory

EEPRO
M

200 bytes for application data

205 231

138

138

143

143

151

151

164

168

174

181

158

158

186

139Platforms

©2000-2011 Tibbo Technology Inc.

* RAM available in the debug mode is smaller by 257 bytes. All memory is available
in the release mode.

Supported Objects, variable types, and functions

Sock — socket communications (up to 16 UDP, TCP, and HTTP sessions);

Net — controls the Ethernet port;

Wln — handles the Wi-Fi interface (requires GA1000 add-on module);

Ser — in charge of the serial port (UART, Wiegand, and clock/data modes);

Io — handles I/O lines, ports, and interrupts;

Fd * — manages flash memory file system and direct sector access (requires
an externally connected flash IC);

Stor — provides access to the EEPROM;

Romfile — facilitates access to resource files (fixed data);

Pppoe — provides access to the Internet over an ADSL modem;

Ppp — provides access to the Internet over a serial modem (GPRS, POTS,
etc.);

Pat — "plays" patterns on a pair of LEDs;

Button — monitors the MD line (setup button);

Sys — in charge of general device functionality.

* Fully supported with the exception of fd.copyfirmware . Disabled by default --
enable it in Project Settings -> Customize.

This platform supports the standard set of variable types and functions
(a.k.a. "syscalls") except aes128enc and aes128dec . These AES128
functions are not present on the EM500W platform.

Platform-specific constants

You can find them here .

Miscellaneous information

Available network interfaces Ethernet (net.)(1)

GPIO type Bidirectional

RTS/CTS remapping Not supported(2)

GA1000 lines remapping Not supported(3)

Serial port FIFOs 16 byte for TX, 16 bytes for RX

Clock frequency (PLL) control Not supported, frequency is fixed at
80MHz

Special configuration section of
the EEPROM

8 bytes for MAC storage

Device serial number 4 bytes, the number can't be changed

Flash memory configuration Dedicated memory for firmware/

421

358

536 201

378

294

236

143

522

370

369

366

363

234 201

526

269

38

192 192

206 205

140

194

195

201

196

196

197

199

200

140 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

application

Data cannot be stored in this memory

LEDs Green (SG) and red (SR) Status LED
lines

(their brightness indicates Ethernet
link status)

One additional dedicated link status
LED line

Debug communications Ethernet / UDP Broadcast transport

Ethernet /WinPCap transport

Comments:

1.The sock.allowedinterfaces property refers to the Ethernet interface as
"NET". Sock.targetinterface and sock.currentinterface properties rely on
the pl_sock_interfaces enum, whose members differ depending on the
platform.

2.CTS is permanently mapped to 0- PL_INT_NUM_0 (0- PL_IO_NUM_0_INT0).
RTS is permanently mapped to 2- PL_IO_NUM_2 .

3.Connect the GA1000 add-on module as follows (also see schematic diagram C in
Connecting GA1000):

CS 7- PL_IO_NUM_7

CLK 6- PL_IO_NUM_6

DI 5- PL_IO_NUM_5 (yes, DI and DO lines are on the same GPIO line)

DO

RST Choose any suitable GPIO or use NAND gates to generate reset

8.1.1.1Platform-specific Constants

The following constant lists are platform-specific:

Enum pl_redir - the list of constants that define buffer redirection (shorting) for
this platform.

Enum pl_io_num - the list of constants that define available I/O lines.

Enum pl_io_port_num - the list of constants that define available 8-bit I/O
ports.

Enum pl_int_num - the list of constants that define available interrupt lines.

Enum pl_sock_interfaces - the list of available network interfaces.

Enum pl_redir

Enum pl_redir contains the list of constants that define buffer redirection (shorting).
The following objects support buffers and buffer redirection:

Ser. object (see ser.redir method)

Sock. object (see sock.redir method)

Enum pl_redir for this platform includes the following constants:

0- PL_REDIR_NONE: Cancels redirection for the serial port or socket.

1- PL_REDIR_SER: Redirects RX data of the serial port or socket to the TX

200

204

474

506 478

150

142 141

141

201

141

141

141

201

140

141

142

142

142

378 414

421 493

141Platforms

©2000-2011 Tibbo Technology Inc.

buffer of the serial port.

6- PL_REDIR_SOCK0: Redirects RX data of the serial port or socket to the TX
buffer of socket 0. This constant can be used as a
"base" for all other sockets i.e. in expressions like
sock.redir= PL_REDIR_SOCK0+f.

7- PL_REDIR_SOCK1: Redirects RX data of the serial port or socket to the TX
buffer of socket 1.

8- PL_REDIR_SOCK2: Redirects RX data of the serial port or socket to the TX
buffer of socket 2.

9- PL_REDIR_SOCK3: Redirects RX data of the serial port or socket to the TX
buffer of socket 3.

10- PL_REDIR_SOCK4: Redirects RX data of the serial port or socket to the TX
buffer of socket 4.

11- PL_REDIR_SOCK5: Redirects RX data of the serial port or socket to the TX
buffer of socket 5.

12- PL_REDIR_SOCK6: Redirects RX data of the serial port or socket to the TX
buffer of socket 6.

13- PL_REDIR_SOCK7: Redirects RX data of the serial port or socket to the TX
buffer of socket 7.

14- PL_REDIR_SOCK8: Redirects RX data of the serial port or socket to the TX
buffer of socket 8.

15- PL_REDIR_SOCK9: Redirects RX data of the serial port or socket to the TX
buffer of socket 9.

16- PL_REDIR_SOCK10: Redirects RX data of the serial port or socket to the TX
buffer of socket 10.

17- PL_REDIR_SOCK11: Redirects RX data of the serial port or socket to the TX
buffer of socket 11.

18- PL_REDIR_SOCK12: Redirects RX data of the serial port or socket to the TX
buffer of socket 12.

19- PL_REDIR_SOCK13: Redirects RX data of the serial port or socket to the TX
buffer of socket 13.

20- PL_REDIR_SOCK14: Redirects RX data of the serial port or socket to the TX
buffer of socket 14.

21- PL_REDIR_SOCK15: Redirects RX data of the serial port or socket to the TX
buffer of socket 15.

Enum pl_io_num

Enum pl_io_num contains the list of constants that refer to available GPIO lines. Use
these constants when selecting the line with the io. object (see the io.num
property).

Note that GPIO lines are of bidirectional type and do not require explicit
configuration as outputs or inputs.

Enum pl_io_num includes the following constants:

0- PL_IO_NUM_0_INT0: General-purpose I/O line 0 (P0.0). This is also the
interrupt line 0.

1- PL_IO_NUM_1_INT1: General-purpose I/O line 1 (P0.1). This is also the
interrupt line 1.

294 301

194

142 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

2- PL_IO_NUM_2: General-purpose I/O line 2 (P0.2).

3- PL_IO_NUM_3: General-purpose I/O line 3 (P0.3).

4- PL_IO_NUM_4: General-purpose I/O line 4 (P0.4).

5- PL_IO_NUM_5: General-purpose I/O line 5 (P0.5).

6- PL_IO_NUM_6: General-purpose I/O line 6 (P0.6).

7- PL_IO_NUM_7: General-purpose I/O line 7 (P0.7).

8- PL_IO_NULL: This is a NULL line that does not physically exist.
The state of this line is always detected as LOW.
Setting this line has no effect.

Enum pl_io_port_num

Enum pl_io_port_num contains the list of available 8-bit GPIO ports. Use these
constants when selecting the port with the io. object (see the io.portnum
property).

Note that GPIO lines are of bidirectional type and do not require explicit
configuration as outputs or inputs.

Enum pl_io_port_num includes the following constants:

0- PL_IO_PORT_NUM_0: 8-bit port 0 (P0). Contains I/O lines 0-7.

Enum pl_int_num

Enum pl_int_num contains the list of constants that refer to available interrupt
lines. Interrupt lines are mapped to GPIO lines (this mapping can't be altered).

Enum pl_int_num includes the following constants:

0- PL_INT_NUM_0: Interrupt line 0 (mapped onto I/O line 0).

1- PL_INT_NUM_1: Interrupt line 1 (mapped onto I/O line 1).

2- PL_INT_NULL: This is a NULL interrupt line that does not physically
exist.

Enum pl_sock_interfaces

Enum pl_sock_interfaces contains the list of network interfaces supported by the
platform:

0- PL_SOCK_INTERFACE_NULL: Null (empty) interface.

1- PL_SOCK_INTERFACE_NET (default): Ethernet interface .

2- PL_SOCK_INTERFACE_WLN: Wi-Fi interface .

3- PL_SOCK_INTERFACE_PPP: PPP interface .

4- PL_SOCK_INTERFACE_PPPOE: PPPoE interface .

294 302

194

141

358

536

366

369

143Platforms

©2000-2011 Tibbo Technology Inc.

8.1.1.2Connecting External Flash IC

The EM500W platform includes fd. object (with the exception of the
fd.copyfirmware method). For this to work, an external flash IC must be
connected to the EM500.

As shown on the schematic diagram below, this flash IC is ATMEL AT45DB041. Since
the EM500 has a dedicated flash memory configuration , the flash IC will be used
exclusively by the fd. object and provide 1MB of storage.

The 5.1K pull-up resistor is needed to "sharpen" SPI clock signal. EM500's
bidirectional GPIOs allow interconnecting SI and SO lines (this saves one GPIO
line!).

For the fd. object to work, it must be enabled first. Do this through Project
Settings -> Customize dialog.

DO NOT enable fd. object unless you actually have the flash IC attached.
When the fd. object is enabled, the EM500 will attempt to detect the flash IC
presence. That is, the EM500 will try to access the flash through the SPI
interface. This means that there will be signals on GPIO4 (CS), GPIO3 (CLK),
and GPIO1 (DI/DO). Flash IC detection may interfere with the operation of
your device (if you have something else connected to these GPIOs).

EM1000 and EM1000W Platforms

The difference between the EM1000 and EM1000W platforms is that the EM1000W
additionally includes the Wi-Fi (wln.) object (requires an external GA1000 add-
on module). All other features of these two platforms are exactly the same.

Memory space

RAM 22,528* bytes for application variables and data

Flash 983,040 bytes for application and data storage (shared flash
memory)**

EEPRO
M

2040 bytes for application data

*RAM available in the debug mode is smaller by 257 bytes. All memory is available

236

269

200

194

236

38

536

200

144 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

in the release mode.

**Some earlier devices had only 458,752 bytes of flash memory available

Supported Objects, variable types, and functions

Sock — socket communications (up to 16 UDP, TCP, and HTTP sessions);

Net — controls the Ethernet interface;

Wln — handles the Wi-Fi interface (only available on the EM1000W platform,
requires GA1000 add-on module);

Ser — in charge of serial ports (UART, Wiegand, and clock/data modes);

Ssi — implements up to four serial synchronous interface (SSI) channels,
supports SPI, I2C, clock/data, etc.;

Io — handles I/O lines, ports, and interrupts;

Lcd — controls graphical display panels (several types supported);

Kp — scans keypads of matrix and "binary" types;

Rtc — keeps track of date and time;

Fd — manages flash memory file system and direct sector access;

Stor — provides access to the EEPROM;

Romfile — facilitates access to resource files (fixed data);

Pppoe — provides access to the Internet over an ADSL modem;

Ppp — provides access to the Internet over a serial modem (GPRS, POTS,
etc.);

Pat — "plays" patterns on up to five LED pairs;

Beep — generates buzzer patterns;

Button — monitors the MD line (setup button);

Sys — in charge of general device functionality.

These platforms support the standard set of variable types and functions
(a.k.a. "syscalls").

Platform-specific constants

You can find them here .

Miscellaneous information

Available network interfaces EM1000: Ethernet (net.)

EM1000W: Ethernet (net.), Wi-Fi

(wln.)(1)

GPIO type Unidirectional

RTS/CTS remapping Supported(2)

GA1000 lines remapping Supported(3)

Serial port FIFOs 16 byte for TX, 16 bytes for RX

421

358

536

201

378

512

294

317

304

375

236

522

370

369

366

363

232

234 201

526

192 192

146

358

536

194

195

201

196

145Platforms

©2000-2011 Tibbo Technology Inc.

Clock frequency (PLL) control PLL on: 88.4736Mhz, PLL off:

11.0592Mhz(4)

Special configuration section of
the EEPROM

8 bytes for MAC storage

Device serial number 128 bytes: 64 OTP bytes + 64 fixed

bytes(5)

Flash memory configuration Shared

LEDs Green (SG) and red (SR) Status LED
lines

Green (EG) and yellow (EY) Ethernet
LED lines

Debug communications Ethernet / UDP Broadcast transport

Ethernet /WinPCap transport

Comments:

1.The sock.allowedinterfaces property refers to the Ethernet interface as "NET",
Wi-Fi -- as "WLN". Sock.targetinterface and sock.currentinterface
properties rely on the pl_sock_interfaces enum, whose members differ
depending on the platform.

2.Default CTS/RTS mapping is different for each serial port:

RTS CTS

Port 1 0- PL_IO_NUM_0 0- PL_INT_NUM_0 (16- PL_IO_NUM_16_INT0
)

Port 2 1- PL_IO_NUM_1 1- PL_INT_NUM_1 (17- PL_IO_NUM_17_INT1
)

Port 3 2- PL_IO_NUM_2 2- PL_INT_NUM_2 (18- PL_IO_NUM_18_INT2
)

Port 4 3- PL_IO_NUM_3 3- PL_INT_NUM_3 (19- PL_IO_NUM_19_INT3
)

3.Mapping of GA1000 control lines is fully flexible on the EM1000W. However, if
the GA1000 module is installed on top of the EM1000 (so called EM1000G module
combination), then the following mapping must be applied:

CS 49- PL_IO_NUM_49

CLK 53- PL_IO_NUM_53

DI 52- PL_IO_NUM_52

DO 50- PL_IO_NUM_50

RST 51- PL_IO_NUM_51

4.Default PLL state after the external reset depends on the PM pin of the EM1000
(W).

5.Older EM1000 and EM1000W devices did not contain the serial number. To find
out if your EM1000(W) has the serial number onboard, try to read this serial
number with the sys.serialnum R/O property. If this property returns an empty
string, then the serial number is not present. Sys.serialnum returns all 128 bytes
of the serial number. First 64 bytes are one-time-programmable (OTP) with the
sys.setserialnum method.

196

197

199

200

200

204

474

506 478

150

147

147

150

147

147

150

147

147

150

147

147

150

201

147

147

147

147

147

534

535

146 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

8.1.2.1Platform-specific Constants

The following constant lists are platform-specific:

Enum pl_redir - the list of constants that define buffer redirection (shorting) for
this platform.

Enum pl_io_num - the list of constants that define available I/O lines.

Enum pl_io_port_num - the list of constants that define available 8-bit I/O
ports.

Enum pl_int_num - the list of constants that define available interrupt lines.

Enum pl_sock_interfaces - the list of available network interfaces.

Enum pl_redir

Enum pl_redir contains the list of constants that define buffer redirection (shorting).
The following objects support buffers and buffer redirection:

Ser. object (see ser.redir method)

Sock. object (see sock.redir method)

Enum pl_redir for this platform includes the following constants:

0- PL_REDIR_NONE: Cancels redirection for the serial port or socket.

1- PL_REDIR_SER: Redirects RX data of the serial port or socket to the TX
buffer of the serial port 0. This constant can be used as
a "base" for all other serial ports, i.e. in expressions like
ser.redir= PL_REDIR_SER+f.

1- PL_REDIR_SER0: Redirects RX data of the serial port or socket to the TX
buffer of the serial port 0.

2- PL_REDIR_SER1: Redirects RX data of the serial port or socket to the TX
buffer of the serial port 1.

3- PL_REDIR_SER2: Redirects RX data of the serial port or socket to the TX
buffer of the serial port 2.

4- PL_REDIR_SER3: Redirects RX data of the serial port or socket to the TX
buffer of the serial port 3.

6- PL_REDIR_SOCK0: Redirects RX data of the serial port or socket to the TX
buffer of socket 0. This constant can be used as a
"base" for all other sockets i.e. in expressions like
sock.redir= PL_REDIR_SOCK0+f.

7- PL_REDIR_SOCK1: Redirects RX data of the serial port or socket to the TX
buffer of socket 1.

8- PL_REDIR_SOCK2: Redirects RX data of the serial port or socket to the TX
buffer of socket 2.

9- PL_REDIR_SOCK3: Redirects RX data of the serial port or socket to the TX
buffer of socket 3.

10- PL_REDIR_SOCK4: Redirects RX data of the serial port or socket to the TX
buffer of socket 4.

11- PL_REDIR_SOCK5: Redirects RX data of the serial port or socket to the TX
buffer of socket 5.

12- PL_REDIR_SOCK6: Redirects RX data of the serial port or socket to the TX
buffer of socket 6.

13- PL_REDIR_SOCK7: Redirects RX data of the serial port or socket to the TX

146

147

149

150

150

378 414

421 493

147Platforms

©2000-2011 Tibbo Technology Inc.

buffer of socket 7.

14- PL_REDIR_SOCK8: Redirects RX data of the serial port or socket to the TX
buffer of socket 8.

15- PL_REDIR_SOCK9: Redirects RX data of the serial port or socket to the TX
buffer of socket 9.

16- PL_REDIR_SOCK10: Redirects RX data of the serial port or socket to the TX
buffer of socket 10.

17- PL_REDIR_SOCK11: Redirects RX data of the serial port or socket to the TX
buffer of socket 11.

18- PL_REDIR_SOCK12: Redirects RX data of the serial port or socket to the TX
buffer of socket 12.

19- PL_REDIR_SOCK13: Redirects RX data of the serial port or socket to the TX
buffer of socket 13.

20- PL_REDIR_SOCK14: Redirects RX data of the serial port or socket to the TX
buffer of socket 14.

21- PL_REDIR_SOCK15: Redirects RX data of the serial port or socket to the TX
buffer of socket 15.

Enum pl_io_num

Enum pl_io_num contains the list of constants that refer to available GPIO lines. Use
these constants when selecting the line with the io. object (see the io.num
property).

Note that GPIO lines are of unidirectional type and require explicit configuration
as outputs or inputs. Some lines are configured as inputs or outputs automatically
-- see the notes at the bottom of the page.

Enum pl_io_num includes the following constants:

0- PL_IO_NUM_0: General-purpose I/O line 0 (P0.0).

1- PL_IO_NUM_1: General-purpose I/O line 1 (P0.1).

2- PL_IO_NUM_2: General-purpose I/O line 2 (P0.2).

3- PL_IO_NUM_3: General-purpose I/O line 3 (P0.3).

4- PL_IO_NUM_4: General-purpose I/O line 4 (P0.4).

5- PL_IO_NUM_5: General-purpose I/O line 5 (P0.5).

6- PL_IO_NUM_6: General-purpose I/O line 6 (P0.6).

7- PL_IO_NUM_7: General-purpose I/O line 7 (P0.7).

8- PL_IO_NUM_8_RX0(1): General-purpose I/O line 8 (P1.0). This line is also
the RX/W1in/din input of the serial port 0.

9- PL_IO_NUM_9_TX0(2): General-purpose I/O line 9 (P1.1). This line is also
the TX/W1out/dout output of the serial port 0.

10- PL_IO_NUM_10_RX1(1): General-purpose I/O line 10 (P1.2). This line is also
the RX/W0&1in/din input of the serial port 1.

11- PL_IO_NUM_11_TX1(2): General-purpose I/O line 11 (P1.3). This line is also
the TX/W1out/dout output of the serial port 1.

12- PL_IO_NUM_12_RX2(1): General-purpose I/O line 12 (P1.4). This line is also
the RX/W0&1in/din input of the serial port 2.

13- PL_IO_NUM_13_TX2(2): General-purpose I/O line 13 (P1.5). This line is also

294 301

194

379

379

148 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

the TX/W1out/dout output of the serial port 2.

14- PL_IO_NUM_14_RX3(1): General-purpose I/O line 14 (P1.6). This line is also
the RX/W0&1in/din input of the serial port 3.

15- PL_IO_NUM_15_TX3(2): General-purpose I/O line 15 (P1.7). This line is also
the TX/W1out/dout output of the serial port 3.

16- PL_IO_NUM_16_INT0: General-purpose I/O line 16 (P2.0). This is also the
interrupt line 0.

17- PL_IO_NUM_17_INT1: General-purpose I/O line 17 (P2.1). This is also the
interrupt line 1.

18- PL_IO_NUM_18_INT2: General-purpose I/O line 18 (P2.2). This is also the
interrupt line 2.

19- PL_IO_NUM_19_INT3: General-purpose I/O line 19 (P2.3). This is also the
interrupt line 3.

20- PL_IO_NUM_20_INT4: General-purpose I/O line 20 (P2.4). This is also the
interrupt line 4.

21- PL_IO_NUM_21_INT5: General-purpose I/O line 21 (P2.5). This is also the
interrupt line 5.

22- PL_IO_NUM_22_INT6: General-purpose I/O line 22 (P2.6). This is also the
interrupt line 6.

23- PL_IO_NUM_23_INT7: General-purpose I/O line 23 (P2.7). This is also the
interrupt line 7.

24- PL_IO_NUM_24: General-purpose I/O line 24 (P3.0).

25- PL_IO_NUM_25: General-purpose I/O line 25 (P3.1).

26- PL_IO_NUM_26: General-purpose I/O line 26 (P3.2).

27- PL_IO_NUM_27: General-purpose I/O line 27 (P3.3).

28- PL_IO_NUM_28: General-purpose I/O line 28 (P3.4).

29- PL_IO_NUM_29: General-purpose I/O line 29 (P3.5).

30- PL_IO_NUM_30: General-purpose I/O line 30 (P3.6).

31- PL_IO_NUM_31: General-purpose I/O line 31 (P3.7).

32- PL_IO_NUM_32: General-purpose I/O line 32 (P4.0).

33- PL_IO_NUM_33: General-purpose I/O line 33 (P4.1).

34- PL_IO_NUM_34: General-purpose I/O line 34 (P4.2).

35- PL_IO_NUM_35: General-purpose I/O line 35 (P4.3).

36- PL_IO_NUM_36: General-purpose I/O line 36 (P4.4).

37- PL_IO_NUM_37: General-purpose I/O line 37 (P4.5).

38- PL_IO_NUM_38: General-purpose I/O line 38 (P4.6).

39- PL_IO_NUM_39: General-purpose I/O line 39 (P4.7).

40- PL_IO_NUM_40: General-purpose I/O line 40 (does not belong to any
8-bit port).

41- PL_IO_NUM_41: General-purpose I/O line 41 (does not belong to any
8-bit port).

42- PL_IO_NUM_42: General-purpose I/O line 42 (does not belong to any
8-bit port).

43- PL_IO_NUM_43: General-purpose I/O line 43 (does not belong to any
8-bit port).

149Platforms

©2000-2011 Tibbo Technology Inc.

44- PL_IO_NUM_44: General-purpose I/O line 44 (does not belong to any
8-bit port).

45- PL_IO_NUM_45_CO(3): General-purpose I/O line 45 (does not belong to any
8-bit port). This line is also used by the beep
object to generate square wave output that is
primarily intended for driving beeper (buzzer).

46- PL_IO_NUM_46: General-purpose I/O line 46 (does not belong to any
8-bit port).

47- PL_IO_NUM_47: General-purpose I/O line 47 (does not belong to any
8-bit port).

48- PL_IO_NUM_48: General-purpose I/O line 48 (does not belong to any
8-bit port).

49- PL_IO_NUM_49: General-purpose I/O line 49 (does not belong to any
8-bit port).

50- PL_IO_NUM_50: General-purpose I/O line 50 (does not belong to any
8-bit port).

51- PL_IO_NUM_51: General-purpose I/O line 51 (does not belong to any
8-bit port).

52- PL_IO_NUM_52: General-purpose I/O line 52 (does not belong to any
8-bit port).

53- PL_IO_NUM_53: General-purpose I/O line 53 (does not belong to any
8-bit port).

54- PL_IO_NULL: This is a NULL line that does not physically exist.
The state of this line is always detected as LOW.
Setting this line has no effect.

Notes:

1. When a serial port is in the UART mode (ser.mode = 0-
PL_SER_MODE_UART) this line is automatically configured to be an input when
this serial port is enabled (ser.enabled = 1- YES) and returns to the previous
input/output and high/low state when this serial port is closed (ser.enabled= 0-
NO). When a serial port is in the Wiegand or clock/data mode (ser.mode=
1- PL_SER_MODE_WIEGAND or ser.mode= 2- PL_SER_MODE_CLOCKDATA), the
line has to be configured as input by the application- this will not happen
automatically.

2. When a serial port is in the UART mode (ser.mode= 0- PL_SER_MODE_UART) this
line is automatically configured to be an output when the serial port is enabled
(ser.enabled= 1- YES) and returns to the previous input/output and high/low
state when the serial port is closed (ser.enabled= 0- NO). When a serial port is in
the Wiegand or clock/data mode (ser.mode= 1- PL_SER_MODE_WIEGAND or
ser.mode= 2- PL_SER_MODE_CLOCKDATA), the line has to be configured as
output by the application- this will not happen automatically.

3. When the beeper pattern stars playing, this line is configured as output
automatically. When the beeper pattern stops playing, the output returns to the
input/output and high/low state that it had before the pattern started playing.

Enum pl_io_port_num

Enum pl_io_port_num contains the list of available 8-bit GPIO ports. Use these
constants when selecting the port with the io. object (see the io.portnum
property).

232

380 409

405

383 386

294 302

150 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Note that GPIO lines are of unidirectional type and require explicit configuration
as outputs or inputs. Some lines are configured as inputs or outputs automatically
-- see Enum pl_io_num for details.

Enum pl_io_port_num includes the following constants:

0- PL_IO_PORT_NUM_0: 8-bit port 0 (P0). Contains I/O lines 0-7.

1- PL_IO_PORT_NUM_1: 8-bit port 1 (P1). Contains I/O lines 8-15.

2- PL_IO_PORT_NUM_2: 8-bit port 2 (P2). Contains I/O lines 16-23.

3- PL_IO_PORT_NUM_3: 8-bit port 3 (P3). Contains I/O lines 24-31.

4- PL_IO_PORT_NUM_4: 8-bit port 4 (P4). Contains I/O lines 32-39.

Enum pl_int_num

Enum pl_int_num contains the list of constants that refer to available interrupt
lines. Interrupt lines are mapped to GPIO lines (this mapping can't be altered).
For example, interrupt line 0 corresponds to GPIO line 16, interrupt line 1- to GPIO
line 17, and so on. Keep in mind that for an interrupt line to work you need to
configure the corresponding GPIO line as input.

Enum pl_int_num includes the following constants:

0- PL_INT_NUM_0: Interrupt line 0 (mapped onto I/O line 16).

1- PL_INT_NUM_1: Interrupt line 1 (mapped onto I/O line 17).

2- PL_INT_NUM_2: Interrupt line 2 (mapped onto I/O line 18).

3- PL_INT_NUM_3: Interrupt line 3 (mapped onto I/O line 19).

4- PL_INT_NUM_4: Interrupt line 4 (mapped onto I/O line 20).

5- PL_INT_NUM_5: Interrupt line 5 (mapped onto I/O line 21).

6- PL_INT_NUM_6: Interrupt line 6 (mapped onto I/O line 22).

7- PL_INT_NUM_7: Interrupt line 7 (mapped onto I/O line 23).

8- PL_INT_NULL: This is a NULL interrupt line that does not physically
exist.

Enum pl_sock_interfaces

Enum pl_sock_interfaces contains the list of available network interfaces. The
EM1000 and EM1000W platforms differ in that the EM1000W has the W-Fi interface
(requires an external GA1000 add-on module), while the EM1000 does not, and the
pl_sock_interfaces reflects this.

EM1000 platform

0- PL_SOCK_INTERFACE_NULL: Null (empty) interface.

1- PL_SOCK_INTERFACE_NET (default): Ethernet interface .

3- PL_SOCK_INTERFACE_PPP: PPP interface .

194

147

147

194

358

366

151Platforms

©2000-2011 Tibbo Technology Inc.

4- PL_SOCK_INTERFACE_PPPOE: PPPoE interface .

EM1000W platform

0- PL_SOCK_INTERFACE_NULL: Null (empty) interface.

1- PL_SOCK_INTERFACE_NET (default): Ethernet interface .

2- PL_SOCK_INTERFACE_WLN: Wi-Fi interface .

3- PL_SOCK_INTERFACE_PPP: PPP interface .

4- PL_SOCK_INTERFACE_PPPOE: PPPoE interface .

EM1202 and EM1202W Platforms

The difference between the EM1202 and EM202W platforms is that the EM1202W
additionally includes the Wi-Fi (wln.) object (requires an external GA1000 add-
on module). All other features of these two platforms are exactly the same.

Memory space

RAM 22,528* bytes for application variables and data

Flash 983,040 bytes for application and data storage (shared flash
memory)**

EEPRO
M

2040 bytes for application data

* RAM available in the debug mode is smaller by 257 bytes. All memory is available
in the release mode.

** Some earlier devices had only 458,752 bytes of flash memory available

Supported Objects, variable types, and functions

Sock — socket communications (up to 16 UDP, TCP, and HTTP sessions);

Net — controls the Ethernet port;

Wln — handles the Wi-Fi interface (only available on the EM1202W platform,
requires GA1000 add-on module);

Ser — in charge of serial ports (UART, Wiegand, and clock/data modes);

Ssi — implements up to four serial synchronous interface (SSI) channels,
supports SPI, I2C, clock/data, etc.;

Io — handles I/O lines, ports, and interrupts;

Lcd — controls graphical display panels (several types supported);

Kp — scans keypads of matrix and "binary" types;

Fd — manages flash memory file system and direct sector access;

Stor — provides access to the EEPROM;

Romfile — facilitates access to resource files (fixed data);

Pppoe — provides access to the Internet over an ADSL modem;

369

358

536

366

369

536

200

421

358

536

201

378

512

294

317

304

236

522

370

369

152 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Ppp — provides access to the Internet over a serial modem (GPRS, POTS,
etc.);

Pat — "plays" patterns on up to five LED pairs;

Beep — generates buzzer patterns;

Button — monitors the MD line (setup button);

Sys — in charge of general device functionality.

These platforms support the standard set of variable types and functions
(a.k.a. "syscalls").

Platform-specific constants

You can find them here .

Miscellaneous information

Available network interfaces EM1202: Ethernet (net.)

EM1202W: Ethernet (net.), Wi-Fi

(wln.)(1)

GPIO type Unidirectional

RTS/CTS remapping Supported(2)

GA1000 lines remapping Supported

Serial port FIFOs 16 byte for TX, 16 bytes for RX

Clock frequency (PLL) control PLL on (def): 88.4736Mhz, PLL off:

11.0592Mhz(3)

Special configuration section of
the EEPROM

8 bytes for MAC storage

Device serial number 128 bytes: 64 OTP bytes + 64 fixed

bytes(4)

Flash memory configuration Shared

LEDs Green (SG) and red (SR) Status LED
lines

Green (EG) and yellow (EY) Ethernet
LED lines

Debug communications Ethernet / UDP Broadcast transport

Ethernet /WinPCap transport

Comments:

1.The sock.allowedinterfaces property refers to the Ethernet interface as "NET",
Wi-Fi -- as "WLN". Sock.targetinterface and sock.currentinterface
properties rely on the pl_sock_interfaces enum, whose members differ
depending on the platform.

2.Default CTS/RTS mapping is different for each serial port:

RTS CTS

366

363

232

234 201

526

192 192

153

358

536

194

195

201

196

196

197

199

200

200

204

474

506 478

150

153Platforms

©2000-2011 Tibbo Technology Inc.

Port 1 0- PL_IO_NUM_0 0- PL_INT_NUM_0 (16- PL_IO_NUM_16_INT0
)

Port 2 1- PL_IO_NUM_1 1- PL_INT_NUM_1 (17- PL_IO_NUM_17_INT1
)

Port 3 2- PL_IO_NUM_2 2- PL_INT_NUM_2 (18- PL_IO_NUM_18_INT2
)

Port 4 3- PL_IO_NUM_3 3- PL_INT_NUM_3 (19- PL_IO_NUM_19_INT3
)

3.Default PLL state after the external reset is ON.

4.Older EM1202 and EM1202W devices did not contain the serial number. To find
out if your EM1202(W) has the serial number onboard, try to read this serial
number with the sys.serialnum R/O property. If this property returns an empty
string, then the serial number is not present. Sys.serialnum returns all 128 bytes
of the serial number. First 64 bytes are one-time-programmable (OTP) with the
sys.setserialnum method.

8.1.3.1Platform-specific Constants

The following constant lists are platform-specific:

Enum pl_redir - the list of constants that define buffer redirection (shorting) for
this platform.

Enum pl_io_num - the list of constants that define available I/O lines.

Enum pl_io_port_num - the list of constants that define available 8-bit I/O
ports.

Enum pl_int_num - the list of constants that define available interrupt lines.

Enum pl_sock_interfaces - the list of available network interfaces.

Enum pl_redir

Enum pl_redir contains the list of constants that define buffer redirection (shorting)
for these platforms. The following objects support buffers and buffer redirection:

Ser. object (see ser.redir method)

Sock. object (see sock.redir method)

Enum pl_redir for this platform includes the following constants:

0- PL_REDIR_NONE: Cancels redirection for the serial port or socket.

1- PL_REDIR_SER: Redirects RX data of the serial port or socket to the TX
buffer of the serial port 0. This constant can be used as
a "base" for all other serial ports, i.e. in expressions like
ser.redir= PL_REDIR_SER+f.

1- PL_REDIR_SER0: Redirects RX data of the serial port or socket to the TX
buffer of the serial port 0.

2- PL_REDIR_SER1: Redirects RX data of the serial port or socket to the TX
buffer of the serial port 1.

3- PL_REDIR_SER2: Redirects RX data of the serial port or socket to the TX
buffer of the serial port 2.

4- PL_REDIR_SER3: Redirects RX data of the serial port or socket to the TX
buffer of the serial port 3.

154

157

154

154

157

154

154

157

154

154

157

154

534

535

146

147

156

150

157

378 414

421 493

154 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

6- PL_REDIR_SOCK0: Redirects RX data of the serial port or socket to the TX
buffer of socket 0. This constant can be used as a
"base" for all other sockets i.e. in expressions like
sock.redir= PL_REDIR_SOCK0+f.

7- PL_REDIR_SOCK1: Redirects RX data of the serial port or socket to the TX
buffer of socket 1.

8- PL_REDIR_SOCK2: Redirects RX data of the serial port or socket to the TX
buffer of socket 2.

9- PL_REDIR_SOCK3: Redirects RX data of the serial port or socket to the TX
buffer of socket 3.

10- PL_REDIR_SOCK4: Redirects RX data of the serial port or socket to the TX
buffer of socket 4.

11- PL_REDIR_SOCK5: Redirects RX data of the serial port or socket to the TX
buffer of socket 5.

12- PL_REDIR_SOCK6: Redirects RX data of the serial port or socket to the TX
buffer of socket 6.

13- PL_REDIR_SOCK7: Redirects RX data of the serial port or socket to the TX
buffer of socket 7.

14- PL_REDIR_SOCK8: Redirects RX data of the serial port or socket to the TX
buffer of socket 8.

15- PL_REDIR_SOCK9: Redirects RX data of the serial port or socket to the TX
buffer of socket 9.

16- PL_REDIR_SOCK10: Redirects RX data of the serial port or socket to the TX
buffer of socket 10.

17- PL_REDIR_SOCK11: Redirects RX data of the serial port or socket to the TX
buffer of socket 11.

18- PL_REDIR_SOCK12: Redirects RX data of the serial port or socket to the TX
buffer of socket 12.

19- PL_REDIR_SOCK13: Redirects RX data of the serial port or socket to the TX
buffer of socket 13.

20- PL_REDIR_SOCK14: Redirects RX data of the serial port or socket to the TX
buffer of socket 14.

21- PL_REDIR_SOCK15: Redirects RX data of the serial port or socket to the TX
buffer of socket 15.

Enum pl_io_num

Enum pl_io_num contains the list of constants that refer to available GPIO lines. Use
these constants when selecting the line with the io. object (see the io.num
property).

Note that GPIO lines are of unidirectional type and require explicit configuration
as outputs or inputs. Some lines are configured as inputs or outputs automatically
-- see the notes at the bottom of the page.

Enum pl_io_num includes the following constants:

0- PL_IO_NUM_0: Selects general-purpose I/O line 0 (P0.0).

1- PL_IO_NUM_1: Selects general-purpose I/O line 1 (P0.1).

2- PL_IO_NUM_2: Selects general-purpose I/O line 2 (P0.2).

3- PL_IO_NUM_3: Selects general-purpose I/O line 3 (P0.3).

294 301

194

155Platforms

©2000-2011 Tibbo Technology Inc.

4- PL_IO_NUM_4: Selects general-purpose I/O line 4 (P0.4).

5- PL_IO_NUM_5: Selects general-purpose I/O line 5 (P0.5).

6- PL_IO_NUM_6: Selects general-purpose I/O line 6 (P0.6).

7- PL_IO_NUM_7: Selects general-purpose I/O line 7 (P0.7).

8- PL_IO_NUM_8_RX0(1): Selects general-purpose I/O line 8 (P1.0). This line is
also the RX/W1in/din input of the serial port 0.

9- PL_IO_NUM_9_TX0(2): Selects general-purpose I/O line 9 (P1.1). This line is
also the TX/W1out/dout output of the serial port
0.

10- PL_IO_NUM_10_RX1(1): Selects general-purpose I/O line 10 (P1.2). This line
is also the RX/W0&1in/din input of the serial port 1.

11- PL_IO_NUM_11_TX1(2): Selects general-purpose I/O line 11 (P1.3). This line
is also the TX/W1out/dout output of the serial port
1.

12- PL_IO_NUM_12_RX2(1): Selects general-purpose I/O line 12 (P1.4). This line
is also the RX/W0&1in/din input of the serial port 2.

13- PL_IO_NUM_13_TX2(2): Selects general-purpose I/O line 13 (P1.5). This line
is also the TX/W1out/dout output of the serial port
2.

14- PL_IO_NUM_14_RX3(1): Selects general-purpose I/O line 14 (P1.6). This line
is also the RX/W0&1in/din input of the serial port 3.

15- PL_IO_NUM_15_TX3(2): Selects general-purpose I/O line 15 (P1.7). This line
is also the TX/W1out/dout output of the serial port
3.

16- PL_IO_NUM_16_INT0: Selects general-purpose I/O line 16 (P2.0). This is
also the interrupt line 0.

17- PL_IO_NUM_17_INT1: Selects general-purpose I/O line 17 (P2.1). This is
also the interrupt line 1.

18- PL_IO_NUM_18_INT2: Selects general-purpose I/O line 18 (P2.2). This is
also the interrupt line 2.

19- PL_IO_NUM_19_INT3: Selects general-purpose I/O line 19 (P2.3). This is
also the interrupt line 3.

20- PL_IO_NUM_20_INT4: Selects general-purpose I/O line 20 (P2.4). This is
also the interrupt line 4.

21- PL_IO_NUM_21_INT5: Selects general-purpose I/O line 21 (P2.5). This is
also the interrupt line 5.

22- PL_IO_NUM_22_INT6: Selects general-purpose I/O line 22 (P2.6). This is
also the interrupt line 6.

23- PL_IO_NUM_23_INT7: Selects general-purpose I/O line 23 (P2.7). This is
also the interrupt line 7.

24- PL_IO_NUM_24: Selects general-purpose I/O line 24 (does not belong
to any 8-bit port).

25- PL_IO_NUM_25: Selects general-purpose I/O line 25 (does not belong
to any 8-bit port).

26- PL_IO_NUM_26: Selects general-purpose I/O line 26 (does not belong
to any 8-bit port).

27- PL_IO_NUM_27: Selects general-purpose I/O line 27 (does not belong
to any 8-bit port).

379

379

156 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

28- PL_IO_NUM_28: Selects general-purpose I/O line 28 (does not belong
to any 8-bit port).

29- PL_IO_NUM_29_CO(3): Selects general-purpose I/O line 29 (does not belong
to any 8-bit port). This line is also used by the beep

 object to generate square wave output that is
primarily intended for driving beeper (buzzer).

30- PL_IO_NUM_30: Selects general-purpose I/O line 30 (does not belong
to any 8-bit port).

31- PL_IO_NUM_31: Selects general-purpose I/O line 31 (does not belong
to any 8-bit port).

32- PL_IO_NULL: This is a NULL line that does not physically exist.
The state of this line is always detected as LOW.
Setting this line has no effect.

Notes:

1. When a serial port is in the UART mode (ser.mode = 0-
PL_SER_MODE_UART) this line is automatically configured to be an input when
this serial port is enabled (ser.enabled = 1- YES) and returns to the previous
input/output and high/low state when this serial port is closed (ser.enabled= 0-
NO). When a serial port is in the Wiegand or clock/data mode (ser.mode=
1- PL_SER_MODE_WIEGAND or ser.mode= 2- PL_SER_MODE_CLOCKDATA), the
line has to be configured as input by the application- this will not happen
automatically.

2. When a serial port is in the UART mode (ser.mode= 0- PL_SER_MODE_UART) this
line is automatically configured to be an output when the serial port is enabled
(ser.enabled= 1- YES) and returns to the previous input/output and high/low
state when the serial port is closed (ser.enabled= 0- NO). When a serial port is in
the Wiegand or clock/data mode (ser.mode= 1- PL_SER_MODE_WIEGAND or
ser.mode= 2- PL_SER_MODE_CLOCKDATA), the line has to be configured as
output by the application- this will not happen automatically.

3. When the beeper pattern stars playing, this line is configured as output
automatically. When the beeper pattern stops playing, the output returns to the
input/output and high/low state that it had before the pattern started playing.

Enum pl_io_port_num

Enum pl_io_port_num contains the list of available 8-bit GPIO ports. Use these
constants when selecting the port with the io. object (see the io.portnum
property).

Note that GPIO lines are of unidirectional type and require explicit configuration
as outputs or inputs. Some lines are configured as inputs or outputs automatically
-- see Enum pl_io_num for details.

Enum pl_io_port_num includes the following constants:

0- PL_IO_PORT_NUM_0: 8-bit port 0 (P0). Contains I/O lines 0-7.

1- PL_IO_PORT_NUM_1: 8-bit port 1 (P1). Contains I/O lines 8-15.

2- PL_IO_PORT_NUM_2: 8-bit port 2 (P2). Contains I/O lines 16-23.

232

380 409

405

383 386

294 302

194

154

157Platforms

©2000-2011 Tibbo Technology Inc.

Enum pl_int_num

Enum pl_int_num contains the list of constants that refer to available interrupt
lines. Interrupt lines are mapped to GPIO lines (this mapping can't be altered).
For example, interrupt line 0 corresponds to GPIO line 16, interrupt line 1- to GPIO
line 17, and so on. Keep in mind that for an interrupt line to work you need to
configure the corresponding GPIO line as input.

Enum pl_int_num for this platform includes the following constants:

0- PL_INT_NUM_0: Interrupt line 0 (mapped onto I/O line 16).

1- PL_INT_NUM_1: Interrupt line 1 (mapped onto I/O line 17).

2- PL_INT_NUM_2: Interrupt line 2 (mapped onto I/O line 18).

3- PL_INT_NUM_3: Interrupt line 3 (mapped onto I/O line 19).

4- PL_INT_NUM_4: Interrupt line 4 (mapped onto I/O line 20).

5- PL_INT_NUM_5: Interrupt line 5 (mapped onto I/O line 21).

6- PL_INT_NUM_6: Interrupt line 6 (mapped onto I/O line 22).

7- PL_INT_NUM_7: Interrupt line 7 (mapped onto I/O line 23).

8- PL_INT_NULL: This is a NULL interrupt line that does not physically
exist.

Enum pl_sock_interfaces

Enum pl_sock_interfaces contains the list of available network interfaces. The
EM1202 and EM1202W platforms differ in that the EM1202W has the W-Fi interface
(requires an external GA1000 add-on module), while the EM1202 does not, and the
pl_sock_interfaces reflects this.

EM1202 platform

0- PL_SOCK_INTERFACE_NULL: Null (empty) interface.

1- PL_SOCK_INTERFACE_NET (default): Ethernet interface .

3- PL_SOCK_INTERFACE_PPP: PPP interface .

4- PL_SOCK_INTERFACE_PPPOE: PPPoE interface .

EM1202W platform

0- PL_SOCK_INTERFACE_NULL: Null (empty) interface.

1- PL_SOCK_INTERFACE_NET (default): Ethernet interface .

2- PL_SOCK_INTERFACE_WLN: Wi-Fi interface .

3- PL_SOCK_INTERFACE_PPP: PPP interface .

4- PL_SOCK_INTERFACE_PPPOE: PPPoE interface .

154

194

358

366

369

358

536

366

369

158 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

EM1206 and EM1206W Platforms

The difference between the EM1206 and EM1206W platforms is that the EM1206W
additionally includes the Wi-Fi (wln.) object (requires an external GA1000 add-
on module). All other features of these two platforms are exactly the same.

Memory space

RAM 22,528* bytes for application variables and data

Flash 983,040 bytes for application and data storage (shared flash
memory)**

EEPRO
M

2040 bytes for application data

* RAM available in the debug mode is smaller by 257 bytes. All memory is available
in the release mode.

**Some earlier devices had only 458,752 bytes of flash memory available

Supported Objects, variable types, and functions

Sock — socket communications (up to 16 UDP, TCP, and HTTP sessions);

Net — controls the Ethernet port;

Wln — handles the Wi-Fi interface (only available on the EM1206W platform,
requires GA1000 add-on module);

Ser — in charge of serial ports (UART, Wiegand, and clock/data modes);

Ssi — implements up to four serial synchronous interface (SSI) channels,
supports SPI, I2C, clock/data, etc.;

Io — handles I/O lines, ports, and interrupts;

Kp — scans keypads of matrix and "binary" types;

Rtc — keeps track of date and time;

Fd — manages flash memory file system and direct sector access;

Stor — provides access to the EEPROM;

Romfile — facilitates access to resource files (fixed data);

Pppoe — provides access to the Internet over an ADSL modem;

Ppp — provides access to the Internet over a serial modem (GPRS, POTS,
etc.);

Pat — "plays" patterns on up to five LED pairs;

Beep — generates buzzer patterns;

Button — monitors the MD line (setup button);

Sys — in charge of general device functionality.

These platforms support the standard set of variable types and functions
(a.k.a. "syscalls").

Platform-specific constants

536

200

421

358

536

201

378

512

294

304

375

236

522

370

369

366

363

232

234 201

526

192 192

159Platforms

©2000-2011 Tibbo Technology Inc.

You can find them here .

Miscellaneous information

Available network interfaces EM1206: Ethernet (net.)

EM1206W: Ethernet (net.), Wi-Fi

(wln.)(1)

GPIO type Unidirectional

RTS/CTS remapping Supported(2)

GA1000 lines remapping Supported(3)

Serial port FIFOs 16 byte for TX, 16 bytes for RX

Clock frequency (PLL) control PLL on (def): 88.4736Mhz, PLL off:

11.0592Mhz(4)

Special configuration section of
the EEPROM

8 bytes for MAC storage

Device serial number 128 bytes: 64 OTP bytes + 64 fixed

bytes(5)

Flash memory configuration Shared

LEDs Green (SG) and red (SR) Status LED
lines

Green (EG) and yellow (EY) Ethernet
LED lines

Debug communications Ethernet / UDP Broadcast transport

Ethernet /WinPCap transport

1.The sock.allowedinterfaces property refers to the Ethernet interface as "NET",
Wi-Fi -- as "WLN". Sock.targetinterface and sock.currentinterface
properties rely on the pl_sock_interfaces enum, whose members differ
depending on the platform.

2.Default CTS/RTS mapping is different for each serial port. Notice that CTS and
RTS lines in default mapping interfere with each other. Do remember to select
meaningful mapping for these lines!

RTS CTS

Port
1

0-
PL_IO_NUM_0_RX0_INT0

0- PL_INT_NUM_0 (0-
PL_IO_NUM_0_RX0_INT0)

Port
2

1-
PL_IO_NUM_1_TX0_INT1

1- PL_INT_NUM_1 (1-
PL_IO_NUM_1_TX0_INT1)

Port
3

2-
PL_IO_NUM_2_RX1_INT2

2- PL_INT_NUM_2 (2-
PL_IO_NUM_2_RX1_INT2)

Port
4

3-
PL_IO_NUM_3_TX1_INT3

3- PL_INT_NUM_3 (3-
PL_IO_NUM_3_TX1_INT3)

3.Mapping of GA1000 control lines is fully flexible on the EM1206W. However, if

160

358

536

194

195

201

196

196

197

199

200

200

204

474

506 478

150

161

163

161

161

163

161

161

163

161

161

163

161

201

160 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

the EM1206EV board is used, then the following mapping must be applied:

CS 15- PL_IO_NUM_15

CLK 14- PL_IO_NUM_14

DI 12- PL_IO_NUM_12

DO 13- PL_IO_NUM_13

RST 11- PL_IO_NUM_11

4.Default PLL state after the external reset is ON.

5.Older EM1206 and EM1206W devices did not contain the serial number. To find
out if your EM1206(W) has the serial number onboard, try to read this serial
number with the sys.serialnum R/O property. If this property returns an empty
string, then the serial number is not present. Sys.serialnum returns all 128 bytes
of the serial number. First 64 bytes are one-time-programmable (OTP) with the
sys.setserialnum method.

8.1.4.1Platform-specific Constants

The following constant lists are platform-specific:

Enum pl_redir - the list of constants that define buffer redirection (shorting) for
this platform.

Enum pl_io_num - the list of constants that define available I/O lines.

Enum pl_io_port_num - the list of constants that define available 8-bit I/O
ports.

Enum pl_int_num - the list of constants that define available interrupt lines.

Enum pl_sock_interfaces - the list of available network interfaces.

Enum pl_redir

Enum pl_redir contains the list of constants that define buffer redirection (shorting)
for these platforms. The following objects support buffers and buffer redirection:

Ser. object (see ser.redir method)

Sock. object (see sock.redir method)

Enum pl_redir for this platform includes the following constants:

0- PL_REDIR_NONE: Cancels redirection for the serial port or socket.

1- PL_REDIR_SER: Redirects RX data of the serial port or socket to the TX
buffer of the serial port 0. This constant can be used as
a "base" for all other serial ports, i.e. in expressions like
ser.redir= PL_REDIR_SER+f.

1- PL_REDIR_SER0: Redirects RX data of the serial port or socket to the TX
buffer of the serial port 0.

2- PL_REDIR_SER1: Redirects RX data of the serial port or socket to the TX
buffer of the serial port 1.

3- PL_REDIR_SER2: Redirects RX data of the serial port or socket to the TX
buffer of the serial port 2.

4- PL_REDIR_SER3: Redirects RX data of the serial port or socket to the TX
buffer of the serial port 3.

161

161

161

161

161

534

535

160

161

163

163

163

378 414

421 493

161Platforms

©2000-2011 Tibbo Technology Inc.

6- PL_REDIR_SOCK0: Redirects RX data of the serial port or socket to the TX
buffer of socket 0. This constant can be used as a
"base" for all other sockets i.e. in expressions like
sock.redir= PL_REDIR_SOCK0+f.

7- PL_REDIR_SOCK1: Redirects RX data of the serial port or socket to the TX
buffer of socket 1.

8- PL_REDIR_SOCK2: Redirects RX data of the serial port or socket to the TX
buffer of socket 2.

9- PL_REDIR_SOCK3: Redirects RX data of the serial port or socket to the TX
buffer of socket 3.

10- PL_REDIR_SOCK4: Redirects RX data of the serial port or socket to the TX
buffer of socket 4.

11- PL_REDIR_SOCK5: Redirects RX data of the serial port or socket to the TX
buffer of socket 5.

12- PL_REDIR_SOCK6: Redirects RX data of the serial port or socket to the TX
buffer of socket 6.

13- PL_REDIR_SOCK7: Redirects RX data of the serial port or socket to the TX
buffer of socket 7.

14- PL_REDIR_SOCK8: Redirects RX data of the serial port or socket to the TX
buffer of socket 8.

15- PL_REDIR_SOCK9: Redirects RX data of the serial port or socket to the TX
buffer of socket 9.

16- PL_REDIR_SOCK10: Redirects RX data of the serial port or socket to the TX
buffer of socket 10.

17- PL_REDIR_SOCK11: Redirects RX data of the serial port or socket to the TX
buffer of socket 11.

18- PL_REDIR_SOCK12: Redirects RX data of the serial port or socket to the TX
buffer of socket 12.

19- PL_REDIR_SOCK13: Redirects RX data of the serial port or socket to the TX
buffer of socket 13.

20- PL_REDIR_SOCK14: Redirects RX data of the serial port or socket to the TX
buffer of socket 14.

21- PL_REDIR_SOCK15: Redirects RX data of the serial port or socket to the TX
buffer of socket 15.

Enum pl_io_num

Enum pl_io_num contains the list of constants that refer to available GPIO lines. Use
these constants when selecting the line with the io. object (see the io.num
property).

Note that GPIO lines are of unidirectional type and require explicit configuration
as outputs or inputs. Some lines are configured as inputs or outputs automatically
-- see the notes at the bottom of the page.

Enum pl_io_num includes the following constants:

0- PL_IO_NUM_0_RX0_INT0(1): General-purpose I/O line 0 (P0.0). This line is also
the RX/W1in/din input of the serial port 0 and the
interrupt line 0.

1- PL_IO_NUM_1_TX0_INT1(2):General-purpose I/O line 1 (P0.1). This line is also

294 301

194

379

162 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

the TX/W1out/dout output of the serial port 0
and the interrupt line 1.

2- PL_IO_NUM_2_RX1_INT2(1): General-purpose I/O line 2 (P0.2). This line is also
the RX/W0&1in/din input of the serial port 1 and the
interrupt line 2.

3- PL_IO_NUM_3_TX1_INT3(2):General-purpose I/O line 3 (P0.3). This line is also
the TX/W1out/dout output of the serial port 1 and
the interrupt line 3.

4- PL_IO_NUM_4_RX2_INT4(1): General-purpose I/O line 4 (P0.4). This line is also
the RX/W0&1in/din input of the serial port 2 and the
interrupt line 4.

5- PL_IO_NUM_5_TX2_INT5(2):General-purpose I/O line 5 (P0.5). This line is also
the TX/W1out/dout output of the serial port 2 and
the interrupt line 5.

6- PL_IO_NUM_6_RX3_INT6(1): General-purpose I/O line 6 (P0.6). This line is also
the RX/W0&1in/din input of the serial port 3 and the
interrupt line 6.

7- PL_IO_NUM_7_TX3_INT7(2):General-purpose I/O line 7 (P0.7). This line is also
the TX/W1out/dout output of the serial port 3 and
the interrupt line 7.

8- PL_IO_NUM_8: General-purpose I/O line 8 (P1.0).

9- PL_IO_NUM_9: General-purpose I/O line 9 (P1.1).

10- PL_IO_NUM_10: General-purpose I/O line 10 (P1.2).

11- PL_IO_NUM_11: General-purpose I/O line 11 (P1.3).

12- PL_IO_NUM_12: General-purpose I/O line 12 (P1.4).

13- PL_IO_NUM_13: General-purpose I/O line 13 (P1.5).

14- PL_IO_NUM_14: General-purpose I/O line 14 (P1.6).

15- PL_IO_NUM_15: General-purpose I/O line 15 (P1.7).

16- PL_IO_NUM_16_CO(3): General-purpose I/O line 16 (does not belong to any
8-bit port). This line is also used by the beep
object to generate square wave output that is
primarily intended for driving beeper (buzzer).

17- PL_IO_NULL: This is a NULL line that does not physically exist.
The state of this line is always detected as LOW.
Setting this line has no effect.

Notes:

1. When a serial port is in the UART mode (ser.mode = 0-
PL_SER_MODE_UART) this line is automatically configured to be an input when
this serial port is enabled (ser.enabled = 1- YES) and returns to the previous
input/output and high/low state when this serial port is closed (ser.enabled= 0-
NO). When a serial port is in the Wiegand or clock/data mode (ser.mode=
1- PL_SER_MODE_WIEGAND or ser.mode= 2- PL_SER_MODE_CLOCKDATA), the
line has to be configured as input by the application- this will not happen
automatically.

2. When a serial port is in the UART mode (ser.mode= 0- PL_SER_MODE_UART) this
line is automatically configured to be an output when the serial port is enabled
(ser.enabled= 1- YES) and returns to the previous input/output and high/low
state when the serial port is closed (ser.enabled= 0- NO). When a serial port is in

379

232

380 409

405

383 386

163Platforms

©2000-2011 Tibbo Technology Inc.

the Wiegand or clock/data mode (ser.mode= 1- PL_SER_MODE_WIEGAND or
ser.mode= 2- PL_SER_MODE_CLOCKDATA), the line has to be configured as
output by the application- this will not happen automatically.

3. When the beeper pattern stars playing, this line is configured as output
automatically. When the beeper pattern stops playing, the output returns to the
input/output and high/low state that it had before the pattern started playing.

Enum pl_io_port_num

Enum pl_io_port_num contains the list of available 8-bit GPIO ports. Use these
constants when selecting the port with the io. object (see the io.portnum
property).

Note that GPIO lines are of unidirectional type and require explicit configuration
as outputs or inputs. Some lines are configured as inputs or outputs automatically
-- see Enum pl_io_num for details.

Enum pl_io_port_num includes the following constants:

0- PL_IO_PORT_NUM_0: 8-bit port 0 (P0). Contains I/O lines 0-7.

1- PL_IO_PORT_NUM_1: 8-bit port 1 (P1). Contains I/O lines 8-15.

Enum pl_int_num

Enum pl_int_num contains the list of constants that refer to available interrupt
lines. Interrupt lines are mapped to GPIO lines (this mapping can't be altered).
Keep in mind that for an interrupt line to work you need to configure the
corresponding GPIO line as input.

Enum pl_int_num for this platform includes the following constants:

0- PL_INT_NUM_0: Interrupt line 0 (mapped onto I/O line 0).

1- PL_INT_NUM_1: Interrupt line 1 (mapped onto I/O line 1).

2- PL_INT_NUM_2: Interrupt line 2 (mapped onto I/O line 2).

3- PL_INT_NUM_3: Interrupt line 3 (mapped onto I/O line 3).

4- PL_INT_NUM_4: Interrupt line 4 (mapped onto I/O line 4).

5- PL_INT_NUM_5: Interrupt line 5 (mapped onto I/O line 5).

6- PL_INT_NUM_6: Interrupt line 6 (mapped onto I/O line 6).

7- PL_INT_NUM_7: Interrupt line 7 (mapped onto I/O line 7).

8- PL_INT_NULL: This is a NULL interrupt line that does not physically
exist.

Enum pl_sock_interfaces

Enum pl_sock_interfaces contains the list of available network interfaces. The
EM1206 and EM1206W platforms differ in that the EM1206W has the W-Fi interface
(requires an external GA1000 add-on module), while the EM1206 does not, and the
pl_sock_interfaces reflects this.

294 302

194

161

161

194

164 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

EM1206 platform

0- PL_SOCK_INTERFACE_NULL: Null (empty) interface.

1- PL_SOCK_INTERFACE_NET (default): Ethernet interface .

3- PL_SOCK_INTERFACE_PPP: PPP interface .

4- PL_SOCK_INTERFACE_PPPOE: PPPoE interface .

EM1206W platform

0- PL_SOCK_INTERFACE_NULL: Null (empty) interface.

1- PL_SOCK_INTERFACE_NET (default): Ethernet interface .

2- PL_SOCK_INTERFACE_WLN: Wi-Fi interface .

3- PL_SOCK_INTERFACE_PPP: PPP interface .

4- PL_SOCK_INTERFACE_PPPOE: PPPoE interface .

DS1100 Platform

Memory space

RAM 17,920* bytes for application variables and data

Flash 327,680 bytes for application storage, data cannot be stored in this
memory

EEPRO
M

200 bytes for application data

* RAM available in the debug mode is smaller by 257 bytes. All memory is available
in the release mode.

Supported Objects, variable types, and functions

Sock — socket communications (up to 16 UDP, TCP, and HTTP sessions);

Net — controls the Ethernet port;

Ser — in charge of the RS232 port;

Io — handles I/O lines, ports, and interrupts;

Stor — provides access to the EEPROM;

Romfile — facilitates access to resource files (fixed data);

Pppoe — provides access to the Internet over an ADSL modem;

Ppp — provides access to the Internet over a serial modem (GPRS, POTS,
etc.);

Pat — "plays" patterns on a pair of LEDs;

Button — monitors the MD line (setup button);

Sys — in charge of general device functionality.

* Fully supported with the exception of fd.copyfirmware . Disabled by default --

358

366

369

358

536

366

369

421

358

378

294

522

370

369

366

363

234 201

526

269

165Platforms

©2000-2011 Tibbo Technology Inc.

enable it in Project Settings -> Customize.

This platform supports the standard set of variable types and functions
(a.k.a. "syscalls") except aes128enc and aes128dec . These AES128
functions are not present on the DS1100 platform.

Platform-specific constants

You can find them here .

Miscellaneous information

Available network interfaces Ethernet (net.)(1)

GPIO type Bidirectional

RTS/CTS remapping Not supported(2)

Serial port FIFOs 16 byte for TX, 16 bytes for RX

Clock frequency (PLL) control Not supported, frequency is fixed at
80MHz

Special configuration section of
the EEPROM

8 bytes for MAC storage

Device serial number 4 bytes, the number can't be changed

Flash memory configuration Dedicated memory for firmware/
application

Data cannot be stored in this memory

LEDs Green (SG) and red (SR) Status LEDs

A dedicated Ethernet link status LED
(yellow)

Debug communications Ethernet / UDP Broadcast transport

Ethernet /WinPCap transport

Comments:

1.The sock.allowedinterfaces property refers to the Ethernet interface as
"NET". Sock.targetinterface and sock.currentinterface properties rely on
the pl_sock_interfaces enum, whose members differ depending on the
platform.

2.CTS is permanently mapped to 0- PL_INT_NUM_0 (0- PL_IO_NUM_0_INT0).
RTS is permanently mapped to 2- PL_IO_NUM_2 .

8.1.5.1Platform-specific Constants

The following constant lists are platform-specific:

Enum pl_redir - the list of constants that define buffer redirection (shorting) for
this platform.

Enum pl_io_num - the list of constants that define available I/O lines.

Enum pl_io_port_num - the list of constants that define available 8-bit I/O
ports.

38

192 192

206 205

165

358

194

195

196

196

197

199

200

200

204

474

506 478

150

167 167

167

166

167

167

166 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Enum pl_int_num - the list of constants that define available interrupt lines.

Enum pl_sock_interfaces - the list of available network interfaces.

Enum pl_redir

Enum pl_redir contains the list of constants that define buffer redirection (shorting).
The following objects support buffers and buffer redirection:

Ser. object (see ser.redir method)

Sock. object (see sock.redir method)

Enum pl_redir for this platform includes the following constants:

0- PL_REDIR_NONE: Cancels redirection for the serial port or socket.

1- PL_REDIR_SER: Redirects RX data of the serial port or socket to the TX
buffer of the serial port.

6- PL_REDIR_SOCK0: Redirects RX data of the serial port or socket to the TX
buffer of socket 0. This constant can be used as a
"base" for all other sockets i.e. in expressions like
sock.redir= PL_REDIR_SOCK0+f.

7- PL_REDIR_SOCK1: Redirects RX data of the serial port or socket to the TX
buffer of socket 1.

8- PL_REDIR_SOCK2: Redirects RX data of the serial port or socket to the TX
buffer of socket 2.

9- PL_REDIR_SOCK3: Redirects RX data of the serial port or socket to the TX
buffer of socket 3.

10- PL_REDIR_SOCK4: Redirects RX data of the serial port or socket to the TX
buffer of socket 4.

11- PL_REDIR_SOCK5: Redirects RX data of the serial port or socket to the TX
buffer of socket 5.

12- PL_REDIR_SOCK6: Redirects RX data of the serial port or socket to the TX
buffer of socket 6.

13- PL_REDIR_SOCK7: Redirects RX data of the serial port or socket to the TX
buffer of socket 7.

14- PL_REDIR_SOCK8: Redirects RX data of the serial port or socket to the TX
buffer of socket 8.

15- PL_REDIR_SOCK9: Redirects RX data of the serial port or socket to the TX
buffer of socket 9.

16- PL_REDIR_SOCK10: Redirects RX data of the serial port or socket to the TX
buffer of socket 10.

17- PL_REDIR_SOCK11: Redirects RX data of the serial port or socket to the TX
buffer of socket 11.

18- PL_REDIR_SOCK12: Redirects RX data of the serial port or socket to the TX
buffer of socket 12.

19- PL_REDIR_SOCK13: Redirects RX data of the serial port or socket to the TX
buffer of socket 13.

20- PL_REDIR_SOCK14: Redirects RX data of the serial port or socket to the TX
buffer of socket 14.

21- PL_REDIR_SOCK15: Redirects RX data of the serial port or socket to the TX
buffer of socket 15.

167

168

378 414

421 493

167Platforms

©2000-2011 Tibbo Technology Inc.

Enum pl_io_num

Enum pl_io_num contains the list of constants that refer to available GPIO lines. Use
these constants when selecting the line with the io. object (see the io.num
property).

Note that GPIO lines are of bidirectional type and do not require explicit
configuration as outputs or inputs.

Enum pl_io_num includes the following constants:

0- PL_IO_NUM_0_CTS_INT0: General-purpose I/O line 0 (P0.0), also the CTS input
of the serial port and the interrupt line 0.

1- PL_IO_NUM_1_DSR_INT1: General-purpose I/O line 1 (P0.1), also the DSR input
of the serial port and the interrupt line 1.

2- PL_IO_NUM_2_RTS: General-purpose I/O line 2 (P0.2), also the RTS
output of the serial port.

3- PL_IO_NUM_3_DTR: General-purpose I/O line 3 (P0.3), also the DTR
output of the serial port.

4- PL_IO_NUM_4_DCD: General-purpose I/O line 4 (P0.4), also the DCD input
of the serial port.

5- PL_IO_NUM_5: Not implemented.

6- PL_IO_NUM_6: Not implemented.

7- PL_IO_NUM_7: Not implemented.

8- PL_IO_NULL: This is a NULL line that does not physically exist.
The state of this line is always detected as LOW.
Setting this line has no effect.

Enum pl_io_port_num

Enum pl_io_port_num contains the list of available 8-bit GPIO ports. Use these
constants when selecting the port with the io. object (see the io.portnum
property).

Note that GPIO lines are of bidirectional type and do not require explicit
configuration as outputs or inputs.

Enum pl_io_port_num includes the following constants:

0- PL_IO_PORT_NUM_0: 8-bit port 0 (P0). Contains I/O lines 0-7. Lines 5-7
are not implemented on this platform.

Enum pl_int_num

Enum pl_int_num contains the list of constants that refer to available interrupt
lines. Interrupt lines are mapped to GPIO lines (this mapping can't be altered).

Enum pl_int_num includes the following constants:

0- PL_INT_NUM_0: Interrupt line 0 (mapped to I/O line 0, which serves as
the CTS input of the serial port).

1- PL_INT_NUM_1: Interrupt line 1 (mapped to I/O line 1, which serves as

294 301

194

294 302

194

167

168 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

the DSR input of the serial port).

2- PL_INT_NULL: This is a NULL interrupt line that does not physically
exist.

Enum pl_sock_interfaces

Enum pl_sock_interfaces contains the list of network interfaces supported by the
platform:

0- PL_SOCK_INTERFACE_NULL: Null (empty) interface.

1- PL_SOCK_INTERFACE_NET (default): Ethernet interface .

3- PL_SOCK_INTERFACE_PPP: PPP interface .

4- PL_SOCK_INTERFACE_PPPOE: PPPoE interface .

DS1101W Platform

Memory space

RAM 22,528* bytes for application variables and data

Flash 983,040 bytes for application and data storage (shared flash
memory)**

EEPRO
M

2040 bytes for application data

* RAM available in the debug mode is smaller by 257 bytes. All memory is available
in the release mode.

** Some earlier devices had only 458,752 bytes of flash memory available

Supported Objects, variable types, and functions

Sock — socket communications (up to 16 UDP, TCP, and HTTP sessions);

Net — controls the Ethernet port;

Wln — handles the Wi-Fi interface (requires GA1000 add-on module, i.e. "G"
device option);

Ser — in charge of the serial ports (on this device, serial channels of the
RS232 port);

Io — handles I/O lines, ports, and interrupts;

Lcd — controls the 96x32 monochrome OLED display (therefore, requires the
"D" device option);

Fd — manages flash memory file system and direct sector access;

Stor — provides access to the EEPROM;

Romfile — facilitates access to resource files (fixed data);

Pppoe — provides access to the Internet over an ADSL modem;

358

366

369

200

421

358

536 201

378 205

294

317

236

522

370

369

169Platforms

©2000-2011 Tibbo Technology Inc.

Ppp — provides access to the Internet over a serial modem (GPRS, POTS,
etc.);

Pat — "plays" patterns on a pair of LEDs;

Beep — generates buzzer patterns;

Button — monitors the MD line (setup button);

Sys — in charge of general device functionality.

As all displays of this type, the DS1101's OLED display has a limited life
span. There will be a decrease in the display brightness after ~10000
hours of operation. To prolong display life, use the lcd.lock method to
turn the display off whenever possible. Display image is preserved when
the display is "locked".

These platforms support the standard set of variable types and functions
(a.k.a. "syscalls").

Platform-specific constants

You can find them here .

Miscellaneous information

Available network interfaces Ethernet (net.), Wi-Fi (wln.)(1)

GPIO type Unidirectional

RTS/CTS remapping Supported(2)

GA1000 lines remapping Supported(3)

Serial port FIFOs 16 byte for TX, 16 bytes for RX

Clock frequency (PLL) control PLL on (def): 88.4736Mhz, PLL off:

11.0592Mhz(4)

Special configuration section of
the EEPROM

8 bytes for MAC storage

Device serial number 128 bytes: 64 OTP bytes + 64 fixed
bytes

Flash memory configuration Shared

LEDs Green (SG) and red (SR) Status LEDs

A dedicated Ethernet link status LED
(yellow)

An LED bar consisting of five blue LEDs
(5)

Debug communications Ethernet / UDP Broadcast transport

Ethernet /WinPCap transport

Comments:

1.The sock.allowedinterfaces property refers to the Ethernet interface as "NET",
Wi-Fi -- as "WLN". Sock.targetinterface and sock.currentinterface

366

363

232

234 201

526

348

192 192

170

358 536

194

195

201

196

196

197

199

200

200

204

474

506 478

170 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

properties rely on the pl_sock_interfaces enum, whose members differ
depending on the platform.

2.The hardware of this platform supports serial channels , which means that
CTS/RTS and DTR/DSR pairs of the DB9 connector can also be used as RX/TX
pairs of additional serial channels. Therefore, it is up to you to decide which lines
are used as RTS and CTS, and which channels they will belong to. Proper
mapping will be required to implement each particular arrangement.

3.Although the platform itself supports remapping, actual "wires" connecting the
system to the GA1000 are fixed and your mapping should reflect this:

CS 15- PL_IO_NUM_15

CLK 14- PL_IO_NUM_14

DI 12- PL_IO_NUM_12

DO 13- PL_IO_NUM_13

RST 11- PL_IO_NUM_11

4.Default PLL state after the external reset is ON.

5.The LEDs of the LED bar are mapped to GPIO lines . The LEDs are primarily
intended for the Wi-Fi signal strength indication but can also be used for other
purposes.

8.1.6.1Platform-specific Constants

The following constant lists are platform-specific:

Enum pl_redir - the list of constants that define buffer redirection (shorting) for
this platform.

Enum pl_io_num - the list of constants that define available I/O lines.

Enum pl_io_port_num - the list of constants that define available 8-bit I/O
ports.

Enum pl_int_num - the list of constants that define available interrupt lines.

Enum pl_sock_interfaces - the list of available network interfaces.

Enum pl_redir

Enum pl_redir contains the list of constants that define buffer redirection (shorting)
for these platforms. The following objects support buffers and buffer redirection:

Ser. object (see ser.redir method)

Sock. object (see sock.redir method)

Enum pl_redir for this platform includes the following constants:

0- PL_REDIR_NONE: Cancels redirection for the serial port* or socket.

1- PL_REDIR_SER: Redirects RX data of the serial port or socket to the TX
buffer of the serial port 0. This constant can be used as
a "base" for all other serial ports, i.e. in expressions like
ser.redir= PL_REDIR_SER+f.

1- PL_REDIR_SER0: Redirects RX data of the serial port or socket to the TX
buffer of the serial port 0.

2- PL_REDIR_SER1: Redirects RX data of the serial port or socket to the TX

174

205

171

171

171

171

171

171

170

171

173

174

174

378 414

421 493

171Platforms

©2000-2011 Tibbo Technology Inc.

buffer of the serial port 1.

3- PL_REDIR_SER2: Redirects RX data of the serial port or socket to the TX
buffer of the serial port 2.

4- PL_REDIR_SER3: Redirects RX data of the serial port or socket to the TX
buffer of the serial port 3.

6- PL_REDIR_SOCK0: Redirects RX data of the serial port or socket to the TX
buffer of socket 0. This constant can be used as a
"base" for all other sockets i.e. in expressions like
sock.redir= PL_REDIR_SOCK0+f.

7- PL_REDIR_SOCK1: Redirects RX data of the serial port or socket to the TX
buffer of socket 1.

8- PL_REDIR_SOCK2: Redirects RX data of the serial port or socket to the TX
buffer of socket 2.

9- PL_REDIR_SOCK3: Redirects RX data of the serial port or socket to the TX
buffer of socket 3.

10- PL_REDIR_SOCK4: Redirects RX data of the serial port or socket to the TX
buffer of socket 4.

11- PL_REDIR_SOCK5: Redirects RX data of the serial port or socket to the TX
buffer of socket 5.

12- PL_REDIR_SOCK6: Redirects RX data of the serial port or socket to the TX
buffer of socket 6.

13- PL_REDIR_SOCK7: Redirects RX data of the serial port or socket to the TX
buffer of socket 7.

14- PL_REDIR_SOCK8: Redirects RX data of the serial port or socket to the TX
buffer of socket 8.

15- PL_REDIR_SOCK9: Redirects RX data of the serial port or socket to the TX
buffer of socket 9.

16- PL_REDIR_SOCK10: Redirects RX data of the serial port or socket to the TX
buffer of socket 10.

17- PL_REDIR_SOCK11: Redirects RX data of the serial port or socket to the TX
buffer of socket 11.

18- PL_REDIR_SOCK12: Redirects RX data of the serial port or socket to the TX
buffer of socket 12.

19- PL_REDIR_SOCK13: Redirects RX data of the serial port or socket to the TX
buffer of socket 13.

20- PL_REDIR_SOCK14: Redirects RX data of the serial port or socket to the TX
buffer of socket 14.

21- PL_REDIR_SOCK15: Redirects RX data of the serial port or socket to the TX
buffer of socket 15.

*In this list, the term "serial port" actually refers to "serial channel".

Enum pl_io_num

Enum pl_io_num contains the list of constants that refer to available GPIO lines. Use
these constants when selecting the line with the io. object (see the io.num
property).

Note that GPIO lines are of unidirectional type and require explicit configuration
as outputs or inputs. Some lines are configured as inputs or outputs automatically

294 301

194

172 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

-- see the notes at the bottom of the page.

The DS1101 device has the RS232 transceiver IC onboard. This IC "dictates"
the GPIO line direction for certain lines. Do not try to use GPIO lines 0, 2, 4,
and 6 as outputs -- this can permanently damage the hardware.

Enum pl_io_num includes the following constants:

0- PL_IO_NUM_0_RX0_INT0(1): General-purpose I/O line 0 (P0.0). This line is also
the RX/W1in/din input of the serial port(3) 0 and
the interrupt line 0.

1- PL_IO_NUM_1_TX0_INT1(2):General-purpose I/O line 1 (P0.1). This line is also
the TX/W1out/dout output of the serial port 0
and the interrupt line 1.

2- PL_IO_NUM_2_RX1_INT2(1): General-purpose I/O line 2 (P0.2). This line is also
the RX/W0&1in/din input of the serial port 1 and the
interrupt line 2.

3- PL_IO_NUM_3_TX1_INT3(2):General-purpose I/O line 3 (P0.3). This line is also
the TX/W1out/dout output of the serial port 1 and
the interrupt line 3.

4- PL_IO_NUM_4_RX2_INT4(1): General-purpose I/O line 4 (P0.4). This line is also
the RX/W0&1in/din input of the serial port 2 and the
interrupt line 4.

5- PL_IO_NUM_5_TX2_INT5(2):General-purpose I/O line 5 (P0.5). This line is also
the TX/W1out/dout output of the serial port 2 and
the interrupt line 5.

6- PL_IO_NUM_6_RX3_INT6(1): General-purpose I/O line 6 (P0.6). This line is also
the RX/W0&1in/din input of the serial port 3 and the
interrupt line 6.

7- PL_IO_NUM_7_EMPTY: Not implemented.

8- PL_IO_NUM_8_PWROUT: Controls the power output on pin 9 of the DB9M
connector. Power will be ON when this output is
enabled (io.enabled= 1- YES) and set to LOW
(io.state= 0- LOW).

PL_IO_NUM_9: Pin 8 on the wireless interface connector.

PL_IO_NUM_10: Pin 6 on the wireless interface connector.

PL_IO_NUM_11: The RST line of the wireless interface.

PL_IO_NUM_12: The DI line of the wireless interface.

PL_IO_NUM_13: The DO line of the wireless interface.

PL_IO_NUM_14: The CLK line of the wireless interface.

PL_IO_NUM_15: The CS line of the wireless interface.

PL_IO_NUM_16: Pin 9 on the wireless interface connector.

PL_IO_NUM_17_EMPTY: Not implemented.

PL_IO_NUM_18_EMPTY: Not implemented.

PL_IO_NUM_19_SB1: LED bar, LED#1 (the "weakest signal" LED).

PL_IO_NUM_20_SB2: LED bar, LED#2.

379

379

173Platforms

©2000-2011 Tibbo Technology Inc.

PL_IO_NUM_21_SB3: LED bar, LED#3.

PL_IO_NUM_22_SB4: LED bar, LED#4.

PL_IO_NUM_23_SB5: LED bar, LED#5 (the "strongest signal" LED).

PL_IO_NUM_24_OLED_D0: OLED dispay data bus, line 0 (P0.0).

PL_IO_NUM_25_OLED_D1: OLED dispay data bus, line 1 (P0.0).

PL_IO_NUM_26_OLED_D2: OLED dispay data bus, line 2 (P0.1).

PL_IO_NUM_27_OLED_D3: OLED dispay data bus, line 3 (P0.2).

PL_IO_NUM_28_OLED_D4: OLED dispay data bus, line 4 (P0.3).

PL_IO_NUM_29_OLED_D5: OLED dispay data bus, line 5 (P0.4).

PL_IO_NUM_30_OLED_D6: OLED dispay data bus, line 6 (P0.5).

PL_IO_NUM_31_OLED_D7: OLED dispay data bus, line 7 (P0.6).

PL_IO_NUM_32_OLED_CS: OLED display, CS control line.

PL_IO_NUM_33_OLED_RD: OLED display, RD control line.

PL_IO_NUM_34_OLED_WR: OLED display, WR control line.

PL_IO_NUM_35_OLED_DC: OLED display, DC control line.

PL_IO_NUM_36_OLED_RST: OLED display, RST control line.

PL_IO_NUM_37_CO: General-purpose I/O line 37 (does not belong to any
8-bit port), also a square wave output controlled by
the beep object. This output is driving a buzzer.

PL_IO_NULL: This is a NULL line that does not physically exist.
The state of this line is always detected as LOW.
Setting this line has no effect.

Notes:

1. When a serial port is in the UART mode (ser.mode = 0-
PL_SER_MODE_UART) this line is automatically configured to be an input when
this serial port is enabled (ser.enabled = 1- YES) and returns to the previous
input/output and high/low state when this serial port is closed (ser.enabled= 0-
NO).

2. When a serial port is in the UART mode (ser.mode= 0- PL_SER_MODE_UART) this
line is automatically configured to be an output when the serial port is enabled
(ser.enabled= 1- YES) and returns to the previous input/output and high/low
state when the serial port is closed (ser.enabled= 0- NO).

3. In this list, the term "serial port" actually refers to "serial channel".

Enum pl_io_port_num

Enum pl_io_port_num contains the list of available 8-bit GPIO ports. Use these
constants when selecting the port with the io. object (see the io.portnum
property).

Note that GPIO lines are of unidirectional type and require explicit configuration
as outputs or inputs. Some lines are configured as inputs or outputs automatically
-- see Enum pl_io_num for details.

The DS1101 device has the RS232 transceiver IC onboard. This IC "dictates"
the GPIO line direction for certain lines. Do not try to use GPIO lines 0, 2, 4,
and 6 as outputs -- this can permanently damage the hardware.

380 409

405

294 302

194

171

174 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Enum pl_io_port_num includes only one constant:

PL_IO_PORT_NUM_0: 8-bit port 0, contains I/O lines 24-31 (the data bus
of the OLED display).

Enum pl_int_num

Enum pl_int_num contains the list of constants that refer to available interrupt
lines. Interrupt lines are mapped to GPIO lines (this mapping can't be altered).
Keep in mind that for an interrupt line to work you need to configure the
corresponding GPIO line as input.

Enum pl_int_num for this platform includes the following constants:

PL_INT_NUM_0: Interrupt line 0 (mapped onto I/O line 0).

PL_INT_NUM_1: Interrupt line 1 (mapped onto I/O line 1).

PL_INT_NUM_2: Interrupt line 2 (mapped onto I/O line 2).

PL_INT_NUM_3: Interrupt line 3 (mapped onto I/O line 3).

PL_INT_NUM_4: Interrupt line 4 (mapped onto I/O line 4).

PL_INT_NUM_5: Interrupt line 5 (mapped onto I/O line 5).

PL_INT_NUM_6: Interrupt line 6 (mapped onto I/O line 6).

PL_INT_NUM_7: Interrupt line 7 (mapped onto I/O line 7).

PL_INT_NULL: This is a NULL interrupt line that does not physically
exist.

Enum pl_sock_interfaces

Enum pl_sock_interfaces contains the list of network interfaces supported by the
platform:

0- PL_SOCK_INTERFACE_NULL: Null (empty) interface.

1- PL_SOCK_INTERFACE_NET (default): Ethernet interface .

2- PL_SOCK_INTERFACE_WLN: Wi-Fi interface .

3- PL_SOCK_INTERFACE_PPP: PPP interface .

4- PL_SOCK_INTERFACE_PPPOE: PPPoE interface .

DS1102W Platform

Memory space

RAM 22,528* bytes for application variables and data

Flash 983,040 bytes for application and data storage (shared flash

171

194

358

536

366

369

200

175Platforms

©2000-2011 Tibbo Technology Inc.

memory)**

EEPRO
M

2040 bytes for application data

* RAM available in the debug mode is smaller by 257 bytes. All memory is available
in the release mode.

** Some earlier devices had only 458,752 bytes of flash memory available

Supported Objects, variable types, and functions

Sock — socket communications (up to 16 UDP, TCP, and HTTP sessions);

Net — controls the Ethernet port;

Wln — handles the Wi-Fi interface (requires GA1000 add-on module, i.e. "G"
device option);

Ser — in charge of the serial ports (on this device, serial channels of the
RS232 port);

Io — handles I/O lines, ports, and interrupts;

Lcd — controls the 96x32 monochrome OLED display (therefore, requires the
"D" device option);

Fd — manages flash memory file system and direct sector access;

Stor — provides access to the EEPROM;

Romfile — facilitates access to resource files (fixed data);

Pppoe — provides access to the Internet over an ADSL modem;

Ppp — provides access to the Internet over a serial modem (GPRS, POTS,
etc.);

Pat — "plays" patterns on a pair of LEDs;

Beep — generates buzzer patterns;

Button — monitors the MD line (setup button);

Sys — in charge of general device functionality.

These platforms support the standard set of variable types and functions
(a.k.a. "syscalls").

Platform-specific constants

You can find them here .

Miscellaneous information

Available network interfaces Ethernet (net.), Wi-Fi (wln.)(1)

GPIO type Unidirectional

RTS/CTS remapping Supported(2)

GA1000 lines remapping Supported(3)

Serial port FIFOs 16 byte for TX, 16 bytes for RX

421

358

536 201

378 205

294

317

236

522

370

369

366

363

232

234 201

526

192 192

176

358 536

194

195

201

196

176 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Clock frequency (PLL) control PLL on (def): 88.4736Mhz, PLL off:

11.0592Mhz(4)

Special configuration section of
the EEPROM

8 bytes for MAC storage

Device serial number 128 bytes: 64 OTP bytes + 64 fixed
bytes

Flash memory configuration Shared

LEDs Green (SG) and red (SR) Status LEDs

A dedicated Ethernet link status LED
(yellow)

An LED bar consisting of five blue LEDs
(5)

Debug communications Ethernet / UDP Broadcast transport

Ethernet /WinPCap transport

Comments:

1.The sock.allowedinterfaces property refers to the Ethernet interface as "NET",
Wi-Fi -- as "WLN". Sock.targetinterface and sock.currentinterface
properties rely on the pl_sock_interfaces enum, whose members differ
depending on the platform.

2.The hardware of this platform supports serial channels , which means that
CTS/RTS and DTR/DSR pairs of the DB9 connector can also be used as RX/TX
pairs of additional serial channels. Therefore, it is up to you to decide which lines
are used as RTS and CTS, and which channels they will belong to. Proper
mapping will be required to implement each particular arrangement.

3.Although the platform itself supports remapping, actual "wires" connecting the
system to the GA1000 are fixed and your mapping should reflect this:

CS 15- PL_IO_NUM_15

CLK 14- PL_IO_NUM_14

DI 12- PL_IO_NUM_12

DO 13- PL_IO_NUM_13

RST 11- PL_IO_NUM_11

4.Default PLL state after the external reset is ON.

5.The LEDs of the LED bar are mapped to GPIO lines . The LEDs are primarily
intended for the Wi-Fi signal strength indication but can also be used for other
purposes.

8.1.7.1Platform-specific Constants

The following constant lists are platform-specific:

Enum pl_redir - the list of constants that define buffer redirection (shorting) for
this platform.

Enum pl_io_num - the list of constants that define available I/O lines.

Enum pl_io_port_num - the list of constants that define available 8-bit I/O
ports.

196

197

199

200

200

204

474

506 478

180

205

178

178

178

178

178

178

177

178

180

177Platforms

©2000-2011 Tibbo Technology Inc.

Enum pl_int_num - the list of constants that define available interrupt lines.

Enum pl_sock_interfaces - the list of available network interfaces.

Enum pl_redir

Enum pl_redir contains the list of constants that define buffer redirection (shorting)
for these platforms. The following objects support buffers and buffer redirection:

Ser. object (see ser.redir method)

Sock. object (see sock.redir method)

Enum pl_redir for this platform includes the following constants:

0- PL_REDIR_NONE: Cancels redirection for the serial port* or socket.

1- PL_REDIR_SER: Redirects RX data of the serial port or socket to the TX
buffer of the serial port 0. This constant can be used as
a "base" for all other serial ports, i.e. in expressions like
ser.redir= PL_REDIR_SER+f.

1- PL_REDIR_SER0: Redirects RX data of the serial port or socket to the TX
buffer of the serial port 0.

2- PL_REDIR_SER1: Redirects RX data of the serial port or socket to the TX
buffer of the serial port 1.

3- PL_REDIR_SER2: Redirects RX data of the serial port or socket to the TX
buffer of the serial port 2.

4- PL_REDIR_SER3: Redirects RX data of the serial port or socket to the TX
buffer of the serial port 3.

6- PL_REDIR_SOCK0: Redirects RX data of the serial port or socket to the TX
buffer of socket 0. This constant can be used as a
"base" for all other sockets i.e. in expressions like
sock.redir= PL_REDIR_SOCK0+f.

7- PL_REDIR_SOCK1: Redirects RX data of the serial port or socket to the TX
buffer of socket 1.

8- PL_REDIR_SOCK2: Redirects RX data of the serial port or socket to the TX
buffer of socket 2.

9- PL_REDIR_SOCK3: Redirects RX data of the serial port or socket to the TX
buffer of socket 3.

10- PL_REDIR_SOCK4: Redirects RX data of the serial port or socket to the TX
buffer of socket 4.

11- PL_REDIR_SOCK5: Redirects RX data of the serial port or socket to the TX
buffer of socket 5.

12- PL_REDIR_SOCK6: Redirects RX data of the serial port or socket to the TX
buffer of socket 6.

13- PL_REDIR_SOCK7: Redirects RX data of the serial port or socket to the TX
buffer of socket 7.

14- PL_REDIR_SOCK8: Redirects RX data of the serial port or socket to the TX
buffer of socket 8.

15- PL_REDIR_SOCK9: Redirects RX data of the serial port or socket to the TX
buffer of socket 9.

16- PL_REDIR_SOCK10: Redirects RX data of the serial port or socket to the TX
buffer of socket 10.

180

180

378 414

421 493

178 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

17- PL_REDIR_SOCK11: Redirects RX data of the serial port or socket to the TX
buffer of socket 11.

18- PL_REDIR_SOCK12: Redirects RX data of the serial port or socket to the TX
buffer of socket 12.

19- PL_REDIR_SOCK13: Redirects RX data of the serial port or socket to the TX
buffer of socket 13.

20- PL_REDIR_SOCK14: Redirects RX data of the serial port or socket to the TX
buffer of socket 14.

21- PL_REDIR_SOCK15: Redirects RX data of the serial port or socket to the TX
buffer of socket 15.

*In this list, the term "serial port" actually refers to "serial channel".

Enum pl_io_num

Enum pl_io_num contains the list of constants that refer to available GPIO lines. Use
these constants when selecting the line with the io. object (see the io.num
property).

Note that GPIO lines are of unidirectional type and require explicit configuration
as outputs or inputs. Some lines are configured as inputs or outputs automatically
-- see the notes at the bottom of the page.

The DS1102 device has the RS232 transceiver IC onboard. This IC "dictates"
the GPIO line direction for certain lines. Do not try to use GPIO lines 0, 2, 4,
and 6 as outputs -- this can permanently damage the hardware.

Enum pl_io_num includes the following constants:

0- PL_IO_NUM_0_RX0_INT0(1): General-purpose I/O line 0 (P0.0). This line is also
the RX/W1in/din input of the serial port(3) 0 and
the interrupt line 0.

1- PL_IO_NUM_1_TX0_INT1(2):General-purpose I/O line 1 (P0.1). This line is also
the TX/W1out/dout output of the serial port 0
and the interrupt line 1.

2- PL_IO_NUM_2_RX1_INT2(1): General-purpose I/O line 2 (P0.2). This line is also
the RX/W0&1in/din input of the serial port 1 and the
interrupt line 2.

3- PL_IO_NUM_3_TX1_INT3(2):General-purpose I/O line 3 (P0.3). This line is also
the TX/W1out/dout output of the serial port 1 and
the interrupt line 3.

4- PL_IO_NUM_4_RX2_INT4(1): General-purpose I/O line 4 (P0.4). This line is also
the RX/W0&1in/din input of the serial port 2 and the
interrupt line 4.

5- PL_IO_NUM_5_TX2_INT5(2):General-purpose I/O line 5 (P0.5). This line is also
the TX/W1out/dout output of the serial port 2 and
the interrupt line 5.

6- PL_IO_NUM_6_RX3_INT6(1): Not implemented.

7- PL_IO_NUM_7_EMPTY: Not implemented.

8- PL_IO_NUM_8_PWROUT: Not implemented.

PL_IO_NUM_9: Pin 8 on the wireless interface connector.

294 301

194

379

379

179Platforms

©2000-2011 Tibbo Technology Inc.

PL_IO_NUM_10: Pin 6 on the wireless interface connector.

PL_IO_NUM_11: The RST line of the wireless interface.

PL_IO_NUM_12: The DI line of the wireless interface.

PL_IO_NUM_13: The DO line of the wireless interface.

PL_IO_NUM_14: The CLK line of the wireless interface.

PL_IO_NUM_15: The CS line of the wireless interface.

PL_IO_NUM_16: Pin 9 on the wireless interface connector.

PL_IO_NUM_17_RSMD: Serial port mode: HIGH for RS422/485, LOW for
RS232.

PL_IO_NUM_18_HDFD: Serial port mode: HIGH for full-duplex, LOW for half-
duplex.

PL_IO_NUM_19_SB1: LED bar, LED#1 (the "weakest signal" LED).

PL_IO_NUM_20_SB2: LED bar, LED#2.

PL_IO_NUM_21_SB3: LED bar, LED#3.

PL_IO_NUM_22_SB4: LED bar, LED#4.

PL_IO_NUM_23_SB5: LED bar, LED#5 (the "strongest signal" LED).

PL_IO_NUM_24_OLED_D0: OLED dispay data bus, line 0 (P0.0).

PL_IO_NUM_25_OLED_D1: OLED dispay data bus, line 1 (P0.0).

PL_IO_NUM_26_OLED_D2: OLED dispay data bus, line 2 (P0.1).

PL_IO_NUM_27_OLED_D3: OLED dispay data bus, line 3 (P0.2).

PL_IO_NUM_28_OLED_D4: OLED dispay data bus, line 4 (P0.3).

PL_IO_NUM_29_OLED_D5: OLED dispay data bus, line 5 (P0.4).

PL_IO_NUM_30_OLED_D6: OLED dispay data bus, line 6 (P0.5).

PL_IO_NUM_31_OLED_D7: OLED dispay data bus, line 7 (P0.6).

PL_IO_NUM_32_OLED_CS: OLED display, CS control line.

PL_IO_NUM_33_OLED_RD: OLED display, RD control line.

PL_IO_NUM_34_OLED_WR: OLED display, WR control line.

PL_IO_NUM_35_OLED_DC: OLED display, DC control line.

PL_IO_NUM_36_OLED_RST: OLED display, RST control line.

PL_IO_NUM_37_CO: General-purpose I/O line 37 (does not belong to any
8-bit port), also a square wave output controlled by
the beep object. This output is driving a buzzer.

PL_IO_NULL: This is a NULL line that does not physically exist.
The state of this line is always detected as LOW.
Setting this line has no effect.

Notes:

1. When a serial port is in the UART mode (ser.mode = 0-
PL_SER_MODE_UART) this line is automatically configured to be an input when
this serial port is enabled (ser.enabled = 1- YES) and returns to the previous
input/output and high/low state when this serial port is closed (ser.enabled= 0-
NO).

2. When a serial port is in the UART mode (ser.mode= 0- PL_SER_MODE_UART) this
line is automatically configured to be an output when the serial port is enabled
(ser.enabled= 1- YES) and returns to the previous input/output and high/low

380 409

405

180 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

state when the serial port is closed (ser.enabled= 0- NO).

3. In this list, the term "serial port" actually refers to "serial channel".

Enum pl_io_port_num

Enum pl_io_port_num contains the list of available 8-bit GPIO ports. Use these
constants when selecting the port with the io. object (see the io.portnum
property).

Note that GPIO lines are of unidirectional type and require explicit configuration
as outputs or inputs. Some lines are configured as inputs or outputs automatically
-- see Enum pl_io_num for details.

The DS1102 device has the RS232 transceiver IC onboard. This IC "dictates"
the GPIO line direction for certain lines. Do not try to use GPIO lines 0, 2, 4,
and 6 as outputs -- this can permanently damage the hardware.

Enum pl_io_port_num includes only one constant:

PL_IO_PORT_NUM_0: 8-bit port 0, contains I/O lines 24-31 (the data bus
of the OLED display).

Enum pl_int_num

Enum pl_int_num contains the list of constants that refer to available interrupt
lines. Interrupt lines are mapped to GPIO lines (this mapping can't be altered).
Keep in mind that for an interrupt line to work you need to configure the
corresponding GPIO line as input.

Enum pl_int_num for this platform includes the following constants:

PL_INT_NUM_0: Interrupt line 0 (mapped onto I/O line 0).

PL_INT_NUM_1: Interrupt line 1 (mapped onto I/O line 1).

PL_INT_NUM_2: Interrupt line 2 (mapped onto I/O line 2).

PL_INT_NUM_3: Interrupt line 3 (mapped onto I/O line 3).

PL_INT_NUM_4: Interrupt line 4 (mapped onto I/O line 4).

PL_INT_NUM_5: Interrupt line 5 (mapped onto I/O line 5).

PL_INT_NUM_6: Interrupt line 6 (mapped onto I/O line 6).

PL_INT_NUM_7: Interrupt line 7 (mapped onto I/O line 7).

PL_INT_NULL: This is a NULL interrupt line that does not physically
exist.

Enum pl_sock_interfaces

Enum pl_sock_interfaces contains the list of network interfaces supported by the
platform:

294 302

194

178

178

194

181Platforms

©2000-2011 Tibbo Technology Inc.

0- PL_SOCK_INTERFACE_NULL: Null (empty) interface.

1- PL_SOCK_INTERFACE_NET (default): Ethernet interface .

2- PL_SOCK_INTERFACE_WLN: Wi-Fi interface .

3- PL_SOCK_INTERFACE_PPP: PPP interface .

4- PL_SOCK_INTERFACE_PPPOE: PPPoE interface .

DS1202 Platform

Memory space

RAM 22,528* bytes for application variables and data

Flash 983,040 bytes for application and data storage (shared flash
memory)**

EEPRO
M

2040 bytes for application data

* RAM available in the debug mode is smaller by 257 bytes. All memory is available
in the release mode.

** Some earlier devices had only 458,752 bytes of flash memory available

Supported Objects, variable types, and functions

Sock — socket communications (up to 16 UDP, TCP, and HTTP sessions);

Net — controls the Ethernet port;

Ser — in charge of the serial ports (on this device, serial channels of the
RS232 port);

Ssi — implements up to four serial synchronous interface (SSI) channels,
supports SPI, I2C, clock/data, etc.;

Io — handles I/O lines, ports, and interrupts;

Fd — manages flash memory file system and direct sector access;

Stor — provides access to the EEPROM;

Romfile — facilitates access to resource files (fixed data);

Pppoe — provides access to the Internet over an ADSL modem;

Ppp — provides access to the Internet over a serial modem (GPRS, POTS,
etc.);

Pat — "plays" patterns on a pair of LEDs;

Button — monitors the MD line (setup button);

Sys — in charge of general device functionality.

These platforms support the standard set of variable types and functions
(a.k.a. "syscalls").

Platform-specific constants

358

536

366

369

200

421

358

378 205

512

294

236

522

370

369

366

363

234 201

526

192 192

182 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

You can find them here .

Miscellaneous information

Available network interfaces Ethernet (net.)(1)

GPIO type Unidirectional

RTS/CTS remapping Supported(2)

GA1000 lines remapping This platform does not support Wi-Fi at
all

Serial port FIFOs 16 byte for TX, 16 bytes for RX

Clock frequency (PLL) control PLL on (def): 88.4736Mhz, PLL off:

11.0592Mhz(3)

Special configuration section of
the EEPROM

8 bytes for MAC storage

Device serial number 128 bytes: 64 OTP bytes + 64 fixed

bytes(4)

Flash memory configuration Shared

LEDs Green (SG) and red (SR) Status LEDs

Green (EG) and yellow (EY) Ethernet
LEDs

Debug communications Ethernet / UDP Broadcast transport

Ethernet /WinPCap transport

Comments:

1.The sock.allowedinterfaces property refers to the Ethernet interface as
"NET". Sock.targetinterface and sock.currentinterface properties rely on
the pl_sock_interfaces enum, whose members differ depending on the
platform.

2.The hardware of this platform supports serial channels , which means that
CTS/RTS and DTR/DSR pairs of the DB9 connector can also be used as RX/TX
pairs of additional serial channels. Therefore, it is up to you to decide which lines
are used as RTS and CTS, and which channels they will belong to. Proper
mapping will be required to implement each particular arrangement.

3.Default PLL state after the external reset is ON.

4.Older DS1202 and DS1202W devices did not contain the serial number. To find
out if your DS1202(W) has the serial number onboard, try to read this serial
number with the sys.serialnum R/O property. If this property returns an empty
string, then the serial number is not present. Sys.serialnum returns all 128 bytes
of the serial number. First 64 bytes are one-time-programmable (OTP) with the
sys.setserialnum method.

8.1.8.1Platform-specific Constants

The following constant lists are platform-specific:

Enum pl_redir - the list of constants that define buffer redirection (shorting) for
this platform.

Enum pl_io_num - the list of constants that define available I/O lines.

182

194

195

201

196

196

197

199

200

200

204

474

506 478

186

205

534

535

183

184

183Platforms

©2000-2011 Tibbo Technology Inc.

Enum pl_io_port_num - the list of constants that define available 8-bit I/O
ports.

Enum pl_int_num - the list of constants that define available interrupt lines.

Enum pl_sock_interfaces - the list of available network interfaces.

Enum pl_redir

Enum pl_redir contains the list of constants that define buffer redirection (shorting)
for these platforms. The following objects support buffers and buffer redirection:

Ser. object (see ser.redir method)

Sock. object (see sock.redir method)

Enum pl_redir for this platform includes the following constants:

0- PL_REDIR_NONE: Cancels redirection for the serial port* or socket.

1- PL_REDIR_SER: Redirects RX data of the serial port or socket to the TX
buffer of the serial port 0. This constant can be used as
a "base" for all other serial ports, i.e. in expressions like
ser.redir= PL_REDIR_SER+f.

1- PL_REDIR_SER0: Redirects RX data of the serial port or socket to the TX
buffer of the serial port 0.

2- PL_REDIR_SER1: Redirects RX data of the serial port or socket to the TX
buffer of the serial port 1.

3- PL_REDIR_SER2: Redirects RX data of the serial port or socket to the TX
buffer of the serial port 2.

4- PL_REDIR_SER3: Redirects RX data of the serial port or socket to the TX
buffer of the serial port 3.

6- PL_REDIR_SOCK0: Redirects RX data of the serial port or socket to the TX
buffer of socket 0. This constant can be used as a
"base" for all other sockets i.e. in expressions like
sock.redir= PL_REDIR_SOCK0+f.

7- PL_REDIR_SOCK1: Redirects RX data of the serial port or socket to the TX
buffer of socket 1.

8- PL_REDIR_SOCK2: Redirects RX data of the serial port or socket to the TX
buffer of socket 2.

9- PL_REDIR_SOCK3: Redirects RX data of the serial port or socket to the TX
buffer of socket 3.

10- PL_REDIR_SOCK4: Redirects RX data of the serial port or socket to the TX
buffer of socket 4.

11- PL_REDIR_SOCK5: Redirects RX data of the serial port or socket to the TX
buffer of socket 5.

12- PL_REDIR_SOCK6: Redirects RX data of the serial port or socket to the TX
buffer of socket 6.

13- PL_REDIR_SOCK7: Redirects RX data of the serial port or socket to the TX
buffer of socket 7.

14- PL_REDIR_SOCK8: Redirects RX data of the serial port or socket to the TX
buffer of socket 8.

15- PL_REDIR_SOCK9: Redirects RX data of the serial port or socket to the TX
buffer of socket 9.

185

185

186

378 414

421 493

184 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

16- PL_REDIR_SOCK10: Redirects RX data of the serial port or socket to the TX
buffer of socket 10.

17- PL_REDIR_SOCK11: Redirects RX data of the serial port or socket to the TX
buffer of socket 11.

18- PL_REDIR_SOCK12: Redirects RX data of the serial port or socket to the TX
buffer of socket 12.

19- PL_REDIR_SOCK13: Redirects RX data of the serial port or socket to the TX
buffer of socket 13.

20- PL_REDIR_SOCK14: Redirects RX data of the serial port or socket to the TX
buffer of socket 14.

21- PL_REDIR_SOCK15: Redirects RX data of the serial port or socket to the TX
buffer of socket 15.

*In this list, the term "serial port" actually refers to "serial channel".

Enum pl_io_num

Enum pl_io_num contains the list of constants that refer to available GPIO lines. Use
these constants when selecting the line with the io. object (see the io.num
property).

Note that GPIO lines are of unidirectional type and require explicit configuration
as outputs or inputs. Some lines are configured as inputs or outputs automatically
-- see the notes at the bottom of the page.

The EM1202EV-RS board and the DS1202 controller have the RS232
transceiver IC onboard. This IC "dictates" the GPIO line direction for certain
lines. Do not try to use GPIO lines 0, 2, 4, and 6 as outputs -- this can
permanently damage the hardware.

Enum pl_io_num includes the following constants:

0- PL_IO_NUM_0_RX0_INT0(1): General-purpose I/O line 0 (P0.0). This line is also
the RX/W1in/din input of the serial port(3) 0 and
the interrupt line 0.

1- PL_IO_NUM_1_TX0_INT4(2):General-purpose I/O line 1 (P0.1). This line is also
the TX/W1out/dout output of the serial port 0
and the interrupt line 4.

2- PL_IO_NUM_2_RX1_INT1(1): General-purpose I/O line 2 (P0.2). This line is also
the RX/W0&1in/din input of the serial port 1 and the
interrupt line 1.

3- PL_IO_NUM_3_TX1_INT5(2):General-purpose I/O line 3 (P0.3). This line is also
the TX/W1out/dout output of the serial port 1 and
the interrupt line 5.

4- PL_IO_NUM_4_RX2_INT2(1): General-purpose I/O line 4 (P0.4). This line is also
the RX/W0&1in/din input of the serial port 2 and the
interrupt line 2.

5- PL_IO_NUM_5_TX2_INT6(2):General-purpose I/O line 5 (P0.5). This line is also
the TX/W1out/dout output of the serial port 2 and
the interrupt line 6.

6- PL_IO_NUM_6_RX3_INT3(1): General-purpose I/O line 6 (P0.6). This line is also

294 301

194

379

379

185Platforms

©2000-2011 Tibbo Technology Inc.

the RX/W0&1in/din input of the serial port 3 and the
interrupt line 3.

7- PL_IO_NUM_7_INT7(2): General-purpose I/O line 7 (P0.7). This line is also
the interrupt line 7.

PL_IO_NULL: This is a NULL line that does not physically exist.
The state of this line is always detected as LOW.
Setting this line has no effect.

Notes:

1.When a serial port is in the UART mode (ser.mode = 0-
PL_SER_MODE_UART) this line is automatically configured to be an input when
this serial port is enabled (ser.enabled = 1- YES) and returns to the previous
input/output and high/low state when this serial port is closed (ser.enabled= 0-
NO).

2. When a serial port is in the UART mode (ser.mode= 0- PL_SER_MODE_UART) this
line is automatically configured to be an output when the serial port is enabled
(ser.enabled= 1- YES) and returns to the previous input/output and high/low
state when the serial port is closed (ser.enabled= 0- NO).

3. In this list, the term "serial port" actually refers to "serial channel".

Enum pl_io_port_num

Enum pl_io_port_num contains the list of available 8-bit GPIO ports. Use these
constants when selecting the port with the io. object (see the io.portnum
property).

Note that GPIO lines are of unidirectional type and require explicit configuration
as outputs or inputs. Some lines are configured as inputs or outputs automatically
-- see Enum pl_io_num for details.

The EM1202EV-RS board and the DS1202 controller have RS232 transceiver
IC onboard. This IC defines which I/O lines of the device should be configured
as inputs, and which- as outputs. Specifically, do not try to use I/I lines 0, 2,
4, 6, and 7 as outputs -- this can permanently damage the hardware.

Enum pl_io_port_num includes only one constant:

0- PL_IO_PORT_NUM_0: 8-bit port 0 (P0). Contains I/O lines 0-7.

Enum pl_int_num

Enum pl_int_num contains the list of constants that refer to available interrupt
lines. Interrupt lines are mapped to GPIO lines (this mapping can't be altered).
Keep in mind that for an interrupt line to work you need to configure the
corresponding GPIO line as input.

Enum pl_int_num for this platform includes the following constants:

PL_INT_NUM_0: Interrupt line 0 (mapped onto I/O line 0).

PL_INT_NUM_1: Interrupt line 1 (mapped onto I/O line 2).

PL_INT_NUM_2: Interrupt line 2 (mapped onto I/O line 4).

PL_INT_NUM_3: Interrupt line 3 (mapped onto I/O line 6).

380 409

405

294 302

194

184

184

194

186 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

PL_INT_NUM_4: Interrupt line 4 (mapped onto I/O line 1).

PL_INT_NUM_5: Interrupt line 5 (mapped onto I/O line 3).

PL_INT_NUM_6: Interrupt line 6 (mapped onto I/O line 5).

PL_INT_NUM_7: Interrupt line 7 (mapped onto I/O line 7).

PL_INT_NULL: This is a NULL interrupt line that does not physically
exist.

Enum pl_sock_interfaces

Enum pl_sock_interfaces contains the list of network interfaces supported by the
platform:

0- PL_SOCK_INTERFACE_NULL: Null (empty) interface.

1- PL_SOCK_INTERFACE_NET (default): Ethernet interface .

3- PL_SOCK_INTERFACE_PPP: PPP interface .

4- PL_SOCK_INTERFACE_PPPOE: PPPoE interface .

DS1206 Platform

Memory space

RAM 22,528* bytes for application variables and data

Flash 983,040 bytes for application and data storage (shared flash
memory)**

EEPRO
M

2040 bytes for application data

* RAM available in the debug mode is smaller by 257 bytes. All memory is available
in the release mode.

** Some earlier devices had only 458,752 bytes of flash memory available

Supported Objects, variable types, and functions

Sock — socket communications (up to 16 UDP, TCP, and HTTP sessions);

Net — controls the Ethernet port;

Ser — in charge of the serial ports (on this device, serial channels of the
RS232 port);

Ssi — implements up to four serial synchronous interface (SSI) channels,
supports SPI, I2C, clock/data, etc.;

Io — handles I/O lines, ports, and interrupts;

Fd — manages flash memory file system and direct sector access;

358

366

369

200

421

358

378 205

512

294

236

187Platforms

©2000-2011 Tibbo Technology Inc.

Stor — provides access to the EEPROM;

Romfile — facilitates access to resource files (fixed data);

Pppoe — provides access to the Internet over an ADSL modem;

Ppp — provides access to the Internet over a serial modem (GPRS, POTS,
etc.);

Pat — "plays" patterns on a pair of LEDs;

Button — monitors the MD line (setup button);

Sys — in charge of general device functionality.

These platforms support the standard set of variable types and functions
(a.k.a. "syscalls").

Platform-specific constants

You can find them here .

Miscellaneous information

Available network interfaces Ethernet (net.)(1)

GPIO type Unidirectional

RTS/CTS remapping Supported(2)

GA1000 lines remapping This platform does not support Wi-Fi at
all

Serial port FIFOs 16 byte for TX, 16 bytes for RX

Clock frequency (PLL) control PLL on (def): 88.4736Mhz, PLL off:

11.0592Mhz(3)

Special configuration section of
the EEPROM

8 bytes for MAC storage

Device serial number 128 bytes: 64 OTP bytes + 64 fixed

bytes(4)

Flash memory configuration Shared

LEDs Green (SG) and red (SR) Status LEDs

Green (EG) and yellow (EY) Ethernet
LEDs

Debug communications Ethernet / UDP Broadcast transport

Ethernet /WinPCap transport

Comments:

1.The sock.allowedinterfaces property refers to the Ethernet interface as
"NET". Sock.targetinterface and sock.currentinterface properties rely on
the pl_sock_interfaces enum, whose members differ depending on the
platform.

2.The hardware of this platform supports serial channels , which means that
CTS/RTS and DTR/DSR pairs of the DB9 connector can also be used as RX/TX
pairs of additional serial channels. Therefore, it is up to you to decide which lines

522

370

369

366

363

234 201

526

192 192

188

194

195

201

196

196

197

199

200

200

204

474

506 478

191

205

188 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

are used as RTS and CTS, and which channels they will belong to. Proper
mapping will be required to implement each particular arrangement.

3.Default PLL state after the external reset is ON.

4.Older DS1206 and DS1206W devices did not contain the serial number. To find
out if your DS1206(W) has the serial number onboard, try to read this serial
number with the sys.serialnum R/O property. If this property returns an empty
string, then the serial number is not present. Sys.serialnum returns all 128 bytes
of the serial number. First 64 bytes are one-time-programmable (OTP) with the
sys.setserialnum method.

8.1.9.1Platform-specific Constants

The following constant lists are platform-specific:

Enum pl_redir - the list of constants that define buffer redirection (shorting) for
this platform.

Enum pl_io_num - the list of constants that define available I/O lines.

Enum pl_io_port_num - the list of constants that define available 8-bit I/O
ports.

Enum pl_int_num - the list of constants that define available interrupt lines.

Enum pl_sock_interfaces - the list of available network interfaces.

Enum pl_redir

Enum pl_redir contains the list of constants that define buffer redirection (shorting)
for these platforms. The following objects support buffers and buffer redirection:

Ser. object (see ser.redir method)

Sock. object (see sock.redir method)

Enum pl_redir for this platform includes the following constants:

0- PL_REDIR_NONE: Cancels redirection for the serial port* or socket.

1- PL_REDIR_SER: Redirects RX data of the serial port or socket to the TX
buffer of the serial port 0. This constant can be used as
a "base" for all other serial ports, i.e. in expressions like
ser.redir= PL_REDIR_SER+f.

1- PL_REDIR_SER0: Redirects RX data of the serial port or socket to the TX
buffer of the serial port 0.

2- PL_REDIR_SER1: Redirects RX data of the serial port or socket to the TX
buffer of the serial port 1.

3- PL_REDIR_SER2: Redirects RX data of the serial port or socket to the TX
buffer of the serial port 2.

4- PL_REDIR_SER3: Redirects RX data of the serial port or socket to the TX
buffer of the serial port 3.

6- PL_REDIR_SOCK0: Redirects RX data of the serial port or socket to the TX
buffer of socket 0. This constant can be used as a
"base" for all other sockets i.e. in expressions like
sock.redir= PL_REDIR_SOCK0+f.

7- PL_REDIR_SOCK1: Redirects RX data of the serial port or socket to the TX
buffer of socket 1.

8- PL_REDIR_SOCK2: Redirects RX data of the serial port or socket to the TX

534

535

188

189

190

191

191

378 414

421 493

189Platforms

©2000-2011 Tibbo Technology Inc.

buffer of socket 2.

9- PL_REDIR_SOCK3: Redirects RX data of the serial port or socket to the TX
buffer of socket 3.

10- PL_REDIR_SOCK4: Redirects RX data of the serial port or socket to the TX
buffer of socket 4.

11- PL_REDIR_SOCK5: Redirects RX data of the serial port or socket to the TX
buffer of socket 5.

12- PL_REDIR_SOCK6: Redirects RX data of the serial port or socket to the TX
buffer of socket 6.

13- PL_REDIR_SOCK7: Redirects RX data of the serial port or socket to the TX
buffer of socket 7.

14- PL_REDIR_SOCK8: Redirects RX data of the serial port or socket to the TX
buffer of socket 8.

15- PL_REDIR_SOCK9: Redirects RX data of the serial port or socket to the TX
buffer of socket 9.

16- PL_REDIR_SOCK10: Redirects RX data of the serial port or socket to the TX
buffer of socket 10.

17- PL_REDIR_SOCK11: Redirects RX data of the serial port or socket to the TX
buffer of socket 11.

18- PL_REDIR_SOCK12: Redirects RX data of the serial port or socket to the TX
buffer of socket 12.

19- PL_REDIR_SOCK13: Redirects RX data of the serial port or socket to the TX
buffer of socket 13.

20- PL_REDIR_SOCK14: Redirects RX data of the serial port or socket to the TX
buffer of socket 14.

21- PL_REDIR_SOCK15: Redirects RX data of the serial port or socket to the TX
buffer of socket 15.

*In this list, the term "serial port" actually refers to "serial channel".

Enum pl_io_num

Enum pl_io_num contains the list of constants that refer to available GPIO lines. Use
these constants when selecting the line with the io. object (see the io.num
property).

Note that GPIO lines are of unidirectional type and require explicit configuration
as outputs or inputs. Some lines are configured as inputs or outputs automatically
-- see the notes at the bottom of the page.

The DS1206N-RS board and the DS1206 controller have the RS232
transceiver IC onboard. This IC "dictates" the GPIO line direction for certain
lines. Do not try to use GPIO lines 0, 2, 4, and 6 as outputs -- this can
permanently damage the hardware.

Enum pl_io_num includes the following constants:

0- PL_IO_NUM_0_RX0_INT0(1): General-purpose I/O line 0 (P0.0). This line is also
the RX/W1in/din input of the serial port(3) 0 and
the interrupt line 0.

294 301

194

379

190 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

1- PL_IO_NUM_1_TX0_INT1(2):General-purpose I/O line 1 (P0.1). This line is also
the TX/W1out/dout output of the serial port 0
and the interrupt line 1.

2- PL_IO_NUM_2_RX1_INT2(1): General-purpose I/O line 2 (P0.2). This line is also
the RX/W0&1in/din input of the serial port 1 and the
interrupt line 2.

3- PL_IO_NUM_3_TX1_INT3(2):General-purpose I/O line 3 (P0.3). This line is also
the TX/W1out/dout output of the serial port 1 and
the interrupt line 3.

4- PL_IO_NUM_4_RX2_INT4(1): General-purpose I/O line 4 (P0.4). This line is also
the RX/W0&1in/din input of the serial port 2 and the
interrupt line 4.

5- PL_IO_NUM_5_TX2_INT5(2):General-purpose I/O line 5 (P0.5). This line is also
the TX/W1out/dout output of the serial port 2 and
the interrupt line 5.

6- PL_IO_NUM_6_RX3_INT6(1): General-purpose I/O line 6 (P0.6). This line is also
the RX/W0&1in/din input of the serial port 3 and the
interrupt line 6.

7- PL_IO_NUM_7_EMPTY: Not implemented.

8- PL_IO_NUM_8_PWROUT: Controls the power output on pin 9 of the DB9M
connector (this applies only to DS1206N-RS and
DS1206 devices). Power will be ON when this output
is enabled (io.enabled= 1- YES) and set to HIGH
(io.state= 1- HIGH).

PL_IO_NULL: This is a NULL line that does not physically exist.
The state of this line is always detected as LOW.
Setting this line has no effect.

Notes:

1.When a serial port is in the UART mode (ser.mode = 0-
PL_SER_MODE_UART) this line is automatically configured to be an input when
this serial port is enabled (ser.enabled = 1- YES) and returns to the previous
input/output and high/low state when this serial port is closed (ser.enabled= 0-
NO).

2. When a serial port is in the UART mode (ser.mode= 0- PL_SER_MODE_UART) this
line is automatically configured to be an output when the serial port is enabled
(ser.enabled= 1- YES) and returns to the previous input/output and high/low
state when the serial port is closed (ser.enabled= 0- NO).

3. In this list, the term "serial port" actually refers to "serial channel".

Enum pl_io_port_num

Enum pl_io_port_num contains the list of available 8-bit GPIO ports. Use these
constants when selecting the port with the io. object (see the io.portnum
property).

Note that GPIO lines are of unidirectional type and require explicit configuration
as outputs or inputs. Some lines are configured as inputs or outputs automatically
-- see Enum pl_io_num for details.

The DS1206N-RS board and the DS1206 controller have RS232 transceiver IC
onboard. This IC defines which I/O lines of the device should be configured as

379

380 409

405

294 302

194

189

191Platforms

©2000-2011 Tibbo Technology Inc.

inputs, and which- as outputs. Specifically, do not try to use I/I lines 0, 2, 4,
and 6 as outputs -- this can permanently damage the hardware.

Enum pl_io_port_num includes only one constant:

0- PL_IO_PORT_NUM_0: 8-bit port 0 (P0). Contains I/O lines 0-7.

Enum pl_int_num

Enum pl_int_num contains the list of constants that refer to available interrupt
lines. Interrupt lines are mapped to GPIO lines (this mapping can't be altered).
Keep in mind that for an interrupt line to work you need to configure the
corresponding GPIO line as input.

Enum pl_int_num for this platform includes the following constants:

PL_INT_NUM_0: Interrupt line 0 (mapped onto I/O line 0).

PL_INT_NUM_1: Interrupt line 1 (mapped onto I/O line 1).

PL_INT_NUM_2: Interrupt line 2 (mapped onto I/O line 2).

PL_INT_NUM_3: Interrupt line 3 (mapped onto I/O line 3).

PL_INT_NUM_4: Interrupt line 4 (mapped onto I/O line 4).

PL_INT_NUM_5: Interrupt line 5 (mapped onto I/O line 5).

PL_INT_NUM_6: Interrupt line 6 (mapped onto I/O line 6).

PL_INT_NUM_7: Interrupt line 7 (mapped onto I/O line 7).

PL_INT_NULL: This is a NULL interrupt line that does not physically
exist.

Enum pl_sock_interfaces

Enum pl_sock_interfaces contains the list of network interfaces supported by the
platform:

0- PL_SOCK_INTERFACE_NULL: Null (empty) interface.

1- PL_SOCK_INTERFACE_NET (default): Ethernet interface .

3- PL_SOCK_INTERFACE_PPP: PPP interface .

4- PL_SOCK_INTERFACE_PPPOE: PPPoE interface .

Common Information

Supported Variable Types

Supported Functions

GPIO Type

RTS/CTS Remapping

189

194

358

366

369

192

192

194

195

192 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Serial port FIFOs

Clock Frequency (PLL) Control

Special Configuration Section of the EEPROM

Device Serial Number

Flash Memory Configuration

LEDs

Setup (MD) Button (Line)

Connecting GA1000

Debug Communications

8.1.10.1Supported Variable Types

The following variable types are supported by all devices:

Byte

Word

Dword

Char

Short (integer)

Long

Real (float)

Boolean

User-defined structures

User-defined enumeration types

For general type description see Variables and Their Types .

8.1.10.2Supported Functions

The following syscalls (platform functions) are supported by all:

String-related:

- Asc string character --> ASCII code;

- Chr ASCII code --> string character;

- Val numerical string--> 16-bit value (word or short);

- Lval numerical string --> 32-bit value (dword or long);

- Strtof numerical string --> real value;

- Bin unsigned 16-bit numeric value (word) --> binary numerical
string;

- Lbin unsigned 32-bit numeric value (dword) --> binary numerical
string;

- Str unsigned 16-bit numeric value (word) --> decimal numerical
string;

- Stri signed 16-bit numeric value (short) --> decimal numerical
string;

- Lstr unsigned 32-bit numeric value (dword) --> decimal numerical
string;

196

196

197

199

200

200

201

201

204

48

206

208

229

218

228

207

214

225

226

216

193Platforms

©2000-2011 Tibbo Technology Inc.

- Lstri signed 32-bit numeric value (long) --> decimal numerical
string;

- Hex unsigned 16-bit numeric value (word) --> hexadecimal
numerical string;

- Lhex unsigned 32-bit numeric value (dword) --> hexadecimal
numerical string;

- Ftostr real value --> numerical string;

- Len gets the string length;

- Left gets a left portion of a string;

- Mid gets a middle portion of a string;

- Right gets a right portion of a string;

- Insert inserts a string into another string;

- Instr finds a substring in a string;

- Strgen generates a string using repeating substring;

- Strsum calculates 16-bit (word) sum of string characters' ASCII
codes;

- Ddstr dot-decimal value --> dot-decimal string;

- Ddval dot-decimal string --> dot-decimal value;

- Strand logical AND on corresponding data bytes from two
strings;

- Stror logical OR on corresponding data bytes from two strings;

- Strxor logical XOR on corresponding data bytes from two
strings.

Date and time serialization and de-serialization:

- Daycount given year, month, and date --> day number;

- Mincount given hours and minutes --> minute number;

- Year given day number --> year;

- Month given day number --> month;

- Date given day number --> date;

- Weekday given day number --> day of the week;

- Hours given minutes number --> hours;

- Minutes given minutes number --> minutes.

Hash calculation, encryption, and related functions:

- Aes128enc encrypts data according to the AES128 algorithm (not
supported on the EM500W and DS1100 platforms);

- Aes128dec decrypts data according to the AES128 algorithm (not
supported on the EM500W and DS1100 platforms);

- Rc4 encrypts/decrypts data according to the RC4 algorithm;

- Md5 calculates MD5 hash of a string;

- Sha1 calculates SHA-1 hash of a string;

- Random generates a random string;

Miscellaneous

- Cfloat checks the validity of a real value.

217

212

216

211

215

215

219

223

213

214

226

227

210

210

225

227

228

209

220

230

221

208

230

213

221

206

138 164

205

138 164

222

218

223

222

207

194 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

8.1.10.3GPIO Type

As for as GPIO lines go, Tibbo devices fall into two categories:

Devices with unidirectional GPIO lines: such devices require explicit configuration
of each GPIO line as input or output; and

Devices with bidirectional GPIO lines: GPIO lines of these devices work as outputs
and inputs at the same time.

To find out the type of GPIO lines on your device, refer to its platform
documentation (for example, EM1000's is here).

Devices with unidirectional GPIO lines

On such devices you need to explicitly enable or disable the output driver of each I/
O line (controlled by the io. object). When the device boots up all pins are
configured as inputs. If you want to use any particular I/O pin as the output,
enable this pin's output driver first (set io.enabled = 1-YES):

...

io.num= PL_IO_NUM_5 'select the line
io.enabled= YES 'enable output driver (you need to do this only
once)
io.state= LOW 'set the state
...

Make sure that your external circuitry does not attempt to drive the I/O lines
that have their output drivers enabled. Severe damage to the device and/or
your circuitry may occur if this happens!

When the driver is enabled (io.enabled= 1-YES) and you read the state of the pin,
you get back the state of your own output driver. To turn the line into an input,
switch the output driver off (ser.enabled= 0- NO). This will allow you to sense the
state of the external signal applied to the I/O line:

...

io.num= PL_IO_NUM_4 'just to select some line as an example
io.enabled= NO 'now the output driver is off
x=io.state 'read line state into x
...

There is the io.portenabled property as well. It allows simultaneous configuration
of all GPIO lines in the 8-bit I/O port.

Serial port lines also require proper configuration. Depending on the mode of the
serial port (see ser.mode) you need to set the following:

ser.mode TX/
W1out/

RX/W1in/
din input

RTS/
W0out/

CTS/
W0&1in/

143

294

298

302

378

409

195Platforms

©2000-2011 Tibbo Technology Inc.

dout
output

cout
output

cin input

0-
PL_SER_MODE_UAR

T

Will auto-
configure as

output(1)

Will auto-
configure as

input(1)

Requires
configuratio
n as output

(2)

Requires
configuratio
n as input(2)

1-
PL_SER_MODE_WIE

GAND

Requires
configuratio
n as output

Requires
configuratio
n as input

2-
PL_SER_MODE_CLO

CKDATA

Notes:

1. When This line does not require configuration, it will be configured automatically
as input or output when the port is opened. When the port is closed the line will
return to the input/output and high/low state it had before the port was opened.

2.If RTS/CTS remapping is supported, you need to configure the I/O pin to
which this line of the serial port is currently mapped.

Devices with bidirectional GPIO lines

I/O lines of these devices do not require explicit configuration as inputs or outputs.
All lines are "quasi-bidirectional" and can be viewed as open collector outputs with
weak pull-up resistors. To "measure" an external signal applied to an I/O line, set
this line to HIGH first, then read the state of the line. It is OK to drive the line LOW
externally when the same line outputs HIGH internally. Io.enabled and
io.portenabled properties exist, but only for compatibility with other platforms.
Writing to these properties has no effect and reading them always returns 1- YES
and 255 (all lines enabled) correspondingly.

To sense the state of the external signal applied to the I/O line, set the line to
HIGH first:

...
io.num= PL_IO_NUM 'just to select some line as an example
io.state= HIGH 'now we can read the line
x=io.state 'read line state into x
...

Serial port lines of devices with bidirectional GPIO do not require configuration as
well.

8.1.10.4RTS/CTS Remapping

Remapping feature allows you to select which GPIO line of your device will function
as the RTS line of a serial port . This is done through the ser.rtsmap property.
In the same manner, the CTS line of a serial port can be mapped to the interrupt
line of your choice (see ser.ctsmap).

Not all devices support this feature. To find out if your device allows RTS/CTS

380

383

386

195

298

302

378 415

403

196 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

remapping, refer to its platform documentation (for example, EM1000's is here).
This topic will also present the default mapping for CTS and RTS lines of your
device.

Note that on some devices you need to explicitly configure CTS lines as inputs
and RTS lines as outputs.

8.1.10.5Serial Port FIFOs

FIFO (first-in-first-out) is a type of hardware memory that stores the data in a
queue fashion. FIFOs are characterized by "depth". For example, 16-byte FIFO can
queue up to 16 bytes of data, so it has the depth of 16.

Serial ports usually have two independent FIFOs -- one for the outgoing (TX) data,
and one for the incoming (RX) data. The TX FIFO allows the system to place a
number of bytes into the queue, and then the serial port's hardware will take care
of their orderly transmission. The RX FIFO temporarily stores the incoming data until
the system gets a chance to process it.

To find out if your device's serial port(s) have FIFOs and what are the depths of
these FIFOs, refer to the device's platform documentation (for example, EM1000's
is here).

When the serial port is in the UART/full-duplex/flow control mode (ser.mode
= 0- PL_SER_MODE_UART, ser.interface = 0- PL_SER_SI_FULLDUPLEX, and

ser.flowcontrol = 1- ENABLED) the device is monitoring its CTS input to see if
attached serial device is ready to receive more data. If the CTS state changes to
"cannot transmit" the device will stop sending out data immediately. However, the
data that has already entered the FIFO will still be sent out. Therefore, after the
CTS state becomes "cannot transmit" the device can still send out a number of
characters that already went into the transmit FIFO.

8.1.10.6Clock Frequency (PLL) Control

Some devices support clock frequency (PLL) control. When the PLL is on, the
system is running at the highest possible frequency. When the PLL is off, the
system is running at a reduced frequency. For example, the EM1000 can run at
88.4736MHz (PLL on) or 11.0592MHz (PLL off).

To find out if your device allows frequency control and what particular frequencies
it can operate on, refer to this device's platform documentation (for example,
EM1000's is here).

The clock frequency affects all aspects of device operation that rely on this clock.
Naturally, program execution speed, too, depends on the clock frequency. Serial
port baudrates (see ser.baudrate) in the UART mode (ser.mode = 0-
PL_SER_MODE_UART) also depend on the main clock. Finally, the frequency of the
square wave generated by the beep. object depends on the main clock as well.
The period of the on_sys_timer event of the sys. is not affected by the PLL
mode.

There is a way to set the baudrate in the clock-independent (and,
actually, platform-independent) way -- see ser.div9600 property for
details (example of use can be found in the Serial Settings topic). For
the beep object, you just have to set the beep.divider correctly
depending on the current PLL mode.

For PLL control, the sys. object has a sys.currentpll read-only property and

143

194

143

378 380

409 408

407

143

143

378 402 380 409

232

533 526

404

390

232

526 531

197Platforms

©2000-2011 Tibbo Technology Inc.

sys.newpll method. See PLL Management topic- it explains how to switch the
PLL on and off.

After the external reset (see sys.resettype), devices with PLL control may boot
with the PLL on or off. Refer to the "Platform-dependent Programming Information"
topic inside your device's platform specifications section for more information.

8.1.10.7Special Configuration Section of the EEPROM

All Tibbo devices have an EEPROM memory (accessible through the stor. object).

Bottom 28 bytes of the EEPROM form a so-called "special configuration section".
This section includes:

8 bytes for storing the MAC address of the device;

20 bytes for storing the password of the device.

By default, the special configuration area is not accessible to your application- the
stor.base property takes care of that. Unless you change it, this property
specifies that your application's storage area starts at address 29. To see the MAC
or password data, set the stor.base to 1. Reminder: EEPROM addresses are
counted from 1.

MAC address

Bytes 1-8 of the EEPROM store the MAC address of the device. On power-up, the
MAC address is read out from the EEPROM and programmed into the Ethernet
controller. You can always check the current MAC through the net.mac read-
only property of the net. object but there is no direct way to change it. Instead,
you can change the MAC address data in the EEPROM itself. Next time the device
boots up, it will start using this new address.

MAC address data in the EEPROM has a special format -- you have to follow it if
you want the MAC to be recognized by the firmware (TiOS). Here is this format:

addr1 addr2 addr3 addr4 addr5 addr6 addr7 addr8

6 MAC0 MAC1 MAC2 MAC3 MAC4 MAC5 Checksum

The byte at address 1 must be set to 6- this means that 6 bytes of data follow
(MAC address consists of 6 bytes). Addresses from 2 to 7 carry the MAC address
itself. Address 8 stores the checksum, which is calculated like this:

255-(modulo8_sum_of_addr_1_through_7)

Here is a sample code that stores new MAC address into the EEPROM and then
reboots the device:

dim s as string
dim x as byte
...
s= "0.2.123.124.220.240" 'supposing, we want to set this MAC

532 529

535

522

523

360

358

198 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

...

...
s=chr(6)+ddval(s) 'added first byte (always 6) and converted
readable MAC into bytes
x=255-strsum(s) 'calculated checksum and assigned the result to a
BYTE variable ("modulo 8" checksum)
s=s+chr(x) 'now our string is ready

stor.base(1) 'will access the EEPROM from the bottom
x=stor.set(s,1) 'save the data
if x<>len(s) then 'it is a good programming practive to check the
result

'failed
else

sys.reboot 'new MAC set, reboot!
end if

...

There are limitations on what MAC address you can set. When loading the MAC into
the Ethernet controller, the device always resets the first byte of this address to 0.
For example, if you set the MAC to 1.2.3.4.5.6 then the actual MAC used by the
device will be 0.2.3.4.5.6.

If you write incorrect MAC data (wrong "length" byte or erroneous
checksum), the device will ignore the stored MAC and boot up with the
default MAC, which is 0.1.2.3.4.100.

Password

Bytes 9-28 store device password . The password is stored in the following
format:

addr9 up to 16 bytes 3 bytes

len password MD5 check data

The byte at address 9 indicates the length of the password (16 bytes max). This is
followed by the password itself, followed by 3 check bytes. These bytes are first 3
bytes of the md5 hash calculated over the combined length and password data
bytes.

TiOS itself can accept any binary password with 0-16 bytes length (zero means "no
password protection"). TIDE software, however, always sets 16-byte passwords.
These are MD5 hashes of the actual passwords you type into Enter Device
Password and Change Device Password dialogs.

Here is a code snippet that verifies if the password set for the device is really
DEVICE_PASSWORD ("Tibbo" in the example below). If the EEPROM data is
incorrect, the code sets the right data and reboots the device. By using this sort of
code in your project you can make your devices self-protect themselves. This will
spare you from manually setting the password for each device through TIDE.

41

218

199Platforms

©2000-2011 Tibbo Technology Inc.

'--
Const DEVICE_PASSWORD="Tibbo"

'==
Sub On_sys_init()

Dim s As String(16)
Dim s2 As String(20)
Dim check As String(3)
Dim x As Byte

'take the hash of password (this is what is supposed to be stored)
s=md5(DEVICE_PASSWORD,"",MD5_FINISH,Len(DEVICE_PASSWORD))
check=md5(chr(16)+s,"",MD5_FINISH,17)

'see if this password is already set
x=stor.base 'will restore the original value later
stor.base=9 'this is where password data recides
s2=stor.getdata(1,20)
If asc(mid(s2,1,1))<>16 Or mid(s2,2,16)<>s Or mid(s2,18,3)<>check Then

'password data in the EEPROM is incorrect! -- set the password
again

stor.setdata(chr(16)+s+check,1)
sys.reboot

End If
stor.base=x
...

8.1.10.8Device Serial Number

Some Tibbo devices carry a unique serial number, and some devices even allow a
portion of this serial number to be altered once.

To find out if your device contains a unique serial number and all the particulars
regarding this number, refer to this device's platform documentation (for example,
EM1000's is here).

To read the serial number of your device, use the sys.serialnum R/O property. On
devices without the serial number, this will return an empty string. On devices with
the serial number, this will return the entire serial number including, if any, the
programmable portion thereof.

use the sys.setserialnum method to set the programmable portion of the serial
number. If your device does not contain a user-programmable serial number field,
this method will return 1- NG.

Be careful -- you can only set the programmable portion of the serial
number once. There is no way to correct a mistake!

143

534

535

200 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

8.1.10.9Flash Memory Configuration

Tibbo devices differ in their flash memory size and configuration. As Sharing Flash
Between your Application and Data explains, your device may share a single
flash IC between the firmware, compiled Tibbo BASIC application, and application's
data (accessible through the fd. object). Alternatively, there may be a
dedicated flash IC for firmware/application, and another IC for the fd. object's data.
This second IC may not be present on the device itself.

To find out what flash memory arrangement your device utilizes, refer to your
device's platform documentation (for example, EM1000's is here).

8.1.10.10Status LEDs

BASIC-programmable devices supplied by Tibbo have one or two pairs of LEDs (or
lines to control them).

Devices with 2 pairs of LEDs

On such devices, the first LED pair is comprised of green (SG) and red (SR) status
LEDs, the second pair -- of green (EG) and yellow (EY) Ethernet LEDs.

Status LEDs have multiple functions:

When the device is in the firmware upgrade mode, these LEDs indicate the status
of the firmware upload process.

When the device is under TiOS firmware control and Tibbo BASIC application is
not running, these LEDs show current Tibbo BASIC application status.

When the Tibbo BASIC application is running, status LEDs are under the control of
the pat. object.

The following table summarizes predefined status LED patterns:

Firmware upgrade mode

Green LED blinks slowly File upload completed successfully.

One long and one short
"blink" of red LED

Communications error encountered during
the serial file transfer.

One long and two short
"blinks" of red LED

FLASH memory failure.

Normal operation, Tibbo BASIC application not running

Fast-blinking GRGRGR...
pattern

 TiOS firmware not loaded or corrupted.

Fast-blinking BBBB...
pattern (B= red and green
together)

Tibbo BASIC application loaded but cannot
run due to insufficient variable (RAM)
memory

Fast-blinking G-G-G-...
pattern

Tibbo BASIC application loaded but not
running.

Fast-blinking R-R-R-...
pattern

Tibbo BASIC application not loaded or
corrupted.

237

236

143

363

201Platforms

©2000-2011 Tibbo Technology Inc.

Ethernet LEDs indicate the following:

Link/Data LED (green) is turned on when live Ethernet cable is plugged into the
device. The LED blinks whenever an Ethernet packet is received.

100BaseT LED (yellow) is turned on when the device links with the hub at 100Mb.
The LED is off when the link is established at 10Mb.

Devices with a single LED pair

On such devices, there are green (SG) and red (SR) status LEDs (or lines to control
them). They function just as described above, but with one caveat: the brightness
of these LEDs is indicative of the current Ethernet link state. When live Ethernet
cable is not plugged into the device, the LEDs "play" patterns at a reduced
brightness. When live Ethernet cable is plugged into the device, the LEDs "play"
patterns at full brightness.

On devices with a single LED pair, there is no indication for the 100BaseT/10BaseT
connection mode.

Some such devices feature a single third LED (or line to control it). This LED
indicates current Ethernet link status: it will be on when live Ethernet cable is
plugged.

8.1.10.11Setup (MD) Button (Line)

Tibbo boards* and external controllers (such as the DS1206) have a button
called "setup" or "MD" button ("MD" abbreviation stands for "mode"). Tibbo modules
(such as the EM1000) have an MD pin for connecting an external button.

The setup button (line) has three functions:

When a Tibbo BASIC application is running, it can use the button for its own
purposes (see the button. object).

When the device is password-protected , keeping the button pressed while
accessing the device from TIDE allows to bypass the password. This is the way
to reset the password on the device.

When the device is powered up (exits from the hardware reset) with the button
pressed (line pulled low), it enters a firmware upgrade mode in which new TiOS
firmware, possibly with compiled Tibbo BASIC application attached, can be
uploaded into the device. If the device is powered up with the setup button not
pressed (line not pulled low), the device starts the execution of the TiOS
firmware (if loaded).

* This only applies to boards that carry one of Tibbo modules or directly
incorporate BASIC-programmable hardware (such as the T1000 ASIC).

8.1.10.12Connecting GA1000

GA1000 is an add-on Wi-Fi module implementing 802.11b/g protocols (for
documentation see Programmable Hardware Manual). This add-on device cannot
work by itself and requires "external brains" in the form of one of Tibbo devices.

GA1000 interface

186

143

234

41

202 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

The GA1000 communicates with Tibbo devices through an SPI interface. Your
device will control the GA1000 through five GPIO lines:

CS -- SPI bus, chip select (active low);

CLK -- SPI bus, clock;

DI -- SPI bus, data in (must be connected to the GA1000's DO);

DO -- SPI bus, data out (must be connected to the GA1000's DI);

RST -- reset (active low). This line can be eliminated -- see below for details.

On platforms with unidirectional GPIOs lines, do not forget to configure
CS, CLK, DO, and RST as outputs. DI must be configured as input. The wln.

 object won't do this automatically.

See Configuring Interface Lines topic of the wln. object's manual for more
information on proper selection and configuration of GPIO lines on various devices
(platforms).

Providing hardware reset

The wln. object directly controls CS, CLK, DI, and DO lines. Your application,
however, must take care of the proper hardware reset for the GA1000. There are
two methods for doing this:

Use a dedicated GPIO line to act as the RST line of the GA1000 interface (shown
on diagram A below):

io.lineset(WLN_RST,LOW) 'apply reset (assuming that WLN_RST is a constant
that defines which GPIO line is connected to the GA1000's RST)
io.lineset(WLN_RST,HIGH) 'remove reset

Use 2 NAND gates to combine CS and CLK signals and produce the reset signal for
the GA1000 (shown on diagram B). This approach takes advantage of the fact
that during SPI communications, CLK line will never be LOW while the CS line is
HIGH. Schematic diagram on figure B generates reset when CS=HIGH and
CLK=LOW. This way you save one GPIO line of your programmable module. Here is
the code that will reset the GA1000:

io.lineset(WLN_CS,HIGH) 'set the CS line HIGH
io.lineset(WLN_CLK,LOW) 'apply reset
io.lineset(WLN_CLK,HIGH) 'remove reset

194

536

545 536

536

http://en.wikipedia.org/wiki/Serial_peripheral_interface

203Platforms

©2000-2011 Tibbo Technology Inc.

Tibbo devices differ in whether the CS, CLK, DI, and DO lines are remappable. On
devices with remappable lines, you can choose any set of GPIOs to control the
GA1000. On devices where remapping isn't provided, you just have to use
"prescribed" GPIO lines. For information on this, see Miscellaneous information
section of your platform's documentation (for example, EM1000W's is here).

Special case -- the EM500

Diagram C shows the recommended way of connecting the GA1000 to the EM500
module. GPIO lines are a precious commodity on the EM500 -- there are only eight
of them available. As seen on the diagram C, you can get away with using only
three lines to control the GA1000 (against the standard five lines). One line is saved
by producing the reset out of CS and CLK lines. The second line is saved because
EM500's bidirectional GPIOs allow interconnecting DI and DO. The EM500 does
not allow remapping of GA1000 lines, so GPIO line assignment shown below cannot
be changed.

143

138

194

204 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

8.1.10.13Debug Communications

When designing the debug communications for exchanging debug information
between the TIDE and the target, we had two important goals:

Allow maximum flexibility for your application and occupy minimum resources on
the target.

Allow for fast and efficient debug communications.

The resulting debug communications system:

Does not even require a "proper" IP address on the target side.

Allows you to freely change the IP address of the target while debugging.

"Occupies" a single UDP port (65535) on the target, and even this port can be
used by your program in most cases.

Your PC running TIDE sends debug messages as UDP datagrams, to target's port
65535. These messages include the MAC address of the target on which you are
debugging your application.

The UDP port 65535 can still be used by your BASIC application. The target
recognizes a datagram received on this port as a debug command only if this
datagram starts with an underscore (_).

UDP datagrams received on UDP port 65535 that do not start with an underscore
are not interpreted as debug commands by the target. Such datagrams are sent to
your application for processing.

There are two slightly different communication modes for Tibbo devices. You can
select them in the Project Settings dialog, from the transport drop-down list.

UDP broadcast transport

With this selection, debug commands are sent through the Ethernet network as UDP
broadcasts. They are, therefore, received by all devices on your local network

38

205Platforms

©2000-2011 Tibbo Technology Inc.

segment. Only the addressed Tibbo device will respond to the command. This is
because each debug command contains a field specifying the MAC address of the
target device. This method unnecessarily burdens all devices on the local network
segment with having to "look at" all debug commands being transmitted. Also, some
network equipment limits the amount of UDP broadcasts that can pass through it in
one second. This may slow down your debug comms with the target.

WinPCap transport

With this selection, debug commands are sent through the Ethernet network as
unicast UDP datagrams -- the target device is addressed directly. This method is
the preferred way of communicating with Tibbo devices. The method relies on a
WinPCap library that must be installed together with TIDE software. You must have
seen the request for this during TIDE installation. With WinPCap transport, only the
target device receives the debugging commands, and there is no issue with slow
comms because of restrictive network equipment.

In most cases, debugging commands sent by TIDE cannot go across
gateways (routers). This means the target and TIDE must reside on the
same network segment -- remote debugging is not possible.

Also, debugging is not possible via Wi-Fi ports of Tibbo devices.

8.1.10.14Serial Channels vs. Serial Ports

Enter topic text here.

Function Reference
Function reference section is a repository for all functions (syscalls) that have ever
been created. The platform you are working with does not necessarily support
every function. See your platform specifications - you will find the list of support
functions there.

Aes128dec Function

Function: Encrypts data in 16-byte blocks according to the AES128
algorithm.

Syntax: aes128enc(byref key as string, byref plain as string)
as string

Returns: Encrypted data (which will consist of complete 16-
character blocks).

See Also: aes128enc , rc4

Part Description

key Encryption key. Must be 16 characters long, or NULL string
will be returned.

plain Plain (unencrypted) data. Will be processed in 16-byte

138

206 222

206 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

blocks. Last incomplete block will be padded with zeroes.

Details

Aes128enc Function

Function: Decrypts data in 16-byte blocks according to the AES128
algorithm.

Syntax: aes128dec(byref key as string, byref cypher as string)
as string

Returns: Decrypted data (which will consist of complete 16-
character blocks).

See Also: aes128dec , rc4

Part Description

key Encryption key. Must be 16 characters long, or NULL string
will be returned.

cypher Encrypted data, must consist of one or more complete 16-
character blocks, or NULL string will be returned.

Details

Asc Function

Function: Returns the ASCII code of the leftmost character of the
string.

Syntax: asc(byref sourcestr as string) as byte

See Also: Chr

Part Description

sourcestr Input string; the function will return ASCII code of the
leftmost character of this string.

Details

205 222

208

207Platforms

©2000-2011 Tibbo Technology Inc.

Examples

x = asc("123") ' result will be 49 (ASCII code of '1')

Bin Function

Function: Converts unsigned 16-bit numeric value (word) into its
binary string representation.

Syntax: bin(num as integer) as string

See Also: str , lstr , stri , lstri , lbin , hex , lhex , val
, lval

Part Description

num Value to convert.

Details

Standard "&b" prefix is added at the beginning of the string.

Examples

dim s as string

s = bin(34) ' result will be '&b100010'

Cfloat Function

Function: Verifies whether the value of a floating-point variable is
valid. Returns 0- VALID if the floating point value is OK,
and 1- INVALID if the floating-point value is invalid.

Syntax: cfloat(byref num as real) as valid_invalid

See Also: strtof , ftostr

Part Description

num Variable to check.

Details

Floating-point calculations can lead to invalid result (#INF, -#INF errors, as per
IEEE specification). When your application is in the debug mode you will get a

225 216 226 217 214 212 216

229 218

228 211

27

208 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

FPERR exception if such an error is encountered. In the release mode the Virtual
Machine won't generate an exception, yet your application may need to know if a
certain floating-point variable contains correct value. This is where cfloat function
comes handy.

Examples

dim r1 as real
dim v as invalid_valid

dim r1=10E30
v=cfloat(r1) 'v will return 0- VALID
r1=r1*10E20 'at this point you will get FPERR exception if you are in the
debug mode
v=cfloat(r1) 'v will return 1- INVALID

Chr Function

Function: Returns the string that consists of a single character with
ASCII code asciicode.

Syntax: chr(asciicode as byte) as string

See Also: Asc

Part Description

asciicode ASCII code of the character to return.

Details

It is also possible to use this function within string definitions, as shown in the
example below.

Examples

dim x as byte
dim s as string

x=49
s = chr(x) ' result will be '1'
s = "FooBar" + chr(13) ' would add a carriage return to the end of the
string

Date Function

Function: Returns the date for a given day number.

Syntax: date(daycount as word) as byte

29

206

209Platforms

©2000-2011 Tibbo Technology Inc.

Returns: Date in the 1-31 range.

See Also: year , month , weekday , daycount , hours ,
minutes , mincount

Part Description

daycount Day number. Base date for the day count is 1-JAN-2000
(this is day #0).

Details

Examples

b = date(366) ' result will be 1 -- because day 366 is actually January 1st,
2001.

Daycount Function

Function: Returns the day number for a given year, month, and
date.

Syntax: daycount(year as byte, month as byte, date as byte)
as word

Returns: Day number elapsed since 1-JAN-2000 (this is day #0).
The range is 0-36524.

See Also: year , month , date , weekday , hours ,
minutes , mincount

Part Description

year The year is supplied as offset from year 2000 (so, it is 6 for
year 2006). Acceptable year range is 0-99 (2000-2099).

month 1-12 for January-December

date Date of the month

Details

If any input parameter is illegal (year exceeds 99, month exceeds 12, etc.) this
syscall will return 65535. This error value cannot be confused with an actual valid
day number since the maximum day number recognized by this syscall is 12-DEC-
2099 (day number 36524).

Examples

230 221 230 209 213

221 220

230 221 208 230 213

221 220

210 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

w = daycount(06, 10, 15) ' result will be 2479 (the serial day number for
October 15th, 2006)

Ddstr Function

Function: Converts "dot-decimal value" into "dot-decimal string".

Syntax: ddstr(byref str as string) as string

Returns: A dot-separated string consisting of decimal
representations of all binary values in the input string.
Each decimal value will be in the 0-255 range.

See Also: ddval

Part Description

str String of binary values to be converted into a dot-decimal
string.

Details

This function is convenient for converting groups of bytes representing binary data
(such as IP or MAC addresses) into their string representation.

Examples

dim s as string

s = chr(192)+chr(168)+chr(100)+chr(40) 'produce a string that contains these
values: 192,168,100,40
s = ddstr(s) 'now s will be equal to "192.168.100.40"

Ddval Function

Function: Converts "dot-decimal string" into "dot-decimal value".

Syntax: ddval (byref str as string) as string

Returns: A string of binary values.

See Also: ddstr

Part Description

str Dot-decimal string to be converted into a string of binary
values. This string should comprise one or more dot-
separated decimal values in the 0-255 range. Values that
exceed 255 will produce an overflow, so result will be
incorrect. If any other character other than "0"-"9" or "." is
encountered then all digits after this character and up to

210

210

211Platforms

©2000-2011 Tibbo Technology Inc.

the next "." (if any) will be ignored. Leading spaces before
each decimal value are allowed.

Details

This function is convenient for converting string representation of groups of bytes
(such as IP or MAC addresses) into their binary form.

Examples

dim s as string

s = "192_3.1254.. 30" 'One value has invalid character in it ("_") and "3"
after this character will be ignored. Dot-decimal string. Another value --
1254 -- is out of range. Yet another value is missing and will be replaced
with 0.
s = ddstr(s) 'now s will contain these values: 192, 230, 0, 30.

Ftostr Function

Function: Converts real value into its string representation.

Syntax: ftostr(byref num as real, mode as ftostr_mode, rnd as
byte) as string

See Also: strtof , cfloat , str , val

Part Description

num Real value to convert.

mode Desired output format:

0- FTOSTR_MODE_AUTO: Choose between plain and
mantissa/exponent format automatically. If mantissa/
exponent format results in shorter string it will be used,
otherwise plain format will be used.

1- FTOSTR_MODE_ME: Use mantissa/exponent format.

2- FTOSTR_MODE_PLAIN: Use plain format, not mantissa/
exponent representation.

rnd Number of digits to round the result to (total number of
non-zero digits in the integer and fractional part of
mantissa).

Details

Ftostr function offers much more control over the format of the output string
compared to similar functions found on other systems. For starters, you can select
whether you want to see mantissa/exponent, "regular" format, or let the function
decide which format to use. Additionally, you control the rounding i.e. get to
choose how many digits should be displayed -- and this influences the

228 207 225 229

212 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

representation both of the fractional and integer part of the value.

Examples below illustrate what you can do with ftostr. The ftostr has a counterpart
-- fstr -- which is invoked implicitly whenever you assign a real to a string
(string=real). Fstr is just like ftostr but mode and rnd parameters are fixed at 0-
FTOSTR_MODE_AUTO and "maximum number of digits possible".

Examples

dim r1 as real
dim s as string

'demonstrate output formats
r1=10000000000.0 'notice '.0' -- it is necessary or compilier will generate
an error
s=ftostr(r1,FTOSTR_MODE_ME,11) 'result will be '1E+010'
s=ftostr(r1,FTOSTR_MODE_PLAIN,11) 'result will be '10000000000'
s=ftostr(r1,FTOSTR_MODE_AUTO,11) 'result will be '1E+010' because this
representation is more
compact

'demonstrate rounding
r1=1234567.125
s=ftostr(r1,FTOSTR_MODE_AUTO,15) 'result will be '1234567.125'
s=ftostr(r1,FTOSTR_MODE_AUTO,9) 'result will be '1234567.13'
s=ftostr(r1,FTOSTR_MODE_AUTO,2) 'result will be '1200000'

s=r1 'fstr will be used, result will be '1234567.125'

Hex Function

Function: Converts unsigned 16-bit numeric value (word) into its
HEX string representation.

Syntax: hex(num as integer) as string

See Also: str , lstr , stri , lstri , bin , lbin , lhex , val
, lval

Part Description

num Value to convert.

Details

Standard "&h" prefix is added at the beginning of the string.

Examples

dim s as string

s = hex(34) 'result will be '&h22'

225 216 226 217 207 214 216

229 218

213Platforms

©2000-2011 Tibbo Technology Inc.

Hours Function

Function: Returns the hours value for a given minutes number.

Syntax: hours (mincount as word) as byte

Returns: Hours in the 0-23 range.

See Also: year , month , date , weekday , daycount ,
minutes , mincount

Part Description

mincount The number of minutes elapsed since midnight (00:00 is
minute #0). Maximum mincount number is 1439 (23:59).

Details

If a value higher than 1439 is supplied, this call will return 255. This error value
cannot be confused with valid output since normal hours value cannot exceed 23.

Examples

b = hours(620) ' result will be 10 (because this minute number is falls
between 10:00 and 11:00)

.Insert Function

Function: Inserts insert_str string into the dest_str string at the
insert position pos. Returns the new length of dest_str.

Syntax: insert(byref dest_str as string, pos as byte,byref
insert_str as string) as byte

See Also: ---

Part Description

dest_str The string to insert into.

pos Insert position in the dest_str.

insert_str The string to insert.

Details

This is an insert with overwrite, meaning that the insert_str will overwrite a portion
of the dest_str.

Dest_str length can increase as a result of this operation (but not beyond declared
string capacity). This will happen if the insertion position does not allow the

230 221 208 230 209

221 220

214 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

source_str to fit within the current length of the dest_string.

Examples

s = "FLIGHT XXX STATUS"
insert(s,8,"123") 's will now be 'FLIGHT 123 STATUS'

Instr Function

Function: Finds the Nth occurrence (defined by num, counting from
1) of a substring substr in a string sourcestr. Search is
conducted from position frompos (leftmost character has
position 1).

Syntax: instr(frompos as byte,byref sourcestr as string, byref
substr as string, num as byte) as byte

See Also: ---

Part Description

frompos Position in the sourcestr from which to start searching.
Leftmost character has position 1.

sourcestr Source string in which the substring is to be found.

substr Substring to search for within the source string.

num Occurrence number of the substr, counting from 1.

Details

This function returns position in a string or zero if the Nth occurrence of the
substring is not found.

Examples

x = instr(3,"ABCABCDEABC12","BC",2) ' result will be 10

Lbin Function

Function: Converts unsigned 32-bit numeric value (dword) into its
binary string representation.

Syntax: lbin(byref num as dword) as string

See Also: str , lstr , stri , lstri , bin , hex , lhex , val
, lval

225 216 226 217 207 212 216

229 218

215Platforms

©2000-2011 Tibbo Technology Inc.

Part Description

num Value to convert.

Details

Standard "&b" prefix is added at the beginning of the string.

Examples

dim s as string

s = lbin(2863311530) ' result will be '&b10101010101010101010101010101010'

Left Function

Function: Returns len leftmost characters of a string sourcestring.

Syntax: left(byref sourcestr as string, len as byte) as string

See Also: Right , Mid

Part Description

sourcestr String from which to take len leftmost characters.

len Number of characters to take.

Details

Examples

ss = left("ABCDE",3) ' result will be 'ABC

Len Function

Function: Returns the length of (number of characters in) the string
sourcestr.

Syntax: len(byref sourcestr as string) as byte

See Also: ---

223 219

216 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Part Description

sourcestr String whose length needs to be calculated.

Details

Examples

x = len("ABC") ' result will be 3

Lhex Function

Function: Converts unsigned 32-bit numeric value (dword) into its
HEX string representation.

Syntax: lhex(byref num as dword) as string

See Also: str , lstr , stri , lstri , bin , lbin , hex , val
, lval

Part Description

num Value to convert.

Details

Standard "&h" prefix is added at the beginning of the string.

Examples

dim s as string

s = lhex(65536) 'result will be '&h10000'

Lstr Function

Function: Converts unsigned 32-bit numeric value (dword) into its
decimal string representation.

Syntax: lstr(byref num as dword) as string

See Also: str , stri , lstri , bin , lbin , hex , lhex , val
, lval

225 216 226 217 207 214 212

229 218

225 226 217 207 214 212 216

229 218

217Platforms

©2000-2011 Tibbo Technology Inc.

Part Description

num Value to be converted to string.

Details

Can be invoked implicitly, through the string_var= dword_var expression (see
example below). Compiler is smart enough to pre-calculate constant-only
expressions involving implicit use of lstr function.

Examples

dim d as dword
dim s as string

d1=123456
s = lstr(d) 'explicit invocation. Result will be '123456'
s = d 'implicit invokation
s = 666666 'will be calculated at compilation -- no actual lstr function
invokation will be here

Lstri Function

Function: Converts signed 32-bit numeric value (long) into its
decimal string representation.

Syntax: lstri(byref num as long) as string

See Also: str , lstr , stri , bin , lbin , hex , lhex , val
, lval

Part Description

num Value to be converted to string.

Details

Can be invoked implicitly, through the string_var= long_var expression (see example
below). Compiler is smart enough to pre-calculate constant-only expressions
involving implicit use of lstri function.

Examples

dim l as long
dim s as string

l= -5123
s = lstri(l) 'explicit invocation.
s = l 'implicit invocation
s = lstri(-20) 'will be calculated at compilation -- no actual lstri
function invokation will be here

225 216 226 207 214 212 216

229 218

218 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Lval Function

Function: Converts string representation of a value into 32-bit value
(dword or long).

Syntax: lval(byref sourcestr as string) as dword

See Also: str , lstr , stri , lstri , bin , lbin , hex , lhex
, val

Part Description

sourcestr String to convert.

Details

Recognizes &b (binary) and &h (hexadecimal) prefixes. Can be invoked implicitly,
through the dword_var= string_var expression (see example below). Compiler is
smart enough to pre-calculate constant-only expressions involving implicit use of
lval function.

Examples

dim d as word
dim l as long
dim s as string

s = "4294967295"
d = lval(s) 'explicit invocation, result will be 4294967295
l = lval(s) '
d = s 'implicit invocation, result will be -1 (4294967295 -> &hFFFFFFFF -> -
1 for signed variable)
d = "2402" 'be calculated at compilation -- no actual lval function
invokation will be here

Md5 Function

Function: Generates MD5 hash on the str string.

Syntax: md5(byref str as string,byref input_hash as string,
md5_mode as md5_modes,total_len as word) as string

Returns: 16-character hash string; an empty string when invalid str
or input_hash argument was detected

See Also: sha1

Part Description

str String containing (the next portion of) the input data to
generate MD5 hash on. When md5_mode= 0- MD5_UPDATE,

225 216 226 217 207 214 212

216 229

223

219Platforms

©2000-2011 Tibbo Technology Inc.

this string must be 64, 128, or 192 characters in length. Any
other length will result in error and the function will return
an empty string. When md5_mode= 1- MD5_FINISH, this
string can have any length (up to 255 bytes).

input_hash Hash obtained as a result of MD5 calculation on the previous
data portion. Leave it empty for the first portion of data.
Use the result of MD5 calculation on the previous data
portion for the second and all subsequent portions of data.
The result of MD5 is always 16 characters long, so passing
the string of any other length (except 0 -- see above) will
result in error and this function will return an empty string.

md5_mode 0- MD5_UPDATE : Set this mode for all data portions except
the last one.

1- MD5_FINISH: Set this mode for the last data portion;
also use this selection if you only have a single data portion.

total_len Total length of processed data (in all data portions
combined). Only relevant when md5_mode= 1- MD5_FINISH.
That is, only relevant for the last or a single data portion.

Details

MD5 is a standard method of calculating hash codes on data of any size. The
amount of input data can often exceed maximum capacity of string variables (255
characters). The md5 method can be invoked repeatedly in order to process the
data of any size (see the example below).

Examples

Dim s, hash As String

'simple calculation on a short string
s="Sting to calculate MD5 on"
hash=md5(s,"",MD5_FINISH,Len(s))

'calculation on the entire contents of data in the 'text.txt 'file
romfile.open("text.txt")
hash=""
s=romfile.getdata(192) 'use max portions
While Len(s)=192
 hash=md5(s,hash,MD5_UPDATE,0)
 s=romfile.getdata(192)
Wend
hash=md5(s,hash,MD5_FINISH,romfile.size) 'last portion for whatever
unprocessed data is remaining in the file

Mid Function

Function: Returns len characters from a string sourcestr starting
from position pos.

Syntax: mid(byref sourcestr as string, frompos as byte, len as
byte) as string

220 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

See Also: Left , Right

Part Description

sourcestr String from which to take the middle section.

frompos First character to take. The leftmost character is counted
to be at position 1.

len Number of characters to take.

Details

Examples

s = mid("ABCDE",2,3) ' result will be 'BCD'.

Mincount Function

Function: Returns the minutes number for a given hours and minutes.

Syntax: mincount(hours as byte, minutes as byte) as word

Returns: Minute number elapsed since midnight (00:00). This value
is in the 0-1439 range.

See Also: year , month , date , weekday , daycount ,
hours , minutes

Part Description

hours An hour value, from 0 to 23.

minutes A minute value, from 0 to 59.

Details

If any input parameter is illegal (hours exceeds 23, minutes exceeds 59, etc.) this
syscall will return 65535. This error value cannot be confused with an actual valid
minute number since the maximum minute number cannot exceed 1439.

Examples

w = mincount(14, 00) ' result will be 840

215 223

230 221 208 230 209

213 221

221Platforms

©2000-2011 Tibbo Technology Inc.

Minutes Function

Function: Returns the minutes value for given minutes number.

Syntax: minutes(mincount as word) as byte

Returns: Minutes in the 0-59 range.

See Also: year , month , date , weekday , daycount ,
hours , mincount

Part Description

mincount The number of minutes elapsed since midnight (00:00 is
minute #0).

Details

If a value higher than 1439 is supplied, this call will return 255. This error value
cannot be confused with valid output since normal minutes value cannot exceed 59.

Examples

b = minutes(61) ' result will be 1 - this is the time 01:01.

Month Function

Function: Returns the month for a given day number.

Syntax: month(daycount as word) as pl_months

Returns: One of pl_months constants:

1- PL_MONTH_JANUARY: January.

2- PL_MONTH_FEBRUARY: February.

3- PL_MONTH_MARCH: March.

4- PL_MONTH_APRIL: April.

5- PL_MONTH_MAY: May.

6- PL_MONTH_JUNE: June.

7- PL_MONTH_JULY: July.

8- PL_MONTH_AUGUST: August.

9- PL_MONTH_SEPTEMBER: September.

10- PL_MONTH_OCTOBER: October.

11- PL_MONTH_NOVEMBER: November.

12- PL_MONTH_DECEMBER: December.

See Also: year , date , weekday , daycount , hours ,

230 221 208 230 209

213 220

230 208 230 209 213

222 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

minutes , mincount

Part Description

daycount Day number. Base date for the day count is 1-JAN-2000
(this is day #0).

Details

Examples

dim m as pl_months
m = month(32) ' result will be PL_MONTH_FEBRUARY - day number 32 was in
February 2000.

Random Function

Function: Generates a string consisting of len random characters.

Syntax: random(len as byte) as string

See Also: ---

Part Description

len Length of the string to generate.

Details

Rc4 Function

Function: Encrypts/decrypts the data stream according to the RC4
algorithm.

Syntax: rc4(byref key as string, skip as word, byref data as
string) as string

Returns: Processed data.

See Also: aes128enc , aes128dec

Part Description

key Encryption key, can have any length.

221 220

206 205

223Platforms

©2000-2011 Tibbo Technology Inc.

skip The number of "skip" iterations. These are additional
iterations added past the standard "key scheduling
algorithm". Set this argument to 0 to obtain standard
encryption results compatible with other systems.

data Data to encrypt/decrypt.

Details

With RC4 algorithm, the same function is used both for encrypting and decrypting
the data.

Right Function

Function: Returns len rightmost characters of a string sourcestr.

Syntax: right(byref sourcestr as string, len as byte) as string

See Also: Left , Mid

Part Description

sourcestr String from which to take len rightmost characters.

len Number of characters to take.

Details

Examples

s = right("ABCDE",3) ' result will be 'CDE'

Sha1 Function

Function: Generates SHA1 hash on the str string.

Syntax: sha1(byref str as string,byref input_hash as string,
sha1_mode as sha1_modes,total_len as word) as string

Returns: 20-character hash string; an empty string when invalid str
or input_hash argument was detected

See Also: md5

Part Description

str String containing (the next portion of) the input data to

215 219

218

224 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

generate SHA1 hash on. When sha1_mode= 0-
SHA1_UPDATE, this string must be 64, 128, or 192
characters in length. Any other length will result in error and
the function will return an empty string. When sha1_mode=
1- SHA1_FINISH, this string can have any length (up to 255
bytes).

input_hash Hash obtained as a result of SHA1 calculation on the
previous data portion. Leave it empty for the first portion of
data. Use the result of SHA1 calculation on the previous
data portion for the second and all subsequent portions of
data. The result of sha1 is always 20 characters long, so
passing the string of any other length (except 0 -- see
above) will result in error and this function will return an
empty string.

sha1_mode 0- SHA1_UPDATE : Set this mode for all data portions
except the last one.

1- SHA1_FINISH: Set this mode for the last data portion;
also use this selection if you only have a single data portion.

total_len Total length of processed data (in all data portions
combined). Only relevant when sha1_mode= 1-
SHA1_FINISH. That is, only relevant for the last or a single
data portion.

Details

SHA1 is a standard method of calculating hash codes on data of any size. The
amount of input data can often exceed maximum capacity of string variables (255
characters). The sha1 method can be invoked repeatedly in order to process the
data of any size (see the example below).

Examples

Dim s, hash As String

'simple calculation on a short string
s="Sting to calculate SHA1 on"
hash=sha1(s,"",SHA1_FINISH,Len(s))

'calculation on the entire contents of data in the 'text.txt 'file
romfile.open("text.txt")
hash=""
s=romfile.getdata(192) 'use max portions
While Len(s)=192
 hash=sha1(s,hash,SHA1_UPDATE,0)
 s=romfile.getdata(192)
Wend
hash=sha1(s,hash,SHA1_FINISH,romfile.size) 'last portion for whatever
unprocessed data is remaining in the file

225Platforms

©2000-2011 Tibbo Technology Inc.

Str Function

Function: Converts unsigned 16-bit numeric value (word) into its
decimal string representation.

Syntax: str(num as word) as string

See Also: lstr , stri , lstri , bin , lbin , hex , lhex , val
, lval

Part Description

num Value to be converted to string.

Details

Can be invoked implicitly, through the string_var= word_var expression (see
example below). Compiler is smart enough to pre-calculate constant-only
expressions involving implicit use of str function.

Examples

dim w as word
dim s as string

w=3400
s = str(w) 'explicit invocation.
s = w 'implicit invocation
s = 100 'will be calculated at compilation -- no actual str function
invokation will be here

Strand Function

Function: Calculates logical AND on data in str1 and str2 arguments.

Syntax: strand(byref str1 as string, byref str2 as string) as
string

Returns: Result of logical AND operation.

See Also: stror , strxor

Part Description

str1 Argument 1.

str2 Argument 2.

Details

This function treats data in str1 and str2 as two byte arrays. Logical AND operation

216 226 217 207 214 212 216

229 218

227 228

226 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

is performed on corresponding byte pairs (first byte of str1 AND first byte of str2,
etc.).

If one of the arguments contains less bytes, then this argument is padded with
zeroes prior to performing logical AND operation.

Strgen Function

Function: Generates a string of len length consisting of repeating
substrings substr.

Syntax: strgen(len as byte,byref substr as string) as string

See Also: ---

Part Description

len Length of the string to generate

substr Substring that will be used (repeatedly) to generate the
string

Details

Notice that len parameter specifies total resulting string length in bytes so the last
substring will be truncated if necessary to achieve exact required length. This
function is an expanded version of the STRING$ function commonly found in other
BASICs.

Examples

string1 = strgen(10,"ABC") ' result will be 'ABCABCABCA'.

Stri Function

Function: Converts signed 16-bit numeric value (short) into its
decimal string representation.

Syntax: stri(num as integer) as string

See Also: str , lstr , lstri , bin , lbin , hex , lhex , val
, lval

Part Description

num Value to be converted to string.

Details

225 216 217 207 214 212 216

229 218

227Platforms

©2000-2011 Tibbo Technology Inc.

Can be invoked implicitly, through the string_var= short_var expression (see
example below). Compiler is smart enough to pre-calculate constant-only
expressions involving implicit use of stri function.

Examples

dim sh as short
dim s as string

sh= -3400
s = stri(sh) 'explicit invocation.
s = sh 'implicit invocation
s = stri(-100) 'will be calculated at compilation -- no actual stri function
invokation will be here

Stror Function

Function: Calculates logical OR on data in str1 and str2 arguments.

Syntax: stror(byref str1 as string, byref str2 as string) as
string

Returns: Result of logical OR operation.

See Also: strand , strxor

Part Description

str1 Argument 1.

str2 Argument 2.

Details

This function treats data in str1 and str2 as two byte arrays. Logical OR operation
is performed on corresponding byte pairs (first byte of str1 OR first byte of str2,
etc.).

If one of the arguments contains less bytes, then this argument is padded with
zeroes prior to performing logical OR operation.

Strsum Function

Function: Calculates 16-bit (word) sum of ASCII codes of all
characters in a string.

Syntax: strsum(byref sourcestr as string) as word

See Also: ---

Part Description

sourcestr String to work on

225 228

228 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Details

This function is useful for checksum calculation.

Examples

w = strsum("012") ' will return 147 (48+49+50).

Strtof Function

Function: Converts string representation of a real value into a real
value.

Syntax: strtof(byref str as string) as real

See Also: ftostr , str , val

Part Description

str String to convert.

Details

You must keep in mind that floating-point calculations are inherently imprecise. Not
every value can be converted into its exact floating-point representation. Also,
strtof can be invoked implicitly. Examples below illustrates this.

Examples

dim r1 as real
dim s as string

s="456.125"
r1=strtof(s) 'r1 will be equal to 456.125. This conversion will be done
without errors.
s="123.200"
r1=strtof(s) '123.200 will be converted with errors. Actual result will be
123.25.
r1=s 'implicit invocation. Same result as for the line above.

Strxor Function

Function: Calculates exclusive OR (XOR) on data in str1 and str2
arguments.

Syntax: strxor(byref str1 as string, byref str2 as string) as
string

Returns: Result of logical XOR operation.

See Also: strand , stror

211 225 229

225 227

229Platforms

©2000-2011 Tibbo Technology Inc.

Part Description

str1 Argument 1.

str2 Argument 2.

Details

This function treats data in str1 and str2 as two byte arrays. Logical XOR operation
is performed on corresponding byte pairs (first byte of str1 XOR first byte of str2,
etc.).

If one of the arguments contains less bytes, then this argument is padded with
zeroes prior to performing logical XOR operation.

Val Function

Function: Converts string representation of a value into 16-bit value
(word or short).

Syntax: val (byref sourcestr as string) as word

See Also: str , lstr , stri , lstri , bin , lbin , hex , lhex
, lval

Part Description

sourcestr String to convert.

Details

Recognizes &b (binary) and &h (hexadecimal) prefixes. Can be invoked implicitly,
through the word_var= string_var expression (see example below). Compiler is
smart enough to pre-calculate constant-only expressions involving implicit use of
val function.

Beginning with release 2.0, this function also plays the role of vali function, which
has been removed.

Examples

dim w as word
dim sh as short
dim s as string

s="&hF222"
w = val(s) 'explicit invocation, result will be 61986
sh= val(s) 'explicit invocation, result will be -3550 (sh is a 16-bit signed
variable)
w = s 'implicit invocation
w = "2402" 'be calculated at compilation -- no actual val function
invokation will be here

225 216 226 217 207 214 212

216 218

230 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Vali Function

Vali function is no longer available. Use val function both for unsigned (word) and
signed (short) conversions.

Weekday Function

Function: Returns the day of the week for a given day number.

Syntax: weekday(daycount as word) as pl_days_of_week

Returns: One of pl_days_of_week constants:

1- PL_DOW_MONDAY: Monday.

2- PL_DOW_TUESDAY: Tuesday.

3- PL_DOW_WEDNESDAY: Wednesday.

4- PL_DOW_THURSDAY: Thursday.

5- PL_DOW_FRIDAY: Friday.

6- PL_DOW_SATURDAY: Saturday.

7- PL_DOW_SUNDAY: Sunday.

See Also: year , month , date , daycount , hours ,
minutes , mincount

Part Description

daycount Day number. Base date for the day count is 1-JAN-2000
(this is day #0).

Details

Examples

dim w as pl_days_of_week
w = weekday(0) ' result will be PL_DOW_SATURDAY - the was the day of the
week for the 1st of January 2000.

Year Function

Function: Returns the year for a given day number.

Syntax: year(daycount as word) as byte

Returns: Two last digits of the year (0 means 2000, 1 means 2001,
and so on.)

229

230 221 208 209 213

221 220

231Platforms

©2000-2011 Tibbo Technology Inc.

See Also: month , date , weekday , daycount , hours ,
minutes , mincount

Part Description

daycount Day number. Base date for the day count is 1-JAN-2000
(this is day #0).

Details

Examples

b = year(366) ' result will be 1 (this day number is in year 2001).

Object Reference
Object reference section is a repository for all objects that have ever been
created. The platform you are working with does not necessarily support every
object. See your platform specifications - you will find the list of supported
objects there.

Objects are...

Beep — generates buzzer patterns.

Button — monitors MD line (setup button).

Fd — manages flash memory file system and direct sector access.

Io — handles I/O lines, ports, and interrupts.

Kp — scans keypads of matrix and "binary" types.

Lcd — controls graphical display panels (several types supported).

Net — controls Ethernet port.

Pat — "plays" patterns on up to five LED pairs.

Ppp — accesses the Internet over the modem.

Pppoe — accesses the Internet over the ADSL modem.

Romfile — facilitates access to resource files (fixed data).

Rtc — keeps track of date and time.

Ser — up to 4 serial ports (UART, Wiegand, and clock/data modes).

Sock — socket comms (up to 16 UDP, TCP, and HTTP sessions).

Ssi — up to four serial synchronous interface channels (for SPI, I2C, etc.).

Stor — provides access to the EEPROM.

Sys — in charge of general device functionality.

Wln — handles Wi-Fi interface (requires GA1000 add-on module).

221 208 230 209 213

221 220

138

232

234

236

294

304

317

358

363

366

369

370

375

378

421

512

522

526

536

232 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Beep Object

The beep object allows you to generate "beep" patters using the beeper (buzzer)
attached to the CO pin of your device. "CO" stands for "clock output" and its
output can be actually used for anything, not just controlling beeper. Frequency
available on the CO pin is defined by the beep.divider property.

When the pattern starts playing, the CO line becomes an output automatically.
Therefore, you do not need to use the io.enabled property to configure this line
as output. When the pattern stops playing, the line will return to the input/output
and HIGH/LOW state that it had before the pattern started playing.

The pattern you play can be up to 16 steps long. Each "step" can be either
"-" (buzzer off), or "B" (buzzer on). You can also define whether the pattern will
only execute one or loop and play indefinitely. Additionally, you can make the
pattern play at "normal" or double speed.

You load the new pattern to play with the beep.play method. If the pattern is
looped it will continue playing until you changed it. If the pattern is not looped it
will play once and then the on_beep event will be generated.

Buzzer patters offer a convenient way to tell the user what your system is doing.
You can devise different patterns for different states of your device. You can use
these patterns together with LED patterns generated by the pat object.

Here is a simple example in which we generate three beeps on power up of the
device.

sub on_sys_init
beep.play("B-B-B",PL_PAT_CANINT)

end sub

To obtain a permanent, non-stop square wave on CO pin load the following pattern:

beep.play("B~",PL_PAT_CANINT)

8.3.1.1.Divider Property

Function: Sets the frequency of the square wave output on the CO
line.

Type: Word

Value Range: 0-65535, default= 1 (divide by 2)

See Also: ---

Details

Actual frequency can be calculated as base_frq/(2*beep.divider). Setting this
property to 0 is equivalent to 65536 (i.e. actual frequency will be

232

298

233

233

363

233Platforms

©2000-2011 Tibbo Technology Inc.

base_frq/131072).

Base_frq depends on your platform -- you will find this information in your device's
platform documentation (for example, EM1000's is here).

Most low-cost buzzers have resonant frequency at which they emit the loudest
sound. Check the specifications for your buzzer and set the divider accordingly.

8.3.1.2On_beep Event

Function: Generated when buzzer pattern finishes "playing".

Declaration: on_beep

See Also: Beep Object , beep.play

Details

This can only happen for "non-looped" patterns. Multiple on_beep events may be
waiting in the event queue.

8.3.1.3.Play Method

Function: Loads new beeper pattern to play.

Syntax: pat.play(byref pattern as string, patint as
pl_beep_int)

Returns: ---

See Also: Beep Object

Part Description

pattern Pattern string, can include the following characters:

'-': the buzzer is off

'B' or 'b': the buzzer is on

'~': looped pattern (can reside anywhere in the pattern
string)

'*': double-speed pattern (can reside anywhere in the
pattern string). New in V1.1: You can use this symbol twice
and, thus, obtain x4 speed if necessary!

patint Defines whether the beep.play method is allowed to
interrupt another pattern that is already playing:

0- PL_BEEP_NOINT: cannot interrupt

1- PL_BEEP_CANINT: can interrupt)

Details

Maximum pattern length is 16 "steps". The on_pat event is generated once the

143

232 233

232

365

234 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

pattern finishes playing (looped patterns never finish playing).

Button Object

All external devices and board offered by Tibbo feature a single button called
"setup button". Our modules have a line to connect such a button externally. The
setup button has a special system function: powering-up a Tibbo device with this
button pressed (setup button line held LOW) causes the device to enter the serial
upgrade mode. This mode is for uploading new TiOS (firmware) file into the
device through the serial port.

The button is not doing anything system-related at other times, so it can be used
by your Tibbo BASIC application -- hence, the button object. The object offers the
folloing:

The button.pressed property returns current (immediate) state of the button.

The on_button_pressed event is generated when the button is pressed. The
on_button_released event is generated when the button is released.

The button.time read-only property returns the time (in 0.5 intervals) elapsed
since the button was last pressed or released. You can use this property, for
instance, to separate button pressing into "short" and "long":

sub on_button_released
'see how much time has elapsed

if button.time>4 then
'the button for pressed for a "long" time -- do one thing

else
'the button was pressed for a "short" time -- do another thing

end if
end sub

The button does not requre any pre-configuration and works always.

Note that the on_button_pressed and on_button_released events, as well as
the button.time R/O property utilize "debouncing", which filters out very short
transitions of the button state. The button.pressed R/O property, however, does
not rely on debouncing and returns the immediate state of the button at the very
moment the property is read.

8.3.2.1On_button_pressed Event

Function: Generated when the button on your device is pressed.

Declaration: on_button_pressed

See Also: Button.pressed

7

235

234

235

235

234 235

235

235

235

235Platforms

©2000-2011 Tibbo Technology Inc.

Details

Multiple on_button_pressed events may be waiting in the event queue. You can
check the time elapsed since the previous on_button_released event by reading
the value of the button.time read-only property.

Note that the button object performs "debouncing" which rejects very brief
transitions of the button state. This event will not be generated for such spurious
transitions.

8.3.2.2On_button_released Event

Function: Generated when the button on your device is released.

Declaration: on_button_released

See Also: Button.pressed

Details

Multiple on_button_released events may be waiting in the event queue. You can
check the time elapsed since the previous on_button_pressed event by reading
the value of the button.time read-only property.

Note that the button object performs "debouncing" which rejects very brief
transitions of the button state. This event will not be generated for such spurious
transitions.

8.3.2.3.Pressed R/O Property

Function: Returns the current button state.

Type: Enum (no_yes, byte)

Value Range: 0- NO: the button is not pressed.

1- YES: the button is pressed.

See Also: ---

Details

This property reflects an immediate state of the hardware at the very moment the
property is read -- no "debouncing" performed. This is different from the
on_button_pressed and on_button_released events, as well as the
button.time R/O property, which all take debouncing into the account.

8.3.2.4.Time R/O Property

Function: Returns the time (in 0.5 second intervals) elapsed since
the button was last pressed or released (whichever
happened) later.

Type: Byte

235

235

235

234

235

234 235

235

236 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Value Range: 0-255

See Also: ---

Details

It only makes sense to read this property inside the on_button_pressed or
on_button_released event handlers. Once the value of this property reaches 255
(127 seconds) it stays at 255 (there is no roll-over to 0). Elapsed time is not
counted when the execution of your application is paused.

Fd Object

This is the flash disk (fd.) object, it allows you to use your device's flash memory
for data storage. There are two methods of working with the flash memory:

With direct sector access , you can write and read flash sectors directly,
without burdening yourself with the file system.

With file-based access , you create a formatted disk that stores files.

Both methods can be used concurrently and complement each other whenever
necessary.

Here is what the fd. object has to offer in terms of the file-based access:

Ability to store up to 64 files located in a single root directory (subdirectories are
not supported, but can be emulated).

Flexible file attributes -- define and store any attributes you like.

Methods to work with the file directory .

Ability to open and work with several files at once.

Methods to write to and read from the file, also cut out a portion of the file
from the beginning or end .

Fast and flexible search to locate data within files. This also includes a record-
style search!

Automatic sector leveling .

Transactions to ensure disk integrity in the toughest of conditions (power
failures, etc).

A method for firmware/application self-upgrades (not supported by all
platforms).

8.3.3.1Overview

In this section:

Sharing Flash Between Your Application and Data

Fd. Object's Status Codes

Direct Sector Access

File-based Access

234

235

240

245

263

250

249

252

253

254

255

256

264

259

243

237

239

240

245

237Platforms

©2000-2011 Tibbo Technology Inc.

File-based and Direct Sector Access Coexistence

Prolonging Flash Memory Life

Sharing Flash Between Your Application and Data

Discussed in this section: fd.availableflashspace .

The flash memory used by the fd. object consists of 264-byte sectors. It is
customary to use 256 bytes of each sector to store actual data, and reserve the
rest for "service" data (checksum , etc.).

Depending on what device you are using, the fd. object may be storing its data in
one of the two ways (locations):

On devices with shared flash memory, the firmware, compiled Tibbo Basic
application, and the fd. object's data are stored on the same flash IC chip. All
flash sectors that are not occupied by firmware/application are available for
storing your data. We will refer to this area as a data area of the flash IC. The
size of the data area, in sectors, can be obtained through the
fd.availableflashspace R/O property.

On devices with dedicated flash memory, one flash IC is used for firmware and
application storage, while a second flash IC is used for fd. object's data storage.
On such devices, the data area occupies the entire second flash IC, and
fd.availableflashspace always returns the number of sectors in this second
flash IC. On certain device, the second flash IC is not present onboard and must
be connected externally.

To find out what flash memory arrangement your device has, refer to your
device's platform specification (for example, EM1000's is here). You will
find memory arrangement data under "Miscellaneous Information/ Flash
memory configuration".

There are two ways in which you can store the data using the fd. object:

The first way is to read and write flash sectors of the data area directly -- a so-
called direct sector access . This method is simple and allows you to "do
whatever you please" with the data area you have.

The second way is file-based -- you create a full-blown flash disk that
maintains a simple file system. This introduces a certain overhead, since the file
system needs a number of sectors for its own internal "housekeeping". At the
same time, using files may be infinitely more convenient and flexible, as many
complex operations happen automatically, thus simplifying your application. In
addition, disk transactions bulletproof your file operations.

Both the direct sector access and the file based access can be used at the same
time -- your flash disk can occupy only a portion of the data area, and the rest
of the space can be used for direct sector access.

The fd. object refers to physical sectors of the data area in reverse (refer to the
drawing below, which shows memory allocation on the shared flash IC). While the
firmware and application are loaded into the flash memory starting from the physical
sector 0, the allocation for the data area starts from the topmost physical sector.
For convenience, related methods and properties of the .fd object refer to this
topmost physical sector as the (logical) sector 0, the sector before the topmost
sector -- as 1, and so on.

263

264

267

242

267

267

138 143

240

245

259

263

238 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

This approach was chosen to minimize the influence of the changing size of your
Tibbo Basic application on the data you keep in the flash memory. Typically, the
size of your application keeps changing as you develop and debug it. At the same
time, you often need to keep certain data in the data area permanently, and don't
want to recreate this data every time you upload a new iteration of your
application. If the beginning of the data area was right after the end of the
firmware/application area, any change in the application size would move the
boundary of the data area, corrupt your data, and force you to recreate the data
again. If, on the other hand, your data area starts from the top of the flash IC and
continues downwards, then the chance of the data area corruption will be a lot
smaller.

Naturally, the above applies to devices with shared flash memory. Devices with
dedicated flash memory store firmware/application and fd. object's data in separate
ICs, so there is no chance of corrupting the data area by loading a larger firmware/
application.

When debugging your application on devices with the shared flash memory,
use only a portion of the data area and leave some part of this area
unoccupied. This will create a gap of unused sectors between the data and
the firmware/application areas of the flash. This way, your application will
(mostly) be able to grow without corrupting the data area.

239Platforms

©2000-2011 Tibbo Technology Inc.

Fd. Object's Status Codes

Discussed in this topic: fd.laststatus .

Many things can go wrong when working with the flash memory. This is why
methods of the fd. object return a status code. Good Tibbo Basic application
doesn't just assume that all will be well and always checks the result of method
execution.

Listed below are possible status codes retuned by the flash disk object. Of course,
not every code can be generated by every method:

0- PL_FD_STATUS_OK: Completed successfully.

1- PL_FD_STATUS_FAIL : Physical flash memory failure (fatal: disk dismounted,
must be reformatted).

2- PL_FD_STATUS_CHECKSUM_ERR: Checksum error has been detected in one of
the disk sectors (fatal: disk dismounted, mast be reformatted).

3- PL_FD_STATUS_FORMAT_ERR: Disk formatting error has been detected (fatal:
disk dismounted, mast be reformatted).

4- PL_FD_STATUS_INV_PARAM: Invalid argument have been provided for the
invoked method.

5- PL_FD_STATUS_DUPLICATE_NAME: File with this name already exists.

6- PL_FD_STATUS_FILE_TABLE_FULL: Maximum number of files that can be stored
on the disk has been reached, new file cannot be created.

7- PL_FD_STATUS_DATA_FULL: The disk is full, new data cannot be added.

8- PL_FD_STATUS_NOT_READY: The disk is not mounted.

9- PL_FD_STATUS_NOT_FOUND: File not found.

10- PL_FD_STATUS_NOT_OPENED: No file is currently opened "on" the current
fd.filenum .

11- PL_FD_STATUS_ALREADY_OPENED: This file is already opened on some other
file number.

12- PL_FD_STATUS_TRANSACTION_ALREADY_STARTED: Disk transaction has
already been started (and cannot be restarted).

13- PL_FD_STATUS_TRANSACTION_NOT_YET_STARTED: Disk transaction hasn't
been started yet.

14- PL_FD_STATUS_TRANSACTION_CAPACITY_EXCEEDED: Too many disk sectors
have been modified in the cause of the current transaction (fatal: disk dismounted).

15- PL_FD_STATUS_TRANSACTIONS_NOT_SUPPORTED: The disk wasn't formatted
to support transactions (use fd.formatj with maxjournalsectors>1 to enable
transactions).

16- PL_FD_STATUS_FLASH_NOT_DETECTED: Flash IC wasn't detected during boot,
fd. object cannot operate normally.

The status code generated by the most recently invoked method is always kept by
the fd.laststatus R/O property. Some methods also return the status code
directly:

If fd.create("File1.dat")<>PL_FD_STATUS_OK Then
 'some problem
End If

282

273

277

282

240 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Other methods return data, so the only way to check the result of their execution
is through the fd.laststatus:

s=fd.getdata(50) 'returns the data from the file, not the status code
If fd.laststatus<>PL_FD_STATUS_OK Then
 'some problem
End If

Most status codes are non-fatal, that is, they allow the disk to continue working.

Selected status conditions result in the automatic dismounting of the flash disk
 (fd.ready R/O property becomes 0- NO). Among these status codes, some

(but not all) conditions also indicate that the disk is permanently damaged and must
be reformatted .

Direct Sector Access

Discussed in this section: fd.buffernum , fd.getbuffer , fd.setbuffer ,
fd.getsector , fd.setsector , fd.checksum , fd.copyfirmware .
fd.copyfirmwarelzo .

Direct sector access allows you to work with sectors in the data area of your
device's flash memory directly, without the need to create and manage any files.
You work with sectors through two identical 264-byte RAM buffers numbered #0
and #1. The fd.buffernum property selects one of the buffers as the source/
destination for the data (see the drawing below).

All file-based operations of the flash disk also rely on the RAM buffers and the
selected buffer number may change as a result of their execution. When using
direct sector access and file-based access concurrently , switch to the RAM
buffer #0 each time before performing direct sector access -- this will guarantee
that you won't corrupt the files and/or the file system and cause disk dismounting
(fd.ready becoming 0- NO). There is more on this in the File-based and Direct
Sector Coexistence topic.

249

245 285

245

267 278 288

281 290 268 269

270

237

267

245

263

285

263

241Platforms

©2000-2011 Tibbo Technology Inc.

Reading data from a sector is a two-step process. First, you use fd.getsector to
load all 264 bytes from the desired sector into the currently selected RAM buffer.
Next, you use fd.getbuffer to read the data from the selected buffer. This
method allows you to read up to 255 bytes beginning from any offset in the buffer
(offsets are counted from 0):

Dim s As String
...
'we want bytes 20-29 from sector #3
fd.buffernum=0 'select RAM buffer #0
If fd.getsector(3)<>PL_FD_STATUS_OK Then
 'flash failure
End If
s=fd.getbuffer(20,10) 'now s contains the desired data

Since the sector and (RAM buffer size) exceeds 255 bytes (maximum length of
string variables), you can't actually read the whole sector contents in one portion.
At least two fd.getbuffer reads are necessary for that.

To modify the data in the selected RAM buffer, use the fd.setbuffer method. The
fd.setbuffer allows you to write new data at any offset of the selected RAM buffer.
To store the contents of the RAM buffer back to the flash memory, use
fd.setsector :

Dim s As String
...
'modify first 3 bytes of sector #5
If fd.getsector(3)<>PL_FD_STATUS_OK Then
 'flash failure
End If

281

278

288

290

242 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

fd.setbuffer("ABC",0) 'write "ABC" to the buffer at offset 0
If fd.setsector(3)<>PL_FD_STATUS_OK Then
 'flash failure
End If

Since there are two identical RAM buffers, you can load the contents of two
different sectors and work with the data concurrently, by switching between the
buffers.

As covered under Sharing Flash Between Your Application and Data , logical
sector numbers for fd.getsector and fd.setsector are not actual physical sector
numbers of the flash IC. Logical sector #0 corresponds to the topmost physical
sector of the flash IC, so logical numbering is "in reverse".

You can only write to sectors that reside within the data area of your flash chip
(that is, logical sector numbers from 0 to fd.availableflashspace -1). For devices
with shared flash memory, this prevents your application from inadvertently
damaging its own code or firmware. Trespassing the data area boundary will result
in the 4- PL_FD_STATUS_INV_PARAM status code . If you want to alter the data
in the firmware/application area, see Upgrading the Firmware/Application topic.

If you are using direct sector access and file-based access at the same time, be
sure to read about ensuring their proper coexistence .

Note also that fd.getsector and fd.setsector always access the actual specified
target sector and not its cached copy even if the disk transaction is in progress
(fd.transactionstarted = 1- YES) and the target sector has been cached already.

Using Checksums

When dealing with the flash memory, it is very often desirable to make sure that
the data stored in flash sectors is not corrupted. One way to do so is by calculating
the checksum on the sector data and storing this checksum together with the
data. Each sector of the flash memory conveniently stores 8 extra bytes on top of
the "regular" 256 bytes usually storing the actual data.

The fd. object uses two bytes at offsets 262 and 263 to store the checksum of the
first 262 bytes of data residing in the same sector. The checksum is a 16-bit value.
When the checksum is correct, modulo 16 sum of the entire sector's data is zero.

16-bit values for these calculations are little-endian. That is, offset 0 of the sector
is presumed to be the high byte of the first 16-bit value, offset 1 -- low byte of the
first 16-bit value, offset 2 -- high byte of the second 16-bit value, and so on.

When you are using the file-based access , the fd. object automatically
calculates and/or verifies the checksum on all sectors it accesses. Should any
sector turn out to contain an invalid checksum, the 2-
PL_FD_STATUS_CHECKSUM_ERR status code is generated.

Direct sector access is more primitive and it is your responsibility to maintain and
verify the integrity of data you store in the flash memory. To aid you in this, the
fd.checksum method can be used to verify the checksum, or calculate and store
it into the selected RAM buffer (where the sector's data is supposed to be already
loaded):

'Load sector #10, verify its checksum, alter some data, recalculate the
checksum, and save new data
Dim i As word
...
'load the sector
If fd.getsector(10)<>PL_FD_STATUS_OK Then

237

267

239

243

245

263

259

294

245

239

268

243Platforms

©2000-2011 Tibbo Technology Inc.

 'flash failure
End If

'verify the checksum
If fd.checksum(PL_FD_CSUM_MODE_VERIFY,i)<>OK Then
 'checksum error detected
End If

fd.setbuffer("ABC",20) 'alter data at offset 20

fd.checksum(PL_FD_CSUM_MODE_CALCULATE,i) 'recalculate the checksum, save it
back into the RAM buffer

'save back
If fd.setsector(10)<>PL_FD_STATUS_OK Then
 'flash failure
End If

Upgrading the Firmware/Application

As was explained under Direct Sector Access , you can't use fd.setsector to
write to the flash area occupied by the firmware and Tibbo Basic application. This is
done to prevent your application from inadvertently damaging its own code or the
firmware.

A special fd.copyfirmware method is provided for changing the data in the
firmware/application area of the flash. The method copies the specified number of
sectors (starting from the logical sector 0) from the data area and into the
firmware/application area of the flash memory (starting from the physical sector 0),
then reboots your device.

Before invoking this method, store the new "binary image" of the firmware/
application in the data area of the flash memory starting from logical sector #0.
Logical numbers are assigned to the sectors in reverse, so using fd.setsector to
write to logical sector #0 actually means storing to the topmost physical sector of
the flash memory. It goes without saying that your data area has to have enough
capacity to store the new binary image.

240 290

269

237

290

244 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

The diagram above presents the case of the shared flash memory. With
dedicated memory, the fd. object uses a separate flash IC to store its data. The
size of this flash IC must be large enough to store the new firmware/application
that you want to "activate" with the fd.copyfirmware method.

Exactly how you receive the new binary image is immaterial to this discussion. You
can use any suitable transmission method, such as TCIP/IP, FTP, your own
proprietary protocol, whatever! The important part is that before invoking
fd.copyfirmware you must have the binary image stored in the data area of the
flash, starting from the logical sector #0, and you must know how many sectors
this occupies. After that, invoke fd.copyfirmware and hope that you prepared the
right data!

Another method -- fd.copyfirmwarelzo -- does the same job but assumes that
the data prepared in the flash memory is not the binary image itself, but an LZO-
compressed version of the same. This method will unpack the binary and copy it
into the firmware/application area of the flash memory. Because the compressed
data is not sector-aligned, this method takes the compressed data size length in
bytes, not sectors.

Use "compressed" firmware upgrades whenever you are dealing with a sizeable
Tibbo BASIC project. On devices with shared flash memory, such projects will
leave you with a small amount of free flash space, so the uncompressed "upgrade
binary" will probably not fit there. In such cases LZO compression may be your way
out, as it can achieve 30-50% reduction in file size.

The decompression algorithm accepts files compressed with lzo1x-999.exe utility.

BE VERY CAREFUL! Using fd.copyfirmware or fd.copyfirmwarelzo on incorrect
data will "incapacitate" your device and further remote upgrades will become
impossible. You will need to physically go to your device and upload correct
firmware and/or application, possibly through its serial port. Scary, huh?

237

270

237

245Platforms

©2000-2011 Tibbo Technology Inc.

File-based Access

The following topics will explain how to work with the flash disk:

Formatting the Flash Disk

Mounting the Flash Disk

File Names and Attributes

Checking Disk Vitals

Creating, Deleting, and Renaming Files

Reading and Writing File Attributes

Walking Through File Directory

Opening Files

Writing To and Reading From Files

Removing Data From Files

Searching Within Files

Closing Files

Using Disk Transactions

Formatting the Flash Disk

Discussed in this section: fd.formatj , fd.format .

Before the flash disk can be used it must be formatted. Formatting allocates and
initializes the "housekeeping" area of the disk. This consists of two boot sectors
plus a certain number of sectors for the file record table (FRT), the file allocation
table (FAT), and possibly the transaction journal if you wanted one. For details
see Disk Area Allocation Details .

Formatting is performed using the fd.format or fd.formatj method. These
methods accept, as arguments, two parameters: total number of sectors to be
occupied by the disk, and the maximum number of files that you wish to be able to
store on the disk. Fd.formatj additionally has the third argument: the number of
sectors that you want to allocate to the transaction journal. Fd.format does not
give any sectors to the latter, so it is like setting the journal size to 0.

Be generous when allocating the journal area. A size of 50-100 sectors would
be recommended. Journal sectors get written to all the time, and having
many of them prolongs the life of your flash memory.

The total number of sectors cannot exceed the size of the data area . That is,
the maximum "gross" disk size is fd.availableflashspace sectors. The flash disk
needs a number of sectors for its internal housekeeping, so actual useful capacity
of the disk will be less. Checking Disk Vitals topic explains how to find out
current disk capacity, as well as get other useful info. There is also a minimum limit
that will be accepted for the total disk size. The minimum exists because the
number of sectors occupied by the disk must at least be enough for the
"housekeeping" data.

When debugging your application on devices with the shared flash
memory, use only a portion of the data area and leave some part of this area
unoccupied. This will create a gap of unused sectors between the data and

245

249

249

249

250

251

252

253

254

255

256

258

259

277 276

259

246

276 277

264

237

267

249

237

246 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

the firmware/application areas of the flash. This way, your application will
(mostly) be able to grow without corrupting the data area.

The fd. object stores up to 64 files on the disk, in a single "root" directory. You can
choose to have less files if you don't need so many. This will reduce the number of
"housekeeing" sectors required for the disk. The economy is not dramatic, but you
can still save some space. Each file record occupies 64 bytes, so one sector of the
FRT table can store 4 file records. For this reason, the number of files you specify
will always be adjusted to be the multiple of 4. For example:

'format a disk to occupy 3/4th of available space and store at least 10
files
If fd.formatj((fd.availableflashspace/4)*3,10,100)<>PL_FD_STATUS_OK Then
 'some problem...
End If
'actual maximum number of files will be 12 (adjusted up from 10 to be a
multiple of 4)

After the formatting the disk will be in the dismounted state and will need to be
mounted before any disk-related activity can be successfully performed.

This topic provides details on the internal structure of the flash disk.

The flash disk has a number of areas. Each area includes one or more flash sectors.
Each sector has a physical size of 264 bytes. Of those, only 256 bytes are used to
store the data. Two last bytes of each sector store the checksum . Six remaining
bytes are mostly left unused, except in the FRT/FAT areas (see below), where they
do serve a useful function.

The flash disk has the following areas:

BOOT sector, always at logical sector #0 (so it is the topmost physical sector of
the flash -- this was explained in Sharing Flash Between Your Application and
Data). The boot sector contains the information about the sizes of other areas
of the disk.

File record table (FRT) area.

File allocation table (FAT) area.

Data area -- actual data sectors of files.

Transaction journal area -- caches modified sectors during the disk transaction
. This area only exists if you format the disk with the fd.formatj method.

END BOOT sector -- keeps the same data as the BOOT sector, but is located
past the data area.

249

242

237

259 277

247Platforms

©2000-2011 Tibbo Technology Inc.

FRT area

Each file record occupies 64 bytes. Therefore, each sector of the FRT area can fit
4 file records. Therefore, if you specify (during formatting) that you would like to
have 15 different files, the fd.format (or fd.formatj) method will round this up
to 16 files. This will require 4 sectors to fit. Actual amount of allocated sectors is
always double that. This is done for sector leveling , which the fd. object takes
care of internally. Also, the number of allocated sectors is never less than 8, again,
for sector leveling reasons.

The maximum number of files stored by the .fd object is 64. Thefore, the maximum
size of the FRT area is (64/4)*2= 32 sectors. Hence, the size of the FRT area is
always between 8 and 32 sectors depending on the maximum number of files you
need to store on the disk.

FAT area

Each FAT sector consists of 128 FAT entries, 2 bytes per entry. Therefore, each
FAT sector can fit the allocation data for 128 sectors from the data area of the
disk. To improve sector leveling, the number of sectors allocated for the FAT area
is, again, double against what's necessary. So, for every 128 sectors in the data
area of the disk there are 2 sectors in the FAT area. At least 16 sectors are always
allocated to FAT.

An example; supposing the data area has 1100 sectors. Therefore, 1100/128= 9
FAT sectors are needed. The fd. object will allocate double this required minimum,
so 18 FAT sectors will be prepared. Let's suppose now that we only have 500 data
sectors. This requires 4 FAT sectors, 8 after we double this amount. This is less
than the minimal 16 FAT sectors that are always provided, so the fd. object will still
allocate 16 sectors.

Allocation and capacity calculation example

The fd.format method takes, as an input parameter, the total number of sectors
that you wish the disk to occupy. From that, and the supplied desired max number
of files, the fd.format will work out the size of each area of the disk. Let's see this
on a real example:

276 277

264

248 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Supposing, you call fd.formatj(1300,41,100) -- you want the disk to occupy
1300 sectors and store 41 file. You want the journal area to have 100 free sectors.
So, what will be the size of the FRT, FAT, and data areas?

First, the fd.format deducts 2 sectors to account for the BOOT and the END BOOT
sectors that must always be present. This leaves us with 1298 sectors.

Next, decuct the journal area -- now only 1198 sectors are left.

Next, the fd.format determines the size of the FRT area: 41 is rounded to 44, this
works out to hat (44/4)*2= 22 sectors are needed (this exceeds the minimum of 8,
so we do not need to correct this number). We have 1198-22= 1176 sectors left.

Now, how many FAT sectors we need? 1176/128= 9.18, i.e. 10. Actual amount will
be doubled, so we need 20 sectors (exceeds the minimum of 16, so we do not need
to correct this number). Therefore, we are left with 1176-20= 1156 data sectors.
This is what you will get from the fd.capacity R/O property (see Checking Disk
Vitals).

One small caveat...

Now let us show you one trickier example. Say, you do fd.format(1301,4). You
can quickly work out that you have 1301 sector for the FAT and data areas
combined. Now, how should this be divided?

If you had 1300 sectors, then there would be no problem. Of them, 1280 would go
to the data area, and 20 will belong to the FAT. 10 "necessary" FAT sectors will
together hold 10*128= 1280 entries -- just right for the size of the data area. The
number of FAT sectors is always doubled, so FAT will get 20 sectors. Everything fits
perfectly!

Now, there is no good solution for 1301 sectors. If you give this extra one sector to
the data area, then you will need two more sectors for the FAT area -- and you
don't have those sectors. Allocating this extra sector to the FAT is useless,
because you are not increasing the number of data sectors, so you don't really
need an extra FAT sector. Hence, the value of 1301 is actually not suitable to us.
Same goes for 1302. 1303 is good again, because three extra sectors allow us to
give one sector to the data area, and add two sectors to the FAT area (FAT
always increased in "doubles", remember?).

Fd.format avoid falling into the trap by correcting downwards the total disk size you
request if it turns out to be one of the "problematic" values. So, if you do
fd.format(1302,4), then the result would be as if you did fd.format(1300,4).
The fd.totalsize R/O property reflect this.

Why is there the END BOOT sector?

The END BOOT sector exists for one purpose -- to detect whether your application
has encroached on the flash disk. As was already explained , on devices with the
shared flash memory, the firmware/application and the data area reside in the same
flash IC. Data area sectors are counted from the topmost physical sector of the
flash memory. Therefore, the END BOOT sector is the one "closest" to your
application. Should the application become larger and take some of the space that
was previously occupied by the flash disk, the END BOOT sector will be overwritten.
The fd. object will detect this during mounting and return 3-
PL_FD_STATUS_FORMAT_ERR status code .

268

249

292

237

249

239

249Platforms

©2000-2011 Tibbo Technology Inc.

Mounting the Flash Disk

Discussed in this topic: fd.mount , fd.ready .

The flash disk will not be accessible unless it is mounted using fd.mount . It can
only be mounted after the flash memory has been successfully formatted using
fd.formatj (recommended) or fd.format . The disk has to be mounted after
every reboot of your device (if you need to access it, of course). After the disk is
mounted successfully, the fd.ready R/O property will read 1- YES.

During mounting, the fd. object accesses the BOOT sectors of the disk, reads
the size of all disk areas , and determines if the flash disk is healthy. This does
not include detailed checks of each file or data sector of the disk, but is enough to
"catch" gross problems, such as disk corruption due to an increase in the
application size.

Once the disk has been mounted, you can check its vitals , create and delete
files , and perform other disk-related operations.

There is no way to explicitly dismount the disk, nor it is necessary. The disk will be
dismounted (and fd.ready become 0- NO) if:

Any fatal condition is detected when working with it. This condition will be
reflected by the fd.laststatus R/O property. Not every error indicated by the
fd.laststatus is fatal (see Fd. Object's Status Codes topic).

The disk is formatted using fd.formatj (fd.format).

Your application invokes fd.setbuffer /fd.setsector inappropriately .

Checking Disk Vitals

Once the disk is mounted , you can check several important flash disk
parameters:

Fd.capacity will tell you the number of usable data sectors on the disk (this
excludes housekeeping sectors maintained by the disk).

Fd.numservicesectors will tell you how many sectors are used for internal
"housekeeping" of the flash disk (see Disk Area Allocation Details for... details).

Fd.totalsize will indicate how many sectors the disk occupies in the flash
memory. Fd.totalsize=fd.capacity+fd.numservicesectors.

Fd.getfreespace method will return the number of free data sectors on the disk
(those not yet occupied for file data storage).

Fd.maxstoredfiles will report the maximum number of files that can be stored
on the disk (this is defined at the time of disk formatting).

Fd.getnumfiles fetches the number of files currently stored on the disk.

Keep in mind that currently existing disk might not be the largest one that could fit
in the current data area (fd.availableflashspace).

File Names and Attributes

Every file you create on the flash disk has a file name and attributes. Both share a
single text string that can be up to 56 characters long. The attributes (if any) are
separated from the file name by a space. In other words, everything up to the first
space is the file name, and everything else -- attributes.

283 285

283

277 276

285

246

246

249

250

285

282

239

277 276

288 290 263

249

268

284

246

292

280

283

245

281

267

250 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

The file names are case-sensitive and can include any characters, except,
obviously, the space. This includes "/" and "\". The flash disk does not support
subdirectories, but it is possible to emulate them by including "/" or "\" characters in
the file name. The "." character can be used too, so you can have any extensions
you like. The attributes portion of the string may contain any characters
whatsoever, including spaces.

It is quite common for file systems to define attributes for the files. Typically,
however, these attributes are preset. That is, you have a fixed list of things you
can define about the file, such as the creating time, read-only flag, etc.

The fd. object uses a different approach. In a system that only runs a single
application at any given time, it makes no sense to have, say, a fixed read-only
flag. There is only one application running, after all. This application probably knows
what files not to touch anyway! Or how about the date and time of the file
creation? Does it make sense to keep this on a system without a real-time clock?
Quite obviously, no.

For the above reasons, the fd. object allows you to store any attribute data and
interpret it in any way you want. There is an attribute string and you can fill it with
any data of your choosing and in accordance with the needs of your application.
And yes, you can implement the read-only flag and record the creation date and
time -- but only if you need to.

Here is an example where we create a file and set its attributes too:

...
fd.create("File1.dat R 25-JUL-2008") ' <File1.dat> is the file name, <R 25-
JUL-2008> -- attributes, it is up to our program how to interpret this!

For more info on file attributes see Reading and Writing File Attributes .

Creating, Deleting, and Renaming Files

Discussed in this topic: fd.create , fd.rename , fd.delete , fd.getnumfiles ,
fd.maxstoredfiles .

You can't really do anything useful with the flash disk unless you create at least
one file. The fd.create method is used for this. The string you supply as an
argument must include a file name and may also contain the attributes . Some
examples:

If fd.create("File1.dat R 25-JUL-2008")<>PL_FD_STATUS_OK Then ' <File1.dat>
is the file name, <R 25-JUL-2008> -- attributes.
 'some problem
End If
If fd.create(" File2")<>PL_FD_STATUS_OK Then 'no attributes defined for
this file. Notice leading spaces -- they will be removed.
 'some problem
End If
If fd.create("Database/users.dat")<>PL_FD_STATUS_OK Then 'and here we
emulate a directory
 'some problem
End If
If fd.create("file 3")<>PL_FD_STATUS_OK Then 'if the idea was to create a
<file 3> file, then this won't work! "3" will be interpreted as attributes!
 'some problem

250

251

271 285 272 281

283

271

249

251Platforms

©2000-2011 Tibbo Technology Inc.

End If

Naturally, each file on the flash disk must have a unique name, or the 5-
PL_FD_STATUS_DUPLICATE_NAME error will be generated. Every existing file
always has at least one data sector allocated to it. This is how the 7-
PL_FD_STATUS_DATA_FULL error may be generated when you are creating a new
file. Finally, the total number of files stored on the flash disk is limited to what you
defined when formatting your disk. This maximum can be checked through the
fd.maxstoredfiles R/O property. Try to exceed this number and you will get the
6- PL_FD_STATUS_FILE_TABLE_FULL error code. Current file count can be obtained
through fd.getnumfiles .

To delete a file, use the fd.delete method:

If fd.delete("File1.dat")<>PL_FD_STATUS_OK Then
 'some problem
End If
If fd.delete("File2 abc")<>PL_FD_STATUS_OK Then 'the "abc" part will be
ignored -- everything after the space is NOT a part of the file name
 'some problem
End If
If fd.delete(" Database/users.dat")<>PL_FD_STATUS_OK Then 'leading spaces
will be ignored
 'some problem
End If

The file you are deleting must, of course, still exist, or you will get the 9-
PL_FD_STATUS_NOT_FOUND error . You can also rename a file using the
fd.rename method (this will preserve file attributes). It is OK to delete or
rename a file which is currently opened .

Fd.create , fd.rename , and fd.delete make changes to the sectors of the
flash disk. For the highest possible reliability, use disk transactions when invoking
these methods.

Reading and Writing File Attributes

Discussed in this topic: fd.getattributes , fd.setattributes .

You can set initial file attributes right when creating a new file. To read
existing file attributes, use the fd.getattributes method:

'this example ignores potential error conditions
Dim s As String
...
s=fd.getattributes("File1.dat") 'get the attributes for this file
If instr(1,s,"R",1)=0 Then 'delete the file only if there is no 'R' in the
attributes
fd.delete("File1.dat")
End If

239

245

283

281

272

239

285 251

253

271 285 272

259

278 287

249 250

278

252 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

You can set new (change) attributes with the fd.setattributes method:

If fd.setattributes("File1.dat", "D")<>PL_FD_STATUS_OK Then 'the attribute
string will now consist of a single 'D'
 'some problem
End If

Remember that the file name and the attributes share the same 56-byte string in
the file record table of the flash disk. Therefore, the maximum length of the
attributes is limited to 56-length_of_the_file_name-1. This "-1" accounts for the
space character that separates the file name from the attributes.

Attempting to perform the fd.getattributes or fd.setattributes on a file that does
not exist will generate the 9- PL_FD_STATUS_NOT_FOUND error .

Fd.setattributes makes changes to the sectors of the flash disk. For the highest
possible reliability, use disk transactions when invoking it.

Walking Through File Directory

Discussed in this topic: fd.resetdirpointer , fd.getnextdirmember ,
fd.getnumfiles .

At times it is necessary to get the list of all files stored on the flash disk. Most
operating systems provide this feature in the form of a DIR command. The fd.
object offers two methods -- fd.resetdirpointer and fd.getnextdirmember --
that allow you to get the names of all stored files one by one.

An imaginary "directory pointer" walks through the file record table (FRT) of the
flash disk. The fd.resetdirpointer method resets the directory pointer to 0, i.e. to
the very first directory record. The fd.getnextdirmember returns the next file name
and advances the pointer. Only file names are returned, attributes are excluded.

Calling the fd.getnextdirmember repeatedly will get you all the file names. When
there are no more names left to go through, the method will return an empty string.
You can use this to end your directory walk:

'walk through the file directory -- method #1
Dim s As String

fd.resetdirpointer
Do
 s=fd.getnextdirmember
 If fd.laststatus<>PL_FD_STATUS_OK Then
 'some problem
 End If
 ... 'process the file name in s
Loop While s<>"" 'we exit on empty string

Alternatively, you can use a for-next cycle, since the number of currently stored
files can be checked through the fd.getnumfiles method:

287

239

287

259

286 280

281

286 280

246

251

281

253Platforms

©2000-2011 Tibbo Technology Inc.

'walk through the file directory -- method #2
Dim s As String
Dim f As Byte

fd.resetdirpointer
For f=1 To fd.getnumfiles
 s=fd.getnextdirmember
 If fd.laststatus<>PL_FD_STATUS_OK Then
 'some problem
 End If
 ... 'process the file name in s
Next f

Opening Files

Discussed in this topic: fd.filenum , fd.open , fd.fileopened ,
fd.maxopenedfiles .

You must first open a file in order to work with its data. The fd.open method
opens a file with a specified name and "on" a file number currently selected by the
fd.filenum property. All operations related to the file data are then performed by
referring to the file number, not the file name. These operations include writing to
and reading from files , removing data from files , searching within files , and
closing files .

The concept of file numbers is not new -- other operating systems, too, assign a
number to the file when the file is opened. In Tibbo Basic, you select the number
you want to open the file on yourself. You do this by selecting a desired value for
the fd.filenum property:

'will open two files 'on' numbers 3 and 5

fd.filenum=3
If fd.open("File1")<>PL_FD_STATUS_OK Then
 'some problem
End If
fd.filenum=5
If fd.open("TrestFile")<>PL_FD_STATUS_OK Then
 'some problem
End If

Whenever you want to work with one of the currently opened files, just set the
fd.filenum to the number on which this file was opened (naturally, you need to
somehow remember this number). And how many files can be opened concurrently?
The fd.maxopenedfiles R/O property will tell you that. This value is platform-
dependent. Your fd.filenum value can move between 0 and fd.maxopenedfiles-1.

When the file is opened "on" a certain file number, the fd.fileopened R/O property
returns 1- YES when this file number is selected in the fd.filenum.

Any leading spaces in the file name you supply for fd.open are removed. After that,
only the part up to the first space is processed -- the rest of the string is ignored.
The following three code lines all open the same file:

273 284 273

282

284

273

254 255 256

258

282

273

254 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

fd.open("File1")
fd.open(" File1") 'leading spaces will be removed
fd.open("File1 some more stuff") 'everything after the first space will be
ignored too

Naturally, the file with the specified name must exist, or you get the 9-
PL_FD_STATUS_NOT_FOUND error . You may not open the same file "on" two
different file numbers -- this will generate the 11-
PL_FD_STATUS_ALREADY_OPENED error. You may reopen the same or another file
"on" the same file number, but this can lead to the loss of (some) changes made to
the previously opened file. To avoid this, close the file or use the fd.flush
method before opening it again. Note that the fd.flush method does not depend on
the current fd.filenum value and works globally on any most recently changed file.

Writing To and Reading From Files

Discussed in this topic: fd.getdata , fd.setdata , fd.pointer , fd.setpointer
, fd.filesize .

Writing to and reading from files are two most important file operations. Having a
flash disk would be pointless without them. Writing and reading is done using two
methods -- fd.setdata and fd.getdata respectively. For these to work, the
file must first be opened . Fd.setdata and fd.getdata work on the currently
selected file, and the selection is made through the fd.filenum property.

The pointer

Both reading and writing operations are always performed from the current pointer
position. This position can be checked through the fd.pointer R/O property and
changed through the fd.setpointer method. Executing the fd.setdata or
fd.getdata moves the pointer forward by the number of file positions written or
read.

The pointer always points at the position (offset) in the file from which the next
reading or writing will be done. File offsets are counted from one, not zero. The
very first byte in the file is at offset one, the next byte -- at offset two, and so
on. The very last byte in the file is at offset equal to the size of the file, which is
indicated by the fd.filesize R/O property. The maximum pointer value, however, is
fd.filesize+1! When the pointer is at maximum, it effectively points at the file
position that doesn't yet exist. So, writing to the file at this position will append
new data to the end of the file. Writing to the file when the pointer is not at the
maximum will overwrite existing data.

When the file is opened , the pointer is set to 1 if the file has any data in it
(fd.filesize<>0), or 0 if the file is empty (fd.filesize=0). It is not possible to set the
pointer to zero if the file is not empty. The pointer will be moved automatically if
the file becomes smaller and will be set to zero if the file becomes empty.

Writing and reading

In the following example, we append the data to the end of the file, then read the
data from the beginning of the file:

239

258 275

279 289 285 291

274

289 279

253

273

285

291

274

253

255

255Platforms

©2000-2011 Tibbo Technology Inc.

Dim s As String

'open a file 'on' file number 3
fd.filenum=3
fd.open("SomeFile")
fd.setpointer(fd.filesize+1) 'works always -- no matter whether the file is
empty or not
fd.setdata("Append this to the file")
fd.setpointer(1) 'go back to the beginning of the file
s=fd.getdata(10) 'read 10 bytes from the beginning of the file

If fd.setdata is executed when the pointer isn't at the end of the file (at fd.filesize
+1 position) then some of the existing file data will be partially overwritten. If

the pointer moves past the current file size (see.filesize), the size will be
increased automatically. As you append new data to the file, the file will grow
larger. New data sectors will be allocated and added to the file automatically as
needed. You will get the 7- PL_FD_STATUS_DATA_FULL error if the disk runs out
of free sectors. When the fd.setdata is executed and the disk full condition is
detected, the entire data string supplied with fd.setdata is not saved into the file
(and not just the part that couldn't fit).

Fd.setdata makes changes to the sectors of the flash disk. For the highest
possible reliability, use disk transactions when invoking this method.

File data caching

The fd. object uses the RAM buffer #1 as an intermediary storage for the
sector's data. When you access a certain data sector, the contents of this sector
are loaded into the RAM buffer #1. When you change the data in the sector, it is
the data in the RAM buffer that gets changed. The changed contents of the RAM
buffer will not be saved back to the flash memory until the contents of another
sector must be loaded into the buffer. So, for example, if you do this...

fd.setdata("Write this to a file")

... and then leave the disk alone, then the new data may stay in the RAM buffer
indefinitely. It may get lost -- for example, if you reboot the device. To prevent
this, close the file or use the fd.flush method -- either one will cause the
changed data in the RAM buffer to be saved back to the flash memory. Note that
the fd.flush method does not depend on the current fd.filenum value and works
globally on any most recently changed file.

It is not necessary to use fd.flush if your disk operations are performed within a disk
transaction .

Removing Data From Files

Discussed in this topic: fd.setfilesize , fd.cutfromtop .

Using the fd.setdata method can only increase the size of your file. To reduce
the file size, i.e. remove some data from it, use one of the two following methods.
Both methods work on a currently selected file, and the selection is made through

274

274

239

289

259

240

258 275

259

289 271

289

256 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

the fd.filenum property.

The fd.setfilesize method cuts the end portion of your file and preserves a
specified amount of bytes in the beginning of the file:

'open a file 'on' file number 4
fd.filenum=4
fd.open("SomeFile")
fd.setfilesize(fd.filesize/2) 'cut the file size in half

The fd.setfilesize can't be used to enlarge your file, only to make it smaller. Data
sectors previously allocated to the file will be "released" (marked unused) if they
become unnecessary due to the reduction in the file size. The first data sector of
the file, however, will always remain allocated, even when the file size is set to 0.

The size of the file, indicated by the fd.filesize R/O property, will be corrected
downwards to reflect the amount of data left in the file.

The pointer position will be affected by this method. If the file becomes empty,
the pointer will be set to 0. If the new file size is not zero, but the new size makes
current pointer position invalid (that is, fd.pointer > fd.filesize+1) then the pointer
will be set to fd.filesize+1.

The second method -- fd.cutfromtop -- removes a specified number of sectors
(not bytes) from the beginning of the file and leaves the end portion of the file
intact:

'open a file 'on' file number 2
fd.filenum=2
fd.open("SomeFile")
fd.cutfromtop(3) 'remove three front sectors from the file (that is, remove
up to 3*256= 768 bytes of data)

The size of the file will be corrected downwards in accordance with the amount of
removed data. For example, performing fd.cutfromtop(2) on a file occupying 3 data
sectors will reduce its size by 512 bytes (amount of data in 2 sectors removed).
Performing fd.cutfromtop(3) will set the file size to 0.

The pointer position is always reset as a result of this method execution. If the new
file size is 0, then the pointer will be set to 0 as well. If the file size is not 0, then
the pointer will be set to 1.

Fd.setfilesize and fd.cutfromtop make changes to the sectors of the flash
disk. For the highest possible reliability, use disk transactions when invoking
these methods.

Searching Within Files

Discussed in this topic: fd.find .

The fd.find method allows you to quickly search through the file from a specified
starting position, either in forward or back direction, and locate the Nth instance of
a search substring. The method also allows you to specify the search
"increment" (step). The search is performed on a currently selected file, and the

273

289

274

254

271

289 271

259

274

274

257Platforms

©2000-2011 Tibbo Technology Inc.

selection is made through the fd.filenum property.

The search returns the position within the file, counting from 1, where the target
occurrence of the substring has been encountered, or 0 if the target occurrence of
the substring was not found.

The increment parameter is very important as it allows you to perform two
fundamentally different classes of search.

Full text search

Set the increment to 1 and you will search through the entire contents of the file:

Dim dw As dword

'try to find the 2nd occurrence of 'ABC', search forward starting at the
beginning of the file
dw=fd.find(1,"ABC",2,FORWARD,1)
If fd.laststatus<>PL_FD_STATUS_OK Then
 'some disk-related error
Else

If dw<>0 Then
 'found! process this...
Else
 'not found...
End If

Since the search substring in the above example -- "ABC" -- does not have
repeating fragments, you can actually set the search increment to 3 (the length of
the substring). This will improve the search speed:

fd.find(1,"ABC",2,FORWARD,3) 'no repeating fragments in the substring, use
its length as increment

Record-style search

If the file in question is a data table consisting of individual records, then you can
arrange for a very efficient search for the record with desired field value. All you
need to achieve this is to have record fields occupy fixed offsets within records.
For example, supposing you have the data table consisting of records with the
following structure:

Field
name

Offset in
bytes*

Length in
bytes

Category +0 1

ID-code +1 11

Last name +12 21

First name +43 21

* with respect to the beginning of the record

273

258 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Each record of this data table occupies 54 bytes, so this will be our step. Three
fields -- "ID-code", "last name", and first name" are strings which, of course, can
have a variable length. To facilitate the use of the fd.find method, each field must
reside at a fixed offset relative to the beginning of the record. That is, even if the
"ID-code" for a particular record is shorter than the maximum possible field length,
the "Last name" field will still be at offset +12. To reflect actual length of the field
data, each field of string type starts with a byte that denotes the length of the
string, followed by the string data itself:

Now let's suppose you want to find a record whose "last name" is "Smith". For this
we search starting from file offset 21, which is the offset of the "Last name" field
within the record (this assumes that the first record starts right from the beginning
of the file, which is usually the case). The search step will be 54 -- the size of the
record:

Dim dw As dword

'try to find the record with the "Last name" set to "Smith"
dw=fd.find(21,chr(5)+"Smith",1,FORWARD,54) 'notice how we supply the string
length
If fd.laststatus<>PL_FD_STATUS_OK Then
 'some disk-related error
Else

If dw<>0 Then
 'found- convert into the record number and process...
 dw=dw/54
Else
 'not found...
End If

You can also search back, but remember that this is less efficient (takes ~ 50%
longer) compared to forward searches.

Closing Files

Discussed in this topic: fd.close , fd.flush .

Files are closed using the fd.close method. The method is performed on a
currently selected file (selection is made through the fd.filenum property).
Attempting to invoke this method "on" a file number that did not have any opened
file associated with it generates no error.

Proper file closing is only required if you made changes to the file. If you only read

269 275

269

273

259Platforms

©2000-2011 Tibbo Technology Inc.

data from the file you don't have to bother closing it -- you can open another
file right "on" the same file number. Doing so on a file that was changed may cause
some recent changes to be lost. To prevent this, use the fd.close method or
fd.flush method. Note that fd.flush does not depend on the current fd.filenum
value and works globally on any most recently changed file.

It is not necessary to use fd.flush if your disk operations are performed within a disk
transaction .

Using Disk Transactions

Discussed in this topic: fd.transactionstart , fd.transactioncommit ,
fd.transactionstarted , fd.transactioncapacityremaining .

Flash disk is a sensitive media. Many things can go wrong -- especially if a disk
operation is abruptly interrupted due to the power failure or for some other reason.
Try appending data to a file in a loop while power-cycling the device at random. It
won't be long before the file, and even the disk itself become corrupted.

Many systems require reliable disk operation, even during random power cuts. For
such systems, disk transactions are the answer!

Transactions help strengthen your application on two levels:

Disk level: seemingly simple operations of the disk often involve complex internal
changes to the disk data. Losing power while executing such operations may
corrupt your files and the disk itself. Transactions make sure it won't happen.

Logical level: there are often group operations that must be performed together
(in synchronicity), or not at all. For example, you make have the data table file
and its index file. Change the first one, and the other one must be changed too.
Transactions allow you to effect such changes in unison and make sure that both
files are changed or no files are changed at all.

Transactions only make sense for disk data changing operations. These are
fd.create , fd.rename , fd.delete , fd.setattributes , fd.setdata ,
fd.setfilesize , and fd.cutfromtop . Using transaction with fd. object's methods
that only read the data is pointless.

Performing disk operations within transactions

Transactions are only possible when the flash disk is formatted with the fd.formatj
 method, and the maxjournalsectors argument was >1. For good disk leveling ,

choose this parameter to be in the 50-100 range, and definitely not below 17 (see
the explanation here).

To start a disk transaction, use the fd.transactionstart method. To finish with
the transaction and commit (save) all changes to the disk, invoke
fd.transactioncommit . Between these two statements, add any operations that
lead to the changing of the disk data.

With transaction in progress, no changes are made to the disk data. Turn the
power off before executing fd.transactioncommit, turn the power back on, mount
the disk, and it will look as if the disk operations within the unfinished transaction
have never happened. This is because all changed sectors are temporarily cached
in the journal area of the disk. Every sector that gets changed in the cause of a
transaction is saved to the journal, and not back to its original place. Invoking
fd.transactioncommit starts the process of copying changed sectors from the

253

275

259

293 293

294 292

271 285 272 287 289

289 271

277 264

261

293

293

261

260 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

journal memory and into their original locations. This work can be safely interrupted.
If the device loses power while committing changes, next fd.mount will finish this
job!

Here is a simple example:

fd.transactionstart
fd.setdata("write some data to a file")
fd.transactioncommit

It may seem that fd.setdata is a trivial operation, so why put it inside the
transaction? In reality, performing this simple task may lead to changing of as many
as eight (!) sectors on the disk. If your device experiences a power failure while
in the middle of writing to a file, then this file, and even the disk itself can become
corrupted!

Here is another example, where we change two files. Encasing this within the
transaction makes sure that both files are changed, or no files are changed at all:

'we presume that there are two files opened 'on' file numbers 0 and 1
fd.transactionstart
fd.filenum=0
fd.setdata("write some data to the first file")
fd.filenum=1
fd.setdata("write some more to the second file")
fd.transactioncommit

Fd.transactionstarted exists so you can check if any disk transaction is already
in progress. Executing fd.transactioncommit while fd.transactionstarted= 0- NO
generals a non-fatal 13- PL_FD_STATUS_TRANSACTION_NOT_YET_STARTED error

. Executing fd.transactionstart when fd.transactionstarted= 1- YES generates
12- PL_FD_STATUS_TRANSACTION_ALREADY_STARTED non-fatal error code. 15-
PL_FD_STATUS_TRANSACTIONS_NOT_SUPPORTED non-fatal error is generated if
the disk was formatted with fd.format , or maxjournalsectors argument of
fd.formatj was set to 0 or 1.

You cannot abort the transaction that has already been started. If you started it,
you must follow through with it. There is no need to execute fd.flush when using
disk transactions.

Transaction journal has limited capacity

You can't just pile up a large number of disk write operations within a single
transaction. This is because transactions have a limit: the number of sectors that
can be changed within a single transaction. Understanding Transaction Capacity
provides further details.

Direct sector access is not affected by transactions

Fd.setsector and fd.getsector always access the specified target sector and

283

261

294

239

276

277

275

261

290 281

261Platforms

©2000-2011 Tibbo Technology Inc.

not its cached copy even if the disk transaction is in progress the target sector has
been cached already.

Discussed in this topic: fd.transactioncapacityremaining .

Fd.transactioncapacityremaining can tell you how many changed sectors the
transaction journal can still accommodate. The initial value of the
fd.transactioncapacityremaining (just after fd.transactionstart) depends on two
factors, whichever is smaller:

The value of 16 (this is the absolute maximum).

Maxjournalsectors-1, where maxjournalsectors is the argument of the fd.formatj
 method.

The maxjournalsectors allocates the journal area of the flash disk. In this journal
area, one sector is always needed for internal housekeeping, while other sectors
cache the data sectors changed during the transaction. Therefore, if you want to
achieve the maximum journal capacity (16), the journal must have at least 17
sectors in it. It is very important to use the maximum transaction memory capacity.
The value of 16 is not random -- it guarantees that you will always be able, within
a single transaction, to change the data in two different files.

In practice, do set a mach higher journal size. This won't increase transaction
memory, but it will prolong the life of the flash IC. Values in the 50-100 range
are recommended.

14- PL_FD_STATUS_TRANSACTION_CAPACITY_EXCEEDED error will be generated
if transaction capacity is exceeded by performing too many disk write operations
within a single transaction. The disk will be dismounted (but not damaged) and all
changes to the disk made within this failed transaction will be forgotten.

Disk operations and the number of sectors they may affect

So how many sectors may be changed during various disk operations? The table
below provides the worst-case numbers.

Fd. object's method that changes
disk data

Maximum number of journal entries
used

fd.create FRT*2 + FAT*2 + DATA = 5

fd.rename , fd.setattributes FRT*2 = 2

fd.delete , fd.setfilesize ,

fd.cutfromtop *

FRT*2+ FAT*X*2 = ?

fd.setdata FRT*2 + FAT*2*2 + DATA*2 = 8

* Executing these methods can potentially overflow the transaction journal.

And now, the explanation for the table data. It is based on the material from the
Disk Area Allocation Details topic.

"FRT" means "one sector from the file records table". File records are changed
when files are created, renamed, or deleted. They are also changed when the file

292

292

293

277

264

239

271

285 287

272 289

271

289

246

262 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

size changes, or when your application sets new file attributes.

"FAT" -- "one sector from the file allocation table". File allocation sectors change
when files are created and when file sectors are allocated or released in
accordance with changing file sizes.

"DATA" -- "one sector from the data sectors area of the disk". Data sectors hold
actual file data. They change when you write new data to files.

"FRT*2" and "FAT*2" are caused by sector leveling : changing one FAT or FRT
sector actually means changing two sectors.

"DATA*2" means that two data sectors can change when you write some data to
the disk. This is because a portion of this data may reside in one data sectors,
and the rest -- in another data sector.

"X" parameter represents the number of active FAT sectors that can potentially
be affected by invoking the corresponding method.

Here is how to calculate the X parameter:

Supposing, the flash disk capacity (fd.capacity) is 1000 sectors. The FAT, then,
must hold 1000 entries. Each FAT sector can hold 128 entries, so there will be 8
active FAT sectors (X = 8). Do not confuse this with the total number of sectors in
the FAT area -- it is at least twice this amount (because of sector leveling
measures). "8" here represents the number of FAT sectors that are needed at any
given time.

Fd.delete , fd.setfilesize , and fd.cutfromtop top have one thing in common:
they can potentially cut a huge file (occupying the entire disk) to zero. In the
process, X FAT sectors will be altered!

Therefore, for the disk with fd.capacity= 1000, executing these methods can
potentially change 2+8*2=18 sectors. This is above the maximum journal capacity,
which is 16! So, how to avoid 14-
PL_FD_STATUS_TRANSACTION_CAPACITY_EXCEEDED error and still use
transactions?

And the answer is: do it in stages. The following example deletes a very large file in
a "safe" manner:

dim i as byte

i=(fd.transactioncapacityremaining-1)/2 'this is how many FAT sectors we can
change at once
i=i*128 'and this is how many data sectors we can cut from the file at once
(one FAT sector holds 128 entries)

fd.open("FILE1")
while fd.filesize>0

fd.transactionstart
fd.cutfromtop(i)
fd.transactioncommit

wend
fd.transactionstart
fd.delete("FILE1")
fd.transactioncommit

264

268

264

272 289 271

239

263Platforms

©2000-2011 Tibbo Technology Inc.

Not a direct sum total

The worst-case number of sectors that may be changed during a transaction is not
the sum total of maximum numbers for each fd. object's method. In the example
below, the maximum number of changed sectors is 9, not 10.

fd.transactionstart
fd.setdata("write some data to a file") 'up to 8 sectors changed, and this
includes 2 change FRT sectors
fd.setattributes("ABC") 'FRT changes again, but for the same FRT record
(this will use only 1 entry in the journal)
fd.transactioncommit 'therefore, the total is up to 9

In this example, the worst-case number is 10, because we are working with 2
different files and their FRT records could be in different FRT sectors:

fd.transactionstart
fd.finenum=0
fd.setdata("write some data to a file") 'up to 8 sectors changed for file #0
fd.filenum=1
fd.setattributes("ABC") '2 FRT sectors changed for file #1
fd.transactioncommit 'therefore, the total is up to 10

File-based and Direct Sector Access Coexistence

File-based and direct sector access methods can be used at the same time,
as long as you understand how direct access may affect (and possibly screw up)
the flash disk.

Direct Sector Access explains that working with flash sectors is done through
two RAM buffers numbered #0 and #1. Flash disk operation depends on these
buffers as well.

Buffer #0 is used for processing housekeeping data and stores no valuable content
that must be preserved past the end of a single disk-related method execution.
That is, once the method such as the fd.setdata has executed, buffer #0 has no
valuable data in it.

Buffer #1 is used to load and store the contents of the most recently loaded (and
possibly changed) data sector. So, if fd.setdata was recently called, this buffer
may still hold new data, and this data may not be saved to the flash memory yet.
Corrupting this unsaved data would have unpleasant consequences for the file. To
prevent this, the fd. object automatically dismounts the disk (sets fd.ready = 0-
NO) if your application does fd.setbuffer or fd.getsector while the
fd.buffernum = 1 and while this buffer was loaded with new and as yet unsaved
sector data.

Preventing disk dismounting is easy. You can opt to work on the RAM buffer #0 (set
fd.buffernum= 0), or flush the unsaved data by invoking fd.flush or fd.close .

Fd.setsector method will cause disk dismounting if the destination was within the
disk area (sectors 0 through fd.totalsize -1). Writing outside the disk area will not
interfere with the flash disk operation.

The fd.getbuffer method does not cause any interference with the flash disk, so

245 240

240

289

285

288 281

267

275 269

290

292

278

264 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

it can be used freely.

The fd.checksum will write to the RAM buffer (when in the
"PL_FD_CSUM_MODE_CALCULATE" mode), but the checksum calculation method is
the same as the one used by the disk itself, so setting this checksum will never be
wrong.

Note, finally, that any file-related method will affect the value of the fd.buffernum.
Never assume that you know what this property is set to. Always set it explicitly
and each time before performing direct sector access.

Prolonging Flash Memory Life

Flash memory has a huge limitation -- the number of times you can rewrite each of
its sectors is limited to around 100'000 times. At first this may seem like a virtually
unreachable limit, but in reality you can "get there" quite fast, which is not a good
thing. Once the flash wears down, you will start having data errors, data
corruption, failed sectors, etc. This topic explains what you can do to prolong the
life of the flash memory used in your device. This is generally achieved by (1)
reducing the number of writes to the flash memory, and (2) using sector leveling,
i.e. spreading sector writes, as evenly as possible, between the sectors.

File-based access

For file-based access , the fd. object does the bulk of work for you. We have
already explained that the file record table (FRT) and the file allocation table
(FAT) -- the most heavily written to areas of the disk -- occupy at least double
the space needed to store their data. They also have the minimum number of
sectors they will take, regardless of what is necessary. This ensures that at any
given time, the FRT and the FAT have spare sectors. These spare sectors, as well
as occupied sectors, are in constant rotation. For example, every time you create a
file, a change is made to one of the sectors of the FRT. This change requires
writing data to one of the physical sectors. In the process, the fd. object will take
the previously used FRT sector and "release it" into the pool of spare FRT sectors.
At the same time, one of the spare FRT sectors will become active and store
changed data. The FAT operates in the same manner. While being fully transparent
to your application, the process greatly prolongs useful flash memory life.

You can, and are advised to, further reduce the wear of the FAT and FRT by
decreasing the number of writes that will be required. One way to do so is to create
all necessary files and allocate space for them once -- typically when your
application "initializes" your device.

Say, you have a log file, which stores events collected by your application. An
obvious approach would be to simply append each new event's data to the file. This
way, the file will grow with each event added. But wait a second, this means that
the FRT area, which keeps current file size, will be changed each time you add to
the file! The FAT area will be stressed too!

An alternative approach would have us create a file of desired maximum size once
and fill it up with "blank" data (such as &hFF codes). We will then overwrite this
blank data with actual event data is events are generated. This time around, our
actions will be causing no changes in the FRT and FAT areas, thus prolonging the
life of the flash IC.

Not only this approach prolongs the life of the flash IC, but disk writing to the log
will be faster (less sectors to change), and, in case you use transactions , less
journal entries will be used (a single transaction can fit more operations).

When using transactions, do allow a generous space for the journal memory .
Recommended maxjournalsectors value for fd.formatj is 50-100. Journal memory

268

245

246

259

261

261

277

265Platforms

©2000-2011 Tibbo Technology Inc.

is a high-traffic disk area, so having more sectors there will improve flash memory
life.

The data area of the disk has limited leveling that results in spreading unused
sector utilization. The fd. object makes sure that when your file needs a new data
sector, this data sector will be selected from a pool of available data sectors in a
random fashion. Once the data sector has been allocated to a file, however, it
stays with that file for as long as necessary. So, if you are writing at a certain file
offset over and over again, you are stressing the same physical sector of the flash
IC.

On large files, you rarely write at the same offset all the time. For example, if you
have a log file that has 1000 data sectors, then it is unlikely you will be writing to
the same sector over and over again. For smaller files the probability is higher. Your
solution is to erase the file and recreate it again from time to time. This will
randomly allocate new sectors for the file.

Direct sector access

Direct sector access is a low-level form of working with the flash. You are your
own master, the fd. object does not help you with anything, and it is up to you to
make sure that the flash IC is not being worn out unevenly. Generally speaking, limit
the number of times you are writing to the flash and/or implement some form of
leveling where a large number of sectors are used to share the same task and each
sector gets its fair share of work.

8.3.3.2Properties and Methods

The following classification groups properties and methods of the fd. object by their
logical function.

Properties and methods under fd.filenum are indented to reflect the fact that
they are performed on the file currently selected by the fd.filenum.

Member Type Where to read about it

Direct sector access

fd.buffernum Propert
y

Direct Sector Access

fd.getsector Method Direct Sector Access

fd.setsector Method Direct Sector Access

fd.getbuffer Method Direct Sector Access

fd.setbuffer Method Direct Sector Access

fd.checksum Method Using Checksums

fd.copyfirmware Method Upgrading the Firmware/Application

fd.copyfirmwarelzo Method Upgrading the Firmware/Application

General disk info and operations

fd.availableflashspace R/O
propert
y

fd.maxopenedfiles R/O
propert
y

Opening Files

240

273

267 240

281 240

290 240

278 240

288 240

268 242

269 243

270 243

267

282 253

266 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

fd.formatj Method Formatting the Flash Disk

fd.format Method Formatting the Flash Disk

fd.mount Method Mounting the Flash Disk

fd.ready R/O
propert
y

Mounting the Flash Disk

fd.capacity R/O
propert
y

Checking Disk Vitals

fd.numservicesectors R/O
propert
y

Checking Disk Vitals

fd.totalsize R/O
propert
y

Checking Disk Vitals

fd.getfreespace Method Checking Disk Vitals

fd.laststatus R/O
propert
y

Fd. Object's Status Codes

File directory

fd.maxstoredfiles R/O
propert
y

Checking Disk Vitals , Creating, Deleting,
and Renaming Files

fd.getnumfiles Method Checking Disk Vitals , Creating, Deleting,
and Renaming Files , Walking Through File
Directory

fd.resetdirpointer Method Walking Through File Directory

fd.getnextfirmember Method Walking Through File Directory

fd.getattributes Method Reading and Writing File Attributes

fd.setattributes Method Reading and Writing File Attributes

fd.create Method Creating, Deleting, and Renaming Files

fd.rename Method Creating, Deleting, and Renaming Files

fd.delete Method Creating, Deleting, and Renaming Files

File access

fd.flush Method Closing Files

fd.filenum Propert
y

Opening Files

 fd.open Method Opening Files

 fd.close Method Closing Files

 fd.fileopened R/O
propert
y

Opening Files

 fd.filesize R/O
propert
y

Writing To and Reading From Files

 fd.pointer R/O Writing To and Reading From Files

277 245

276 245

283 249

285 249

268 249

284

249

292 249

280 249

282 239

283 249

250

281 249

250

252

286 252

280

252

278 251

287 251

271 250

285 250

272 250

275 258

273 253

284 253

269 258

273 253

274 254

285 254

267Platforms

©2000-2011 Tibbo Technology Inc.

propert
y

 fd.setpointer Method Writing To and Reading From Files

 fd.getdata Method Writing To and Reading From Files

 fd.setdata Method Writing To and Reading From Files

 fd.cutfromtop Method Removing Data From Files

 fd.setfilesize Method Removing Data From Files

 fd.find Method Searching Within Files

 fd.sector R/O
propert
y

Writing To and Reading From Files

Transactions

fd.transactionstart Method Using Disk Transactions

fd.transactioncommit Method Using Disk Transactions

fd.transactionstarted R/O
propert
y

Using Disk Transactions

fd.transactioncapacit
yremaining

R/O
propert
y

Using Disk Transactions

.Availableflashspace R/O Property

Function: Returns the total number of sectors available to store
application's data.

Type: Word

Value Range: The value depends on the flash capacity and the flash
memory arrangement of your device.

See Also: Sharing Flash Between Your Application and Data

Details

.Buffernum Property

Function: Sets/returns the number of the RAM buffer that will be
used for direct sector access.

Type: Byte

Value Range: 0 or 1. Default= 0 (RAM buffer #0 selected).

See Also: Direct Sector Access ,

fd.getbuffer , fd.setbuffer , fd.getsector ,
fd.setsector , fd.checksum , fd.copyfirmware ,
fd.copyfirmwarelzo

291 254

279 254

289 254

271 255

289 255

274 256

287 254

293 259

293

259

294

259

292

259

237

240

278 288 281

290 268 269

270

268 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Details

All file-based operations of the flash disk also load data into the RAM buffers.
Switch to the RAM buffer #0 each time before performing direct sector access
with this or other related methods -- this will guarantee that you won't corrupt the
files and/or the file system and cause disk dismounting (fd.ready becoming 0-
NO).

.Capacity R/O Property

Function: Returns the capacity, in sectors, of the currently existing
flash disk.

Type: Word

Value Range: 0-65535

See Also: Checking Disk Vitals ,

fd.numservicesectors , fd.totalsize , fd.getfreespace
, fd.maxstoredfiles , fd.getnumfiles

Details

The disk must be mounted (see fd.mount) for this property to return a
meaningful value.

.Checksum Method

Function: Calculates and writes into the RAM buffer, or verifies the
checksum for the data in the currently selected RAM
buffer of the flash memory (selection is made through the
fd.buffernum property).

Syntax: fd.checksum(mode as pl_fd_csum_mode, byref csum
as word) as ok_ng

Returns: 0- OK: Completed successfully (always the case when the
mode= 1- PL_FD_CSUM_MODE_CALCULATE).

1- NG : The checksum was found to be invalid (can only
be generated when the mode= 0-
PL_FD_CSUM_MODE_VERIFY).

Also returns the calculation result indirectly, through the
csum argument.

See Also: Using Checksums , Direct Sector Access ,

fd.buffernum , fd.getbuffer , fd.setbuffer ,
fd.getsector , fd.setsector , fd.copyfirmware ,
fd.copyfirmwarelzo

Par
t

Description

245

240

285

249

284 292

280 283 281

283

267

242 240

267 278 288

281 290 269

270

269Platforms

©2000-2011 Tibbo Technology Inc.

mod
e

0- PL_FD_CSUM_MODE_VERIFY: verify the checksum.

1- PL_FD_CSUM_MODE_CALCULATE: calculate the checksum and store it
into the selected RAM buffer.

csu
m

Indirectly returns calculated value. When the mode= 0-
PL_FD_CSUM_MODE_VERIFY, this value returned will be 0 if the checksum
was found to be correct, or some other value if the checksum was found
to be wrong. When the mode= 1- PL_FD_CSUM_MODE_CALCULATE, the
method will return a newly calculated checksum and store the same
checksum into the RAM buffer.

Details

.Close Method

Function: Closes the file opened "on" a currently selected file number
(selection is made through fd.filenum).

Syntax: fd.close() as pl_fd_status_codes

Returns: One of the following pl_fd_status_codes , also affects
fd.laststatus :

0- PL_FD_STATUS_OK: Completed successfully.

1- PL_FD_STATUS_FAIL: Physical flash memory failure
(fatal).

See Also: Closing Files ,

fd.flush

Details

Invoking the method also does the job performed by the fd.flush method (and
this is why the 1- PL_FD_STATUS_FAIL status code may be returned here).

Attempting to invoke this method "on" a file number that did not have any opened
file associated with it generates no error.

.Copyfirmware Method

Function: Copies the specified number of sectors (starting from
logical sector 0) from the data area, and into the
firmware/application area (starting from physical sector 0)
of the flash memory, then reboots the device to make it
run the new firmware/application.

Syntax: fd.copyfirmware(numsectors as word)

Returns: ---

See Also: Upgrading the Firmware/Application , Direct Sector
Access

fd.buffernum , fd.getbuffer , fd.setbuffer ,
fd.getsector , fd.setsector , fd.checksum ,

273

282

282

258

275

275

243

240

267 278 288

281 290 268

270 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

fd.copyfirmwarelzo

Part Description

num
sect
ors

Number of sectors to copy.

Details

Certain platforms do not support this method. Refer to your platform documentation
 for details.

BE VERY CAREFUL! Using the fd.copyfirmware on incorrect data will
"incapacitate" your device and further remote upgrades will become
impossible. You will need to physically go to your device and upload correct
firmware and/or application, possibly through its serial port. Scary, huh?

.Copyfirmwarelzo Method

Function: Assumes that there is LZO-compressed firmware/
application file of length bytes stored at logical sector 0 of
the flash memory. Decompresses the file into the
firmware/application area (starting from physical sector 0),
then reboots the device to make it run the new firmware/
application.

Syntax: fd.copyfirmware(byref length as dword)

Returns: ---

See Also: Upgrading the Firmware/Application , Direct Sector
Access

fd.buffernum , fd.getbuffer , fd.setbuffer ,
fd.getsector , fd.setsector , fd.checksum ,
fd.copyfirmware

Part Description

lengt
h

Compressed data length in bytes.

Details

Certain platforms do not support this method. Refer to your platform documentation
 for details.

The decompression algorithm accepts files compressed with lzo1x-999.exe utility.

BE VERY CAREFUL! Using the fd.copyfirmwarelzo on incorrect data will

270

138

243

240

267 278 288

281 290 268

269

138

271Platforms

©2000-2011 Tibbo Technology Inc.

"incapacitate" your device and further remote upgrades will become
impossible. You will need to physically go to your device and upload correct
firmware and/or application, possibly through its serial port. Scary, huh?

.Cutfromtop Method

Function: Removes a specified number of sectors from the beginning
of a file opened "on" a currently selected file number
(selection is made through fd.filenum).

Syntax: fd.cutfromtop(numsectors as dword) as
pl_fd_status_codes

Returns: One of the following pl_fd_status_codes , also affects
fd.laststatus :

0- PL_FD_STATUS_OK: Completed successfully.

1- PL_FD_STATUS_FAIL : Physical flash memory failure
(fatal).

2- PL_FD_STATUS_CHECKSUM_ERR: Checksum error has
been detected in one of the disk sectors (fatal).

3- PL_FD_STATUS_FORMAT_ERR: Disk formatting error has
been detected (fatal).

8- PL_FD_STATUS_NOT_READY: The disk is not mounted.

14- PL_FD_STATUS_TRANSACTION_CAPACITY_EXCEEDED:
Too many disk sectors have been modified in the cause of
the current transaction (fatal).

See Also: Removing Data From Files ,

fd.setfilesize

Part Description

nums
ector
s

Number of sectors to remove from the beginning of the file. Supplied
value will be corrected downwards if exceeded the total number of
sectors allocated to this file.

Details

As a result of this method invocation, the pointer will be set to 0 if the file becomes
empty, or 1 if the file still has some data in it.

This method makes changes to the sectors of the flash disk. For the highest
possible reliability, use disk transactions when invoking this method.

.Create Method

Function: Creates a new file with the specified name and attributes.

Syntax: fd.create(byref name_attr as string) as
pl_fd_status_codes

Returns: One of the following pl_fd_status_codes , also affects
fd.laststatus :

0- PL_FD_STATUS_OK: Completed successfully.

273

282

282

255

289

259

282

282

272 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

1- PL_FD_STATUS_FAIL : Physical flash memory failure
(fatal).

2- PL_FD_STATUS_CHECKSUM_ERR: Checksum error has
been detected in one of the disk sectors (fatal).

4- PL_FD_STATUS_INV_PARAM: Invalid argument have
been provided.

5- PL_FD_STATUS_DUPLICATE_NAME: File with this name
already exists.

6- PL_FD_STATUS_FILE_TABLE_FULL: Maximum number of
files that can be stored on the disk has been reached,
new file cannot be created.

7- PL_FD_STATUS_DATA_FULL: The disk is full, new data
cannot be added.

8- PL_FD_STATUS_NOT_READY: The disk is not mounted.

14- PL_FD_STATUS_TRANSACTION_CAPACITY_EXCEEDED:
Too many disk sectors have been modified in the cause of
the current transaction (fatal).

See Also: Creating, Deleting, and Renaming Files , File Names and
Attributes ,

fd.rename , fd.delete , fd.getnumfiles ,
fd.maxstoredfiles

Par
t

Description

nam
e_a
ttr

A string (1-56 characters), must contain a file name and, optionally,
attributes separated from the file name by a space. File names are case-
sensitive.

Details

This method makes changes to the sectors of the flash disk. For the highest
possible reliability, use disk transactions when invoking it.

.Delete Method

Function: Deletes a file with the specified file name from the flash
disk.

Syntax: fd.delete(byref name as string) as pl_fd_status_codes

Returns: One of the following pl_fd_status_codes , also affects
fd.laststatus :

0- PL_FD_STATUS_OK: Completed successfully.

1- PL_FD_STATUS_FAIL : Physical flash memory failure
(fatal).

2- PL_FD_STATUS_CHECKSUM_ERR: Checksum error has
been detected in one of the disk sectors (fatal).

3- PL_FD_STATUS_FORMAT_ERR: Disk formatting error has
been detected (fatal).

250

249

285 272 281

283

259

282

282

273Platforms

©2000-2011 Tibbo Technology Inc.

8- PL_FD_STATUS_NOT_READY: The disk is not mounted.

9- PL_FD_STATUS_NOT_FOUND: File not found.

14- PL_FD_STATUS_TRANSACTION_CAPACITY_EXCEEDED:
Too many disk sectors have been modified in the cause of
the current transaction (fatal).

See Also: Creating, Deleting, and Renaming Files , , File Names and
Attributes ,

fd.create , fd.rename , fd.getnumfiles ,
fd.maxstoredfiles

Par
t

Description

nam
e

A string (1-56 characters) with the file name. All characters after the first
space encountered (excluding leading spaces) will be ignored. File names
are case-sensitive.

Details

This method makes changes to the sectors of the flash disk. For the highest
possible reliability, use disk transactions when invoking it.

.Filenum Property

Function: Sets/returns the number of the currently selected file.

Type: Byte

Value Range: 0 to fd.maxopenedfiles -1. Default= 0 (file #0 selected)
.

See Also: Opening Files ,

fd.open

Details

.Fileopened R/O Property

Function: Reports if any file is currently opened "on" the selected file
number (selection is made through fd.filenum).

Type: Enum (no_yes, byte)

Value Range: 0- NO: No file is currently opened on this file number
(default).

1- YES: The file is currently opened on this file number.

See Also: Opening Files ,

250

249

271 285 281

283

259

282

253

284

273

253

274 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

fd.filenum , fd.open , fd.maxopenedfiles

Details

.Filesize R/O Property

Function: Returns the size, in bytes, of the file opened "on" the
currently selected file number (selection is made through
the fd.filenum) . Returns zero if no file is currently
opened.

Type: Dword

Value Range: 0 to "whatever is physically possible for the currently
existing flash disk".

See Also: Writing To and Reading From Files ,

fd.getdata , fd.setdata , fd.pointer , fd.setpointer

Details

.Find Method

Function: Finds the Nth instance of data satisfying selected criteria
in a file opened "on" a currently selected file number
(selection is made through fd.filenum).

Syntax: fd.find(frompos as dword, byref substr as string,
instance as word, dir as forward_back, incr as word,
mode as pl_fd_find_modes) as dword

Returns: File position (counting from one) at which the target
occurrence of the substr was discovered, or 0 if the
target occurrence of the substr was not found.

The method also affects the state of the fd.laststatus .
The following status codes are possible:

0- PL_FD_STATUS_OK: Completed successfully.

1- PL_FD_STATUS_FAIL : Physical flash memory failure
(fatal).

2- PL_FD_STATUS_CHECKSUM_ERR: Checksum error has
been detected in one of the disk sectors (fatal).

3- PL_FD_STATUS_FORMAT_ERR: Disk formatting error has
been detected (fatal).

4- PL_FD_STATUS_INV_PARAM: Invalid argument have
been provided.

8- PL_FD_STATUS_NOT_READY: The disk is not mounted.

See Also: Searching Files

273 284 282

273

254

279 289 285

291

273

282

256

275Platforms

©2000-2011 Tibbo Technology Inc.

Par
t

Description

fro
mpo
s

Starting position in a file from which the search will be conducted. File
positions are counted from 1. Will be corrected automatically if out of
range.

sub
str

The string to search for.

inst
anc
e

Instance (occurrence) number to find.

dir Search direction:

0- FORWARD: the search will be conducted from the frompos position and
towards the end of the file.

1- BACK: the search will be conducted from the frompos position and
towards the beginning of the file.

incr Search position increment (or decrement for BACK searches).

mod
e

Search mode:

0- PL_FD_FIND_EQUAL: Find data that is equal to the substr.

1- PL_FD_FIND_NOT_EQUAL: Find data that is not equal to the substr.

2-PL_FD_FIND_GREATER: Find data with value greater than the value of
the substr.

3- FIND_GREATER_EQUAL: Find data with value greater than or equal to
the value of the substr.

4- PL_FD_FIND_LESSER: Find data with value less than the value of the
substr.

4- PL_FD_FIND_LESSER_EQUAL: Find data with value less than or equal to
the value of the substr.

Details

.Flush Method

Function: Saves back to the flash memory ("flushes") the changes
made to the most recently edited file.

Syntax: fd.close() as pl_fd_status_codes

Returns: One of the following pl_fd_status_codes , also affects
the status of fd.laststatus :

0- PL_FD_STATUS_OK: Completed successfully.

1- PL_FD_STATUS_FAIL: Physical flash memory failure
(fatal).

See Also: Writing To and Reading From Files (see "File Data
Caching"!), Closing Files ,

282

282

254

258

276 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

fd.close

Details

The fd.flush method does not depend on the current fd.filenum value and works
globally on any most recently changed file.

Executing fd.close also does the job of fd.flush.

It is not necessary to use fd.flush if your disk operations are performed within a disk
transaction .

.Format Method

Function: Formats the flash memory to create a flash disk; no
transaction journal sectors will be allocated.

Syntax: fd.format(totalsize as word, numstoredfiles as byte) as
pl_fd_status_codes

Returns: One of the following pl_fd_status_codes , also affects
fd.laststatus :

0- PL_FD_STATUS_OK: Completed successfully.

1- PL_FD_STATUS_FAIL : Physical flash memory failure
(fatal).

4- PL_FD_STATUS_INV_PARAM: Invalid argument have
been provided for the invoked method.

16- PL_FD_STATUS_FLASH_NOT_DETECTED: Flash IC
wasn't detected during boot, fd. object cannot operate
normally.

See Also: Formatting the Flash Disk , Checking Disk Vitals ,

fd.mount , fd.ready

Part Description

totalsize Desired number of sectors occupied by the disk in flash
memory. Cannot exceed available space
(fd.availableflashspace) and may be slightly corrected
downwards for internal housekeeping reasons. Actual total
size can be checked through the fd.totalsize .

maxstoredfiles Desired maximum number of files that the disk will allow to
create. Actual maximum number of files will be adjusted
automatically to be a multiple of four and not exceed 64 (for
example, specifying 6 will result in the actual value of 8). If
you specify 0 you will get 4 files.

Details

Fd.format will not allocate and transaction journal sectors, so disk transactions
will be impossible. Use fd.formatj (recommended) to create the disk that will
support transaction.

269

273

269

259

259

282

282

245 249

283 285

267

292

259

277

277Platforms

©2000-2011 Tibbo Technology Inc.

After formatting the disk will be in the dismounted state and will need to be
mounted (see fd.mount) before any disk-related activity can be successfully
performed.

.Formatj Method

Function: Formats the flash memory to create a flash disk.

Syntax: fd.format(totalsize as word, numstoredfiles as byte,
maxjournalsectors as byte) as pl_fd_status_codes

Returns: One of the following pl_fd_status_codes , also affects
fd.laststatus :

0- PL_FD_STATUS_OK: Completed successfully.

1- PL_FD_STATUS_FAIL : Physical flash memory failure
(fatal).

4- PL_FD_STATUS_INV_PARAM: Invalid argument have
been provided for the invoked method.

16- PL_FD_STATUS_FLASH_NOT_DETECTED: Flash IC
wasn't detected during boot, fd. object cannot operate
normally.

See Also: Formatting the Flash Disk , Checking Disk Vitals ,

fd.mount , fd.ready

Part Description

totalsize Desired number of sectors occupied by the disk in flash
memory. Cannot exceed available space
(fd.availableflashspace) and may be slightly corrected
downwards for internal housekeeping reasons. Actual total
size can be checked through the fd.totalsize .

maxstoredfiles Desired maximum number of files that the disk will allow to
create. Actual maximum number of files will be adjusted
automatically to be a multiple of four and not exceed 64 (for
example, specifying 6 will result in the actual value of 8). If
you specify 0 you will get 4 files.

maxjournalsectors Number of sectors to allocate for the transaction journal .
Give this disk area a generous number of sectors, possibly
50-100. Do not set below 17 -- this will limit the transaction
capacity of the journal. Setting this parameter to 0 or 1
disables disk transactions completely.

Details

After formatting the disk will be in the dismounted state and will need to be
mounted (see fd.mount) before any disk-related activity can be successfully
performed.

283

282

282

245 249

283 285

267

292

259

283

278 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

.Getattributes Method

Function: Returns the attributes string for a file with the specified
file name.

Syntax: fd.getattributes(byref name as string) as string

Returns: The string with attributes (may be up to 54 characters
long) or an empty string if no attributes were set for this
file. The method also affects the state of fd.laststatus .
The following status codes are possible:

0- PL_FD_STATUS_OK: Completed successfully.

1- PL_FD_STATUS_FAIL : Physical flash memory failure
(fatal).

2- PL_FD_STATUS_CHECKSUM_ERR: Checksum error has
been detected in one of the disk sectors (fatal).

3- PL_FD_STATUS_FORMAT_ERR: Disk formatting error has
been detected (fatal).

8- PL_FD_STATUS_NOT_READY: The disk is not mounted.

9- PL_FD_STATUS_NOT_FOUND: File not found.

See Also: Reading and Writing File Attributes , Creating, Deleting,
and Renaming Files , File Names and Attributes ,

fd.setattributes , fd.create

Par
t

Description

nam
e

A string (1-56 characters) with the file name. All characters after the first
space encountered (excluding leading spaces) will be ignored. File names
are case-sensitive.

Details

.Getbuffer Method

Function: Reads the specified number of bytes from the currently
selected RAM buffer of the flash memory (selection is
made through the fd.buffernum property).

Syntax: fd.getbuffer(offset as word, len as word) as string

Returns: The string with the data from the buffer.

See Also: Direct Sector Access ,

fd.buffernum , fd.setbuffer , fd.getsector ,
fd.setsector , fd.checksum , fd.copyfirmware ,
fd.copyfirmwarelzo

282

251

250 249

287 271

267

240

267 288 281

290 268 269

270

279Platforms

©2000-2011 Tibbo Technology Inc.

Par
t

Description

offs
et

Starting offset in the buffer. Possible value range is 0-263 (the buffer
stores 264 bytes of data, offset is counted from 0).

len Number of bytes to read. The length of returned data will depend on one
of three factors, whichever is smaller: len argument, amount of data still
available in the buffer counting from the offset position, and the capacity
of receiving string variable.

Details

.Getdata Method

Function: Reads a specified number of bytes from the file opened
"on" a currently selected file number (selection is made
through fd.filenum). The data is read starting at the
fd.pointer position.

Syntax: fd.getdata(maxinplen as byte) as string

Returns: The string with the data read from the file. The method
also affects the state of fd.laststatus . The following
status codes are possible:

0- PL_FD_STATUS_OK: Completed successfully.

1- PL_FD_STATUS_FAIL : Physical flash memory failure
(fatal).

2- PL_FD_STATUS_CHECKSUM_ERR: Checksum error has
been detected in one of the disk sectors (fatal).

3- PL_FD_STATUS_FORMAT_ERR: Disk formatting error has
been detected (fatal).

8- PL_FD_STATUS_NOT_READY: The disk is not mounted.

10- PL_FD_STATUS_NOT_OPENED: No file is currently
opened "on" the current value of the fd.filenum
property.

See Also: Writing To and Reading From Files ,

fd.setdata , fd.pointer , fd.setpointer , fd.filesize

Par
t

Description

max
inpl
en

Maximum number of bytes to read from the file. The length of returned
data will depend on one of three factors, whichever is smaller: maxinplen
argument, amount of data still available in the file counting from the
current pointer position, and the capacity of receiving string variable.

Details

As a result of this method invocation, the pointer will be advanced forward by the

273

285

282

273

254

289 285 291 274

280 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

number of bytes actually read from the file.

.Getfreespace Method

Function: Returns the total number of free data sectors available on
the flash disk.

Syntax: fd.getfreespace() as word

Returns: 0-65535, also affects the state of fd.laststatus . The
following status codes are possible:

0- PL_FD_STATUS_OK: Completed successfully.

1- PL_FD_STATUS_FAIL : Physical flash memory failure
(fatal).

2- PL_FD_STATUS_CHECKSUM_ERR: Checksum error has
been detected in one of the disk sectors (fatal).

3- PL_FD_STATUS_FORMAT_ERR: Disk formatting error has
been detected (fatal).

8- PL_FD_STATUS_NOT_READY: The disk is not mounted.

See Also: Checking Disk Vitals ,

fd.capacity , fd.numservicesectors , fd.totalsize ,
fd.maxstoredfiles , fd.getnumfiles

Details

One data sectors carries 256 bytes of file data. Each existing file occupies at least
one data sector, even if the file is empty.

The disk must be mounted (see fd.mount) for this property to return a
meaningful value.

.Getnextdirmember Method

Function: Returns the next filename (if any) found in the disk
directory.

Syntax: fd.getnextdirmember() as string

Returns: The string containing the file name of the next directory
member or an empty string if all file names have already
been returned. The method also affects the state of
fd.laststatus . The following status codes are possible:

0- PL_FD_STATUS_OK: Completed successfully.

1- PL_FD_STATUS_FAIL : Physical flash memory failure
(fatal).

2- PL_FD_STATUS_CHECKSUM_ERR: Checksum error has
been detected in one of the disk sectors (fatal).

3- PL_FD_STATUS_FORMAT_ERR: Disk formatting error has
been detected (fatal).

8- PL_FD_STATUS_NOT_READY: The disk is not mounted.

See Also: Walking Through File Directory ,

fd.resetdirpointer , fd.getnumfiles

282

249

268 284 292

283 281

283

282

252

286 281

281Platforms

©2000-2011 Tibbo Technology Inc.

Details

.Getnumfiles Method

Function: Returns the total number of files currently stored on the
disk.

Syntax: fd.getfreespace() as word

Returns: 0-65535, also affects the state of fd.laststatus . The
following status codes are possible:

0- PL_FD_STATUS_OK: Completed successfully.

1- PL_FD_STATUS_FAIL : Physical flash memory failure
(fatal).

2- PL_FD_STATUS_CHECKSUM_ERR: Checksum error has
been detected in one of the disk sectors (fatal).

3- PL_FD_STATUS_FORMAT_ERR: Disk formatting error has
been detected (fatal).

8- PL_FD_STATUS_NOT_READY: The disk is not mounted.

See Also: Creating, Deleting, and Renaming Files , Walking Through
File Directory , Checking Disk Vitals ,

fd.capacity , fd.numservicesectors , fd.totalsize ,
fd.getfreespace , fd.maxstoredfiles

Details

The disk must be mounted (see fd.mount) for this property to return a
meaningful value.

.Getsector Method

Function: Reads the entire 264 bytes from the specified sector into
the currently selected RAM buffer of the flash memory
(selection is made through the fd.buffernum property).

Syntax: fd.getsector(num as word) as pl_fd_status_codes

Returns: One of the following pl_fd_status_codes , also affects
the state of fd.laststatus :

0- PL_FD_STATUS_OK: Completed successfully.

1- PL_FD_STATUS_FAIL : Physical flash memory failure
(fatal).

16- PL_FD_STATUS_FLASH_NOT_DETECTED: Flash IC
wasn't detected during boot, fd. object cannot operate
normally.

See Also: Direct Sector Access , File-based and Direct Sector
Access Coexistence ,

282

250

252 249

268 284 292

280 283

283

267

282

282

240

263

282 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

fd.buffernum , fd.getbuffer , fd.setbuffer ,
fd.setsector , fd.checksum , fd.copyfirmware ,
fd.copyfirmwarelzo

Par
t

Description

num Logical number of the sector to read from (logical numbers are in reverse:
reading from the logical sector 0 actually means reading from the last
physical sector of the flash IC).

Details

All file-based operations of the flash disk also load data into the RAM buffers.
Switch to the RAM buffer #0 each time before performing direct sector access
with this or other related methods -- this will guarantee that you won't corrupt the
files and/or the file system and cause disk dismounting (fd.ready becoming 0-
NO).

This method always accesses the actual specified target sector and not its cached
copy even if the disk transaction is in progress (fd.transactionstarted = 1-
YES) and the target sector has been cached already.

.Laststatus R/O Property

Function: Returns the execution result for the most recent disk-
related method execution.

Type: Enum (pl_fd_status_code, byte)

Value Range: Many different fatal and non-fatal conditions are returned
-- see Fd. Object's status codes for details.

See Also: Fd. Object's Status Codes

Details

Some methods, such as fd.create , return execution status directly. For those,
the fd.laststatus will contain the same status as the one directly returned.

Other methods return some other data. For example, fd.getdata returns the data
requested (or an empty string if something went wrong). The execution result for
such methods can only be verified through this R/O property.

Note that some errors are fatal and the disk is dismounted (fd.ready is set to 0-
NO) immediately upon the detection of any such fatal error.

.Maxopenedfiles R/O Property

Function: Returns the total number of files that can be
simultaneously opened by your application.

Type: Byte

Value Range: Platform-dependent.

267 278 288

290 268 269

270

245

240

285

259 294

239

239

271

279

285

283Platforms

©2000-2011 Tibbo Technology Inc.

See Also: Opening Files ,

fd.filenum , fd.open , fd.fileopened

Details

The value of this property depends on the hardware (selected platform) and has
nothing to do with the formatting of your flash disk.

.Maxstoredfiles R/O Property

Function: Returns the total number of files that can be
simultaneously stored on the currently existing flash disk.

Type: Byte

Value Range: Value depends on the current disk formatting.

See Also: Formatting the Flash Disk , Creating, Deleting, and
Renaming Files , Checking Disk Vitals ,

fd.capacity , fd.numservicesectors , fd.totalsize ,
fd.getfreespace , fd.getnumfiles

Details

This number cannot be changed unless the disk is reformatted (see fd.formatj) .

The disk must be mounted (see fd.mount) for this property to return a
meaningful value.

.Mount Method

Function: Mounts (prepares for use) the flash disk already existing in
the flash memory.

Syntax: fd.format() as pl_fd_status_codes

Returns: One of the following pl_fd_status_codes , also affects
fd.laststatus :

0- PL_FD_STATUS_OK: Completed successfully.

1- PL_FD_STATUS_FAIL : Physical flash memory failure
(fatal).

1- PL_FD_STATUS_FAIL : Physical flash memory failure
(fatal).

2- PL_FD_STATUS_CHECKSUM_ERR: Checksum error has
been detected in one of the disk sectors (fatal).

3- PL_FD_STATUS_FORMAT_ERR: Disk formatting error has
been detected (fatal).

16- PL_FD_STATUS_FLASH_NOT_DETECTED: Flash IC
wasn't detected during boot, fd. object cannot operate
normally.

See Also: Mounting the Flash Disk ,

253

273 284 273

138

245

250 249

268 284 292

280 281

277

283

282

282

249

284 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

fd.formatj , fd.ready

Details

This method also finishes the transaction commit job if it was started with the
fd.transactioncommit method and wasn't completed properly due to the power
failure or some other reason.

.Numservicesectors R/O Property

Function: Returns the total number of sectors occupied by the
"housekeeping" data of the currently existing flash disk.

Type: Byte

Value Range: Value depends on the current disk formatting.

See Also: Checking Disk Vitals , Disk Area Allocation Details ,

fd.capacity , fd.totalsize , fd.getfreespace ,
fd.maxstoredfiles , fd.getnumfiles

Details

The disk must be mounted (see fd.mount) for this property to return a
meaningful value.

.Open Method

Function: Opens a file with a specified name "on" a currently
selected file number (selection is made through fd.filenum

).

Syntax: fd.open(byref name as string) as pl_fd_status_codes

Returns: One of the following pl_fd_status_codes , also affects
fd.laststatus :

0- PL_FD_STATUS_OK: Completed successfully.

1- PL_FD_STATUS_FAIL : Physical flash memory failure
(fatal).

2- PL_FD_STATUS_CHECKSUM_ERR: Checksum error has
been detected in one of the disk sectors (fatal).

3- PL_FD_STATUS_FORMAT_ERR: Disk formatting error has
been detected (fatal).

8- PL_FD_STATUS_NOT_READY: The disk is not mounted.

9- PL_FD_STATUS_NOT_FOUND: File not found.

11- PL_FD_STATUS_ALREADY_OPENED: This file is already
opened "on" some other file number.

See Also: Opening Files ,

fd.filenum , fd.fileopened , fd.maxopenedfiles

277 285

259

293

249 246

268 292 280

283 281

283

273

282

282

253

273 273 282

285Platforms

©2000-2011 Tibbo Technology Inc.

Par
t

Description

nam
e

A string (1-56 characters) with the file name. All characters after the first
space encountered (excluding leading spaces) will be ignored. File names
are case-sensitive.

Details

.Pointer R/O Property

Function: Returns the pointer position for the file opened "on" the
currently selected file number (selection is made through
fd.filenum). Returns zero if no file is currently opened
or the file is empty.

Type: Dword

Value Range: 0 to fd.filesize +1 (except for fd.filesize= 0, in which
case fd.pointer= 0 too).

See Also: Writing To and Reading From Files ,

fd.getdata , fd.setdata , fd.setpointer , fd.filesize

Details

.Ready R/O Property

Function: Informs whether the flash disk is mounted and ready for
use.

Type: Enum (no_yes, byte)

Value Range: 0- NO: The disk is not mounted and not ready for use
(default).

1- YES: The disk is mounted and ready for use.

See Also: Mounting the Flash Disk ,

fd.formatj , fd.mount

Details

.Rename Method

Function: Renames a file specified by its name.

Syntax: fd.create(byref old_name as string, byref new_name as

273

274

254

279 289 291

274

249

277 283

286 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

string) as pl_fd_status_codes

Returns: One of the following pl_fd_status_codes , also affects
fd.laststatus :

0- PL_FD_STATUS_OK: Completed successfully.

1- PL_FD_STATUS_FAIL : Physical flash memory failure
(fatal).

2- PL_FD_STATUS_CHECKSUM_ERR: Checksum error has
been detected in one of the disk sectors (fatal).

4- PL_FD_STATUS_INV_PARAM: Old_name is a NULL
string, which is not allowed.

5- PL_FD_STATUS_DUPLICATE_NAME: File with the
new_name already exists.

8- PL_FD_STATUS_NOT_READY: The disk is not mounted.

9- PL_FD_STATUS_NOT_FOUND: The old_name file is not
found.

14- PL_FD_STATUS_TRANSACTION_CAPACITY_EXCEEDED:
Too many disk sectors have been modified in the cause of
the current transaction (fatal).

See Also: Creating, Deleting, and Renaming Files , File Names and
Attributes ,

fd.create , fd.delete , fd.getnumfiles ,
fd.maxstoredfiles

Part Description

old_n
ame

A string (1-56 characters) with the name of the file to be renamed. All
characters after the first space encountered (excluding leading spaces)
will be ignored. File names are case-sensitive.

new_
name

A string (1-56 characters) with the new name for the file. All characters
after the first space encountered (excluding leading spaces) will be
ignored.

Details

Renaming a file preserves file attributes.

This method makes changes to the sectors of the flash disk. For the highest
possible reliability, use disk transactions when invoking it.

.Resetdirpointer Method

Function: Resets the directory pointer to zero.

Syntax: fd.resetdirpointer()

Returns: ---

See Also: Walking Through File Directory ,

fd.getnextdirmember , fd.getnumfiles

282

282

250

249

271 272 281

283

259

252

280 281

287Platforms

©2000-2011 Tibbo Technology Inc.

Details

.Sector R/O Property

Function: Returns the physical sector number corresponding to the
current position of the file pointer.

Type: Word

Value Range: 0-65535

See Also: Writing To and Reading From Files

Details

Because the sectors belonging to a given file may be scattered around the flash
disk, there is no simple way to figure out the number of the physical sector
corresponding to the current file pointer position (see fd.pointer). This property
exists purely for informational purposes. There is no real need for you to know
where the fd. object stores your data.

.Setattributes Method

Function: Sets the attributes string for a file with the specified file
name.

Syntax: fd.setattributes(byref name as string, byref attr as
string) as pl_fd_status_codes

Returns: One of the following pl_fd_status_codes , also affects
fd.laststatus :

0- PL_FD_STATUS_OK: Completed successfully.

1- PL_FD_STATUS_FAIL : Physical flash memory failure
(fatal).

2- PL_FD_STATUS_CHECKSUM_ERR: Checksum error has
been detected in one of the disk sectors (fatal).

3- PL_FD_STATUS_FORMAT_ERR: Disk formatting error has
been detected (fatal).

8- PL_FD_STATUS_NOT_READY: The disk is not mounted.

9- PL_FD_STATUS_NOT_FOUND: File not found.

14- PL_FD_STATUS_TRANSACTION_CAPACITY_EXCEEDED:
Too many disk sectors have been modified in the cause of
the current transaction (fatal).

See Also: Reading and Writing File Attributes , Creating, Deleting,
and Renaming Files , File Names and Attributes ,

fd.getattributes , fd.create

254

285

282

282

251

250 249

278 271

288 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Par
t

Description

nam
e

A string (1-56 characters) with the file name. All characters after the first
space encountered (excluding leading spaces) will be ignored. File names
are case-sensitive.

attr A string with attributes to be set. Attributes length cannot exceed 56-
length_of_the_file_name-1. This "-1" accounts for the space character
that separates the file name from the attributes.

Details

This method makes changes to the sectors of the flash disk. For the highest
possible reliability, use disk transactions when invoking it.

.Setbuffer Method

Function: Writes a specified number of bytes into the currently
selected RAM buffer of the flash memory (selection is
made through the fd.buffernum property).

Syntax: fd.setbuffer(byref data as string, offset as word) as
word

Returns: Actual number of bytes written.

See Also: Direct Sector Access , File-based and Direct Sector
Access Coexistence

fd.buffernum , fd.getbuffer , fd.getsector ,
fd.setsector , fd.checksum , fd.copyfirmware ,
fd.copyfirmwarelzo

Par
t

Description

dat
a

A string with the data to be written to the buffer.

offs
et

Starting offset in the buffer. Possible value range is 0-263 (the buffer
stores 264 bytes of data, offset is counted from 0).

Details

The length of data actually written into the buffer may be limited if all supplied data
can't fit between the offset position in the buffer and the end of the buffer.

All file-based operations of the flash disk also load data into the RAM buffers.
Switch to the RAM buffer #0 each time before performing direct sector access
with this or other related methods -- this will guarantee that you won't corrupt the
files and/or the file system and cause disk dismounting (fd.ready becoming 0-
NO).

259

267

240

263

267 278 281

290 268 269

270

245

240

285

289Platforms

©2000-2011 Tibbo Technology Inc.

.Setdata Method

Function: Writes data to a file opened "on" a currently selected file
number (selection is made through fd.filenum). The
data is written starting at the fd.pointer position.

Syntax: fd.setdata(byref data as string) as
pl_fd_status_codes

Returns: One of the following pl_fd_status_codes , also affects
fd.laststatus :

0- PL_FD_STATUS_OK: Completed successfully.

1- PL_FD_STATUS_FAIL : Physical flash memory failure
(fatal).

2- PL_FD_STATUS_CHECKSUM_ERR: Checksum error has
been detected in one of the disk sectors (fatal).

3- PL_FD_STATUS_FORMAT_ERR: Disk formatting error has
been detected (fatal).

7- PL_FD_STATUS_DATA_FULL: The disk is full, new data
cannot be added.

8- PL_FD_STATUS_NOT_READY: The disk is not mounted.

10- PL_FD_STATUS_NOT_OPENED: No file is currently
opened on the current value of the fd.filenum property.

14- PL_FD_STATUS_TRANSACTION_CAPACITY_EXCEEDED:
Too many disk sectors have been modified in the cause of
the current transaction (fatal).

See Also: Writing To and Reading From Files ,

fd.getdata , fd.pointer , fd.setpointer , fd.filesize

Par
t

Description

dat
a

A string containing data to be written to the file. If the disk becomes full,
then no data will be written (and not just the portion that could not fit).

Details

As a result of this method invocation, the pointer will be advanced forward by the
number of bytes actually written to the file.

This method makes changes to the sectors of the flash disk. For the highest
possible reliability, use disk transactions when invoking this method.

.Setfilesize Method

Function: Sets (reduces) the file size of a file opened "on" a
currently selected file number (selection is made through
fd.filenum).

Syntax: fd.setfilesize(newsize as dword) as
pl_fd_status_codes

Returns: One of the following pl_fd_status_codes , also affects
fd.laststatus :

0- PL_FD_STATUS_OK: Completed successfully.

273

285

282

282

273

254

279 285 291 274

259

273

282

282

290 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

1- PL_FD_STATUS_FAIL : Physical flash memory failure
(fatal).

2- PL_FD_STATUS_CHECKSUM_ERR: Checksum error has
been detected in one of the disk sectors (fatal).

3- PL_FD_STATUS_FORMAT_ERR: Disk formatting error has
been detected (fatal).

8- PL_FD_STATUS_NOT_READY: The disk is not mounted.

14- PL_FD_STATUS_TRANSACTION_CAPACITY_EXCEEDED:
Too many disk sectors have been modified in the cause of
the current transaction (fatal).

See Also: Removing Data From Files ,

fd.cutfromtop

Par
t

Description

new
size

Desired new file size in bytes. Supplied value will be corrected downwards
if exceeded previous file size.

Details

As a result of this method invocation, the pointer position may be corrected
downwards.

This method makes changes to the sectors of the flash disk. For the highest
possible reliability, use disk transactions when invoking this method.

.Setsector Method

Function: Writes the entire 264 bytes of the specified sector with
the data from the currently selected RAM buffer of the
flash memory (selection is made through the fd.buffernum

 property).

Syntax: fd.getsector(num as word) as pl_fd_status_codes

Returns: One of the following pl_fd_status_codes , also affects
fd.laststatus :

0- PL_FD_STATUS_OK: Completed successfully.

1- PL_FD_STATUS_FAIL: Physical flash memory failure
(fatal).

4- PL_FD_STATUS_INV_PARAM: specified sector number is
in the firmware/application area of the flash memory;
access has been denied.

16- PL_FD_STATUS_FLASH_NOT_DETECTED: Flash IC
wasn't detected during boot, fd. object cannot operate
normally.

See Also: Direct Sector Access , Sharing Flash Between Your
Application and Data , File-based and Direct Sector
Access Coexistence ,

255

271

259

267

282

282

240

237

263

291Platforms

©2000-2011 Tibbo Technology Inc.

fd.buffernum , fd.getbuffer , fd.setbuffer ,
fd.getsector , fd.checksum , fd.copyfirmware ,
fd.copyfirmwarelzo

Par
t

Description

num Logical number of the sector to write to (logical numbers are in reverse:
writing to the logical sector 0 actually means writing to the last physical
sector of the flash IC). Acceptable range is 0 - fd.availableflashspace -
1.

Details

The data area of the flash memory may house a formatted flash disk . Writing to
the sector that belongs to the flash disk when the disk is mounted will automatically
dismount the disk (set fd.ready = 0- NO) and may render the disk unusable.

This method always accesses the specified target sector and not its cached copy
even if the disk transaction is in progress (fd.transactionstarted = 1- YES) and
the target sector has been cached already.

.Setpointer Method

Function: Sets the new pointer position for a file opened "on" a
currently selected file number (selection is made through
fd.filenum).

Syntax: fd.setpointer(pos as dword) as pl_fd_status_codes

Returns: One of the following pl_fd_status_codes , also affects
fd.laststatus :

0- PL_FD_STATUS_OK: Completed successfully.

1- PL_FD_STATUS_FAIL : Physical flash memory failure
(fatal).

2- PL_FD_STATUS_CHECKSUM_ERR: Checksum error has
been detected in one of the disk sectors (fatal).

3- PL_FD_STATUS_FORMAT_ERR: Disk formatting error has
been detected (fatal).

8- PL_FD_STATUS_NOT_READY: The disk is not mounted.

See Also: Writing To and Reading From Files ,

fd.getdata , fd.setdata , fd.pointer , fd.filesize

Par
t

Description

pos Desired new pointer position. Supplied value will be corrected if out of
range. For the files of 0 size (see fd.filesize), the pointer may only
have one value -- 0. If the file has non-zero size, the pointer can be
between 1 and fd.filesize+1. "1" is the position of the first byte of the file.
The last existing byte of the file is at position equal to the value of

267 278 288

281 268 269

270

267

245

285

259 294

273

282

282

254

279 289 285 274

274

292 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

fd.filesize. "Fd.filesize+1" is the position at which new data can be added
to the file.

Details

.Totalsize R/O Property

Function: Returns the total number of sectors occupied by the
currently existing flash disk.

Type: Word

Value Range: 0-65535

See Also: Checking Disk Vitals ,

fd.capacity , fd.numservicesectors , fd.getfreespace
, fd.maxstoredfiles , fd.getnumfiles

Details

For internal reasons , the total size of the disk as returned by this property may
be less than the size that was requested when formatting the disk with the
fd.formatj (fd.format) method. Actual usable capacity (fd.capacity) of the
disk is less because the disk also needs a number of sectors for its "housekeeping"
data (see fd.numservicesectors).

The disk must be mounted (see fd.mount) for this property to return a
meaningful value.

.Transactioncapacityremaining R/O Property

Function: Returns the number of sectors that can still be changed in
the cause of the current disk transaction.

Type: Byte

Value Range: 0 to 16 or maxjournalsectors-1, whichever is smaller.
Maxjournalsectors is the argument of the fd.formatj
method.

See Also: Using Disk Transactions , Understanding Transaction
Capacity

fd.transactionstart , fd.transactioncommit ,
fd.transactionstarted

Details

249

268 284

280 283 281

246

277 276 268

284

283

277

259

261

293 293

294

293Platforms

©2000-2011 Tibbo Technology Inc.

.Transactioncommit Method

Function: Commits a disk transaction.

Syntax: fd.transactioncommit() as pl_fd_status_codes

Returns: One of the following pl_fd_status_codes , also affects
fd.laststatus :

0- PL_FD_STATUS_OK: Completed successfully.

1- PL_FD_STATUS_FAIL : Physical flash memory failure
(fatal).

8- PL_FD_STATUS_NOT_READY: The disk is not mounted.

13- PL_FD_STATUS_TRANSACTION_NOT_YET_STARTED:
Disk transaction hasn't been started yet.

15- PL_FD_STATUS_TRANSACTIONS_NOT_SUPPORTED:
The disk wasn't formatted to support transactions (use
fd.formatj with maxjournalsectors>1 to enable
transactions).

See Also: Using Disk Transactions ,

fd.transactionstart , fd.transactionstarted ,
fd.transactioncapacityremaining

Details

.Transactionstart Method

Function: Starts a disk transaction.

Syntax: fd.transactionstart() as pl_fd_status_codes

Returns: One of the following pl_fd_status_codes , also affects
fd.laststatus :

0- PL_FD_STATUS_OK: Completed successfully.

8- PL_FD_STATUS_NOT_READY: The disk is not mounted.

12- PL_FD_STATUS_TRANSACTION_ALREADY_STARTED:
Disk transaction has already been started (and cannot be
restarted).

15- PL_FD_STATUS_TRANSACTIONS_NOT_SUPPORTED:
The disk wasn't formatted to support transactions (use
fd.formatj with maxjournalsectors>1 to enable
transactions).

See Also: Using Disk Transactions ,

fd.transactioncommit , fd.transactionstarted ,
fd.transactioncapacityremaining

Details

282

282

277

259

293 294

292

282

282

277

259

293 294

292

294 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

.Transactionstarted R/O Property

Function: Reports whether a disk transaction is currently in
progress.

Type: Enum (no_yes, byte)

Value Range: 0- NO: Disk transaction is not in progress (default).

1- YES: Disk transaction is in progress.

See Also: Using Disk Transactions ,

fd.transactionstart , fd.transactioncommit ,
fd.transactioncapacityremaining

Details

IO Object

The io object controls I/O lines, ports, and interrupt lines of your device.

8.3.4.1Overview

The I/O object controls your device's individual I/O lines and ports. Each port
groups eight I/O lines. You can control the state of each line or entire port.

The list of available I/O lines and ports is platform-specific, i.e. it depends on your
device. Two enum constant sets -- pl_io_num and pl_io_port_num -- define the set
of available lines and ports. You can find the declaration of these enums in your
platform documentation (for example, EM1000's is here).

There are two different methods for controlling I/O lines (ports):

Method with pre-selection ;

Method without pre-selection .

I/O lines of your device can work as both inputs and outputs -- Controlling Output
Buffers topic explains this.

Some I/O lines can work as interrupts -- see Working With Interrupts for
explanation. The list of available interrupt lines is platform-specific. The pl_int_num
enum constant set defines the set of related variables. Again, please refer to your
platform documentation.

On many devices, a number of I/O lines may be shared with inputs/outputs of
special function blocks (serial ports, etc.). When a special function block is enabled,
I/O lines it uses cannot (should not) be manipulated though the io object.

259

293 293

292

143

295

295

296

297

295Platforms

©2000-2011 Tibbo Technology Inc.

Line/Port Manipulation With Pre-selection

I/O line manipulation with pre-selection works like this: you first select the line you
want to work with using the io.num property. You can then read and set the
state of this line using the io.state property. On certain platforms, you can also
enable/disable the output buffer of the line with the io.enabled property -- more
on this in the Controlling Output Buffers topic. Here is a code example:

io.num=PL_IO_NUM_5 'select line #5
io.enabled=YES 'enable this line
io.state=HIGH 'set this line to HIGH
io.state=LOW 'now set this line to LOW
io.enabled=NO 'configure the line as input now
x=io.state 'read the state of the line

Same can be done with ports -- use io.portnum , io.portstate , and
io.portenabled properties to achieve this:

io.portnum=2 'select port #2
io.portenabled=&hFF 'this means that every port line's output buffer will be
enabled (&hFF=&b11111111)
'output &h55: port lines 0, 2, 4, and 6 will be at HIGH, 4 remaining lines
will be at LOW (&h55=&b01010101)
io.portstate=&h55
'output another value
op.portstate=0
'configure the port for input and read its state
io.portenabled=0
x=io.portstate

This way of controlling the lines/ports of your device is good when you are going to
manipulate the same line/port repeatedly. Performance is improved because you
select the line/port once and then address this line/port as many times as you
need.

Note that I/O line and port names are platform-specific and are defined by
pl_io_num and pl_io_port_num enums respectively. The declarations for these
enums can be found in your device's platform documentation (for example,
EM1000's is here).

On many devices, a number of I/O lines may be shared with inputs/outputs of
special function blocks (serial ports, etc.). When a special function block is enabled,
I/O lines it uses cannot (should not) be manipulated though the io object.

Line/Port Manipulation Without Pre-selection

I/O line manipulation without pre-selection is good when you need to deal with
several I/O lines at once. For this, use io.lineset , io.lineget , and io.invert
methods. These methods require the line number to be supplied directly, as a
parameter. Therefore, pre-selection with the io.num property is not necessary.

301

303

298

296

302 303

302

143

300 300 300

301

296 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Moreover, executing these methods leaves the io.num value intact.

Here is an example of a serialized clock/data output. The clock line is PL_IO_NUM_0
and the data line is PL_IO_NUM_1. Notice how this is implemented -- clock line is
preselected once, then set LOW and HIGH using the io.state property.
Meanwhile, the data line is updated using the io.lineset method. The variable x
supposedly carries a bit of data to be output (where x gets is data is not shown).

Dim f As Byte
Dim x As low_high

io.num=PL_IO_NUM_0 'pre-select the clock line
For f=0 To 7
 ... 'obtain the value of the next bit, put it into x (not shown)
 io.state=LOW 'set the clock line LOW (the clock line has already been
preselected)
 io.lineset(PL_IO_NUM_1,x) 'output the next data bit
 io.state=HIGH 'set the clock line HIGH (the clock line has already been
preselected)
Next f

Direct port manipulation is achieved using io.portset and io.portget methods.

Note that I/O line and port names are platform-specific and are defined by
pl_io_num and pl_io_port_num enums respectively. The declarations for these
enums can be found in your device's platform documentation (for example,
EM1000's is here).

On many devices, a number of I/O lines may be shared with inputs/outputs of
special function blocks (serial ports, etc.). When a special function block is enabled,
I/O lines it uses cannot (should not) be manipulated though the io object.

Controlling Output Buffers

As far as the I/O line/port control goes, there are two kinds of Tibbo devices and
corresponding platforms -- those without output buffer control, and those with
output buffer control. You can find this information in your device's platform
documentation (for example, EM1000's is here).

On devices without the output buffer control each I/O line's output driver is always
enabled. If you want to use this line as an input, set its state to HIGH. After that,
you can read this line's state. If the line is left unconnected or is not being pulled
low externally you will read HIGH. If the line is being pulled low externally you will
read LOW. Pulling the line LOW externally while this line's output driver is at HIGH
will do no damage to the line.

Here is a code example in which we wait for the line #1 to become LOW:

io.num=PL_IO_NUM_1 'select the line
io.state=HIGH 'set it to HIGH so we can use it as an input
While io.state=HIGH 'wait until the line is pulled LOW externally
Wend

On devices with explicit output buffer control, you need to define whether the line

303

303 302

143

194

143

297Platforms

©2000-2011 Tibbo Technology Inc.

is an output (set io.enabled = 1- YES) or input (set io.enabled = 0- NO). Trying
to read the line while it is in the output mode will simply return the state of the
line's own output driver. Forcing the line externally while it works as an output may
cause a permanent damage to the device. For this kind of devices, the above code
must be modified to look like this:

io.num=PL_IO_NUM_1 'select the line
io.enabled=NO 'disable the output driver (line will function as an input
now)
While io.state=HIGH 'wait until the line is pulled LOW externally
Wend

Since ports consist of individual lines, the same applies to ports as well. What
needs to be understood is that each port line can be configured as input or output
individually. Hence, a particular port doesn't have to be "all outputs" or "all inputs".
Here is an example where the lower half of the port lines is configured for output,
and the rest of the lines serve as inputs:

'This is an example for devices with explicit output buffer control
io.portnum=PL_IO_PORT_1
io.portenabled= &h0F 'configure lower 4 lines as outputs, the rest will be
used as inputs

Some I/O lines are shared with inputs/outputs of special function blocks (serial
ports, etc.). When a special function block is enabled, certain (not all) I/O lines it
uses may be configured for input or output automatically. For such lines, when the
corresponding special function block is disabled, the state of the output buffer is
restored automatically to what it used to be prior to enabling this function block.

Note that I/O line and port names are platform-specific and are defined by
pl_io_num and pl_io_port_num enums respectively. The declarations for these
enums can be found in your device's platform documentation (for example,
EM1000's is here).

Working With Interrupts

Some platforms have a number of I/O lines that can work as interrupt inputs. To
enable a particular interrupt line, select it using the io.intnum property and
enable the line with the io.intenabled property:

'enable interrupt line #0
io.intnum=PL_INT_NUM_0
io.intenabled=YES

Once the line has been enabled, the change in this line's state will generate an

298 298

143

299

299

298 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

on_io_int event. The linestate argument of this event is bit-encoded: each bit of
the value represents one interrupt line. For the PL_INT_NUM_0, the corresponding
bit is bit 0, for PL_INT_NUM_1 -- bit 1, and so on. A particular bit of the linestate
argument is set when the state change (from LOW to HIGH, or from HIGH to LOW)
has been detected on the related interrupt line. Event handler for the on_io_int
event can then determine what triggered the interrupt:

Sub On_io_int(linestate As Byte)
 'check if it is the interrupt line #0 that has caused the interrupt
 If linestate And &h01 <>0 Then
 'yes, interrupt has been triggered by the interrupt line #0
 ...
 End If
End Sub

Please, note that the word "interrupt" is used here is a somewhat loose sense. On
traditional microcontrollers, interrupt line status change causes a near-
instantaneous pause to the execution of the main code and a jump to an "interrupt
routine". Hence, the term "interrupt" -- the execution of the main code gets
interrupted.

With the io object, the interrupt line state change does not disrupt the execution of
the any event handler or reordering of pending events in the event queue . The
on_io_int event is added to the end of the event queue and is not handled until
all earlier events are processed. Therefore, nothing is actually interrupted. Note
also that there is no guaranteed interrupt response speed here -- the time between
line state change detection and the execution of the on_io_int event handler
depends on the number of prior events waiting in the queue and, hence, cannot be
pre-determined with any certainty.

Further, there may be only one on_io_int event waiting in the event queue. Another
such event will not be generated unless the previous one is processed (this
prevents the event queue from getting overflown). Therefore, some short-lived
state changes may remain undetected.

Bottom line: the "interrupts" of the io object should be viewed as a more convenient
alternative to programmatic polling of the I/O lines.

Note that interrupt line names, such as "PL_INT_NUM_0" are defined by the
pl_int_num enum, which is platform-specific. The declaration of this enum can be
found in the your device's platform documentation (for example, EM1000's is here
).

8.3.4.2Properties, Events, Methods

This section provides an alphabetical list of all properties, methods, and events of
the io object.

.Enabled Property (Selected Platforms Only)

Function: Sets/returns the state of the output buffer for the
currently selected I/O line (selection is made through the
io.num property).

Type: Enum (no_yes, byte)

301

301

7

301

301

143

301

299Platforms

©2000-2011 Tibbo Technology Inc.

Value Range: 0- NO (default): disabled, I/O line works as an input

1- YES: enabled, I/O line works as an output

See Also: Controlling Output Buffers , io.state

Details

Depending on the platform, explicit configuration of the output buffers may or
may not be required. For information on your device, see its platform documentation
(for example, EM1000's is here). The property is either not available or has no
effect on platforms that do not require buffer configuration.

.Intenabled Property

Function: Enabled/disables currently selected interrupt line
(selection is made through the io.intnum property).

Type: Enum (no_yes, byte)

Value Range: 0- NO (default): the interrupt line is disabled

1- YES: the interrupt line is enabled

See Also: Working With Interrupts

Details

Change of state of any enabled interrupt line leads to the on_int_ev event
generation. State change of disabled interrupt lines produces no effect.

.Intnum Property

Function: Sets/returns the number of currently selected interrupt
line.

Type: Enum (pl_int_num, byte)

Value Range: Platform-specific. See the list of pl_int_num constants in
the platform specifications.

See Also: Working With Interrupts

Details

Selected interrupt line can be enabled or disabled using the io.intenabled
property. State change on enabled interrupt lines causes on_io_int event
generation.

In order to work correctly as an interrupt on certain platforms, the line may need to
be configured as an input -- see Controlling Output Buffers for details.

296 303

194

143

299

297

301

297

299

301

296

300 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

.Invert Method

Function: Inverts the state of the I/O line specified by the num
argument.

Syntax: io.invert(num as pl_io_num)

Returns: ---

See Also: Line/Port Manipulation Without Pre-selection , io.lineget
, io.lineset

Part Description

num Platform-specific. See the list of pl_io_num constants in the
platform specifications.

Details

No line pre-selection with the io.num property is required and the value of the
io.num will not be changed.

.Lineget Method

Function: Returns the state of the I/O line specified by the num
argument.

Syntax: io.lineget(num as pl_io_num) as low_high

Returns: Current line state as LOW or HIGH (low_high enum values)

See Also: Line/Port Manipulation Without Pre-selection , io.lineset
, io.invert

Part Description

num Platform-specific. See the list of pl_io_num constants in the
platform specifications.

Details

No line pre-selection with the io.num property is required and the value of the
io.num will not be changed.

.Lineset Method

Function: Sets the I/O line specified by the num argument HIGH or
LOW as specified by the state argument.

Syntax: io.lineset(num as pl_io_num, state as low_high)

Returns: ---

See Also: Line/Port Manipulation Without Pre-selection , io.lineget
, io.invert

295

300 300

301

295

300 300

301

295

300 300

301Platforms

©2000-2011 Tibbo Technology Inc.

Part Description

num Platform-specific. See the list of pl_io_num constants in the
platform specifications.

state LOW or HIGH (low_high enum values).

Details

No line pre-selection with the io.num property is required and the value of the
io.num will not be changed.

.Num Property

Function: Sets/returns the number of currently selected I/O line.

Type: Enum (pl_io_num, byte)

Value Range: Platform-specific. See the list of pl_io_num constants in
the platform specifications.

See Also: Line/Port Manipulation with Pre-selection

Details

Selects a particular I/O line to be manipulated through the io.state and
io.enabled properties (the latter may or not be available on your platform). The
list of available I/O lines is defined by the pl_io_num constant.

On_io_int Event

Function: Generated when the change of state on one of the
enabled interrupt lines is detected.

Declaration: on_io_int(linestate as byte)

See Also: Working With Interrupts

Part Description

linestate 0-255. Each bit of this value corresponds to one interrupt
line in the order that these lines are declared in the
pl_int_num enum.

Details

Interrupt lines are enabled/disabled through the io.intenabled property. Another
on_io_int event is never generated until the previous one is processed.

301

295

303

298

297

299

302 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

.Portenabled Property (Selected Platforms Only)

Function: Sets/returns the state of the output buffers for the
currently selected I/O port (selection is made through the
io.portnum property).

Type: Byte

Value Range: Default= 0 (all eight I/O lines of the port are configured
as inputs)

See Also: Controlling Output Buffers , io.portstate

Details

Each I/O port groups eight I/O lines. Each bit of this property's byte value
corresponds to one "member" I/O line. Setting the bit to 0 keeps the output buffer
turned off, while setting the bit to 1 enables the output buffer.

Depending on the platform, explicit configuration of the output buffers may or
may not be required. For information on your device, see its platform documentation
(for example, EM1000's is here). The property is either not available or has no
effect on platforms that do not require buffer configuration.

.Portget Method

Function: Returns the state of the I/O port specified by the num
argument.

Syntax: io.portget(num as pl_io_port_num) as byte

Returns: 0-255. Each bit of this value corresponds to one member
I/O line of the 8-bit port.

See Also: Line/Port Manipulation Without Pre-selection , io.portset

Part Description

num Platform-specific. See the list of pl_io_port_num constants
in the platform specifications.

Details

No line pre-selection with the io.portnum property is required and the value of
the io.portnum will not be changed.

.Portnum Property

Function: Sets/returns the number of currently selected I/O port.

Type: Enum (pl_io_port_num, byte)

Value Range: Platform-specific. See the list of pl_io_port_num constants
in the platform specifications.

See Also: Line/Port Manipulation With Pre-selection

302

296 303

194

143

295

303

302

295

303Platforms

©2000-2011 Tibbo Technology Inc.

Details

Selects a particular I/O port to be manipulated through the io.portstate and
io.portenabled properties (the latter may or not be available on your platform).
Each port groups eight I/O lines. The list of available I/O ports is defined by the
pl_io_port_num constant.

.Portset Method

Function: Sets the I/O port specified by the num argument to the
state specified by the state argument.

Syntax: io.portset(num as pl_io_port_num, state as byte)

Returns: ---

See Also: Line/Port Manipulation Without Pre-selection , io.portget

Part Description

num Platform-specific. See the list of pl_io_port_num constants
in the platform specifications.

state 0-255. Each bit of this value corresponds to one member I/
O line of the 8-bit port.

Details

No line pre-selection with the io.portnum property is required and the value of
the io.portnum will not be changed.

.Portstate property

Function: Sets/returns the state of the currently selected I/O port
(selection is made through the io.portnum property).

Type: Byte

Value Range: 0-255. Default value is hardware-dependent.

See Also: Line/Port Manipulation With Pre-selection ,
io.portenabled

Details

Each I/O port groups eight I/O lines. Each bit of this property's byte value
corresponds to one "member" I/O line.

.State Property

Function: Sets/returns the state of the currently selected I/O line
(selection is made through the io.num property).

303

302

295

302

302

302

295

302

301

304 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Type: Enum (low_high, byte)

Value Range: 0- LOW

1- HIGH

(Default value is hardware-dependent)

See Also: Line/Port Manipulation with Pre-selection , io.enabled

Details

Kp Object

This is the keypad (kp.) object, it allows you to work with a "matrix" keypad of up
to 64 keys (8 scan lines by 8 return lines).

Features:

Flexible keypad arrangement . Scan lines can double as LED control lines too.

Five distinctive states for each key allow you to create sophisticated keypad
input. Individual programming of delay times for each state transition.

Flexible mapping for scan and return lines -- use any I/O lines, in any order.

Ability to auto-disable the keypad when a certain key event/code combination
is encountered.

8.3.5.1Possible Keypad Configurations

The kp object works with a "matrix" keypad formed by scan and return lines. The
keypad object supports up to 8 scan and 8 return lines, which means that you can
build a keypad with up to 64 keys. A sample schematic diagram for a typical keypad
is shown below.

During the scanning process, the kp object "activates" one scan line after another.
The line is activated by setting it LOW, while keeping all other scan lines HIGH. For
each scan line, the kp object samples the state of return lines. If any return line is
at LOW, this means the key located at the intersection of this return line and the
currently active scan line is pressed.

A detailed discussion of the schematics falls outside the scope of this manual. We
will only notice, in passing, that the diodes D1-D4 are necessary and should not be
omitted. For best result, use Schottky diodes -- they have low drop voltage. Pull-
up resistors R1-R4 prevent the return lines from floating and should be present as
well.

295 298

304

306

307

307

307

305Platforms

©2000-2011 Tibbo Technology Inc.

On platforms with output buffer control , all intended scan lines should be
configured as outputs, and all return lines -- as inputs (see io.num , io.enabled
).

Scan lines can optionally perform a double duty and drive LEDs. One such LED can
be connected to each scan line, preferably through a buffer, as shown on the
drawing below. These LEDs can be used for any purpose you desire -- and this
purpose can be completely unrelated to the keypad itself.

If the LED is connected as shown on the drawing, you need to set the
corresponding I/O line LOW in order to turn this LED on. Each time the kp. object is
to scan the keypad for pressed keys -- and this happens every 10ms -- it will first

296

301 298

306 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

set all scan lines to HIGH. This is necessary for correct keypad operation. Before
doing so, however, the kp object will memorize the state of each scan line. This
state will be restored after the scanning is complete. To your eye, this will look like
that LED connected to the scan line was on all the time (of course, it it was on in
the first place).

To build a functioning keypad you will need to have at least one return line. A
sensible count of scan lines, however, starts from two! Having a single scan line is
like having no scan lines whatsoever -- you might just as well ground this single
scan line of the keypad, i.e. keep it active permanently. This arrangement is shown
 on the drawing below.

Preparing the Keypad for Operation topic explains how to setup the kp. object
properly for the keypad hardware you are using.

8.3.5.2Key States and Transitions

Each key on your keypad can be in five different states, as defined by the
pl_kp_event_codes constant. Here are those states:

0- PL_KP_EVENT_LONGRELEASED: The key has been released "for a while".

1- PL_KP_EVENT_RELEASED: The key has been released (just now).

2- PL_KP_EVENT_PRESSED: The key has been pressed (just now).

3- PL_KP_EVENT_LONGPRESSED: The key has been pressed "for a while".

4- PL_KP_EVENT_REPEATPRESSED: Auto-repeat for the key.

The diagram below shows all key states and possible state transitions.

307

307Platforms

©2000-2011 Tibbo Technology Inc.

Possible state transitions are indicated by arrows. Red arrows show transitions for
when the key is pressed (or remains pressed), blue -- for when the key is released
(or remains released). The time it takes for the key to transition from one state to
another is quantified in 10ms intervals. This is the time period at which the kp.
object will perform keypad scans. Each transition delay, expressed in 10ms
intervals, is defined by a dedicated property, so you can decide for yourself what
"just now" and "for a while" mean. Each time the key transitions to the next state,
the on_kp event is generated. See Servicing Keypad Events for how to work
with events. The keypad object has a buffer that can hold up to 8 keypad events.

When the keypad is enabled (kp.enabled is set to 1- YES), the keypad buffer is
cleared and each key's state is set to "longreleased". Press the key long enough,
and the key will go into the "pressed" state. From there, the key can go to
"released" and, later, "longreleased" if you let go of that key, or into "longpressed"
and then "repeatpressed" if you keep the key pressed.

Five available key states, along with adjustable state transition times, allow you to
create sophisticated keypad input. For example, it is possible to have a mixed
alphanumerical input, like the one used on mobile phones for SMS entry.
"Longpressed" events can be assigned to add a digit, for example, "1" if you press
the "1ABC" key. "Pressed" events rotate between letters of the key ("A"->"B"->"C"-
>"A", etc.), unless another key is pressed or rotation times out on "longreleased"
event. In both cases, input advances to the next character.

8.3.5.3Preparing the Keypad for Operation

This topic explains what you need to do to property set up the kp. object. All
preparations should be made with the keypad disabled (kp.enabled = 0- NO), or
this setup won't work.

314 310

312

312

308 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Mapping scan and return lines

First, you need to define the list of scan and return lines. One great feature of the
kp. object is that you can assign ("map") any I/O line of your device to be a scan
or return line. I/O lines serving as scan or return lines don't even have to be
"together" (have consecutive numbers). Scan lines are assigned through the
kp.scanlinesmapping property, return lines -- through the kp.returnlinesmapping

 property. For example, here is how you select lines 24, 20, and 27 to serve as
scan lines, and 28, 21, and 25 to serve as return lines:

kp.scanlinesmapping="24,20,27"
kp.returnlinesmapping="28,21,25"

io.num=PL_IO_NUM_24
io.enabled=YES
io.num=PL_IO_NUM_20_INT4
io.enabled=YES
io.num=PL_IO_NUM_27
io.enabled=YES

On platforms with output buffer control each scan line must be configured as
output, each return line -- as input (shown in the example above).

Notice how we did not have any order in specifying return and scan lines -- this
simply does not matter. Select any lines, order then in any way you want. The only
limitations are:

You can't have more than 8 scan lines and 8 return lines;

You must have at least 1 return line;

Any given I/O line can only serve as a scan or return line, not both.

Line numbers are platform-dependent. They come from pl_io_num -- see its
declaration in the "Platform-dependent Constants" section of your device's platform
documentation (for example, EM1000's is here). The pl_io_num is a list of
constants like "PL_IO_NUM_24". You cannot just drop "PL_IO_NUM_24" into
kp.scanlinesmapping (or kp.returnlinesmapping). The correct way is to write "24" or
use str(PL_IO_NUM_24). So, another way to do the above setup would look like
this:

kp.scanlinesmapping=str(PL_IO_NUM_24)+","+str(PL_IO_NUM_20_INT4)+","+str
(PL_IO_NUM_27)
kp.returnlinesmapping=str(PL_IO_NUM_28)+","+str(PL_IO_NUM_21_INT5)+","+str
(PL_IO_NUM_25)
...
s=kp.returnlinesmapping 's will be equal to '28,21,25' (full constant names
like PL_IO_NUM_28 are not preserved)

Notice that no matter how you set kp.scanlinesmapping and kp.returnlinesmapping,
reading them will always return a simple list of numbers (shown in the example
above).

317

316

296

143

309Platforms

©2000-2011 Tibbo Technology Inc.

Defining state transition delays

Your second step is to set proper delay times for key state transitions . Five
different properties are responsible for that: kp.pressdelay , kp.longpressdelay ,
kp.repeatdelay , kp.releasedelay , and kp.longreleasedelay . Each property
sets the transition delay time in 10ms increments. Setting a property to 0 means
that the corresponding transition will never happen. Note that the maximum value
for each property is 254, not 255. All five properties already have sensible default
values, so you only need to change them if you don't like what we have chosen for
you:

kp.pressdelay=4 '40ms (4 successive keypad scans) to cinfirm that the key is
pressed
kp.longpressdelay=150 '1.5 seconds
kp.repeatdelay=0 'we do not want auto-repeat to work
kp.releasedelay=4 '40ms
kp.longreleasedelay=200 '2 seconds

Keypad auto-disable

Finally, you can select several event/code combinations that will automatically
disable the keypad. This is done through the kp.autodisablecodes property. Each
time one of the pre-sent combinations of the key state and key code is detected,
the kp.enabled property will be set to 0- NO, thus preventing further input until you
re-enable the keypad.

This behavior can be very useful. Supposing, you have an application where you
need to enter a certain code, then press <ENTER>. After you press <ENTER>, your
application processes the input, which may take some time. What you often need is
to prevent any further keypad input while the code is being processed. If you do
not do this, the user might continue punching away and creating garbage input that
your system does not need. This might even overwhelm the keypad buffer (see
Servicing Keypad Events). The kp.autodisablecodes makes sure that the input
stops at a certain event/code combination. Up to four such combinations can be
defined.

Here is an example of how this property could be set:

kp.autodisablecodes=str(PL_KP_EVENT_PRESSED)+",49" 'assuming that <ENTER>
key has the code of 49
kp.autodisablecodes="2,49" 'this is because the PL_KP_EVENT_PRESSED constant
is equal to 2

Once all the properties have been preset, enable the kp. object (kp.enabled= 1-
YES), and start processing keypad events .

306

315 313

315 315 313

312

310

310

310 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

8.3.5.4Servicing Keypad Events

Once you have correctly preset and enabled the kp. object, you only need to
process keypad events.

The on_kp is the main event that is generated each time a key transitions to a
new key state . The key_event argument will tell you what that new state is,
while the key_code will tell you the code of the key. Event codes are defined in the
on_kp_event_codes enum. The key code is composed of the scan line number (bits
7-4 of the key code), and the return line number (bits 3-0). Scan and return lines
are numbered in the same order they are listed in the kp.scanlinesmapping and
kp.returnlinesmapping properties.

For example, supposing you have a 4x4 keypad with <0> - <9> keys, also <F1> -
<F4>, <E> (enter) and <C> (cancel). Notice how key codes in their hex
representation reflect the number of the scan line (high digit) and return line (low
digit):

Set up the kp. object to work correctly with your hardware:

kp.scanlinesmapping="24,25,26,27"
kp.returnlinesmapping="28,29,30,31"

io.num=PL_IO_NUM_24
io.enabled=YES
io.num=PL_IO_NUM_25

307

314

306

317

316

311Platforms

©2000-2011 Tibbo Technology Inc.

io.enabled=YES
io.num=PL_IO_NUM_26
io.enabled=YES
io.num=PL_IO_NUM_27
io.enabled=YES

'we are not going to change default delay values -- we like them as they are
(we came up with them, after all)

kp.autodisablecodes=str(PL_KP_EVENT_PRESSED)+",49" '<ENTER> will disable
further input

kp.enabled=YES

Here is an example of the event handler that adds your input to the inp_str string
(global variable), clears the string when the <CANCEL> key is pressed, and launches
the mysterious process_it procedure when the <ENTER> key is pressed:

Sub On_kp(key_event As pl_kp_event_codes, key_code As Byte)
 Dim x As Byte
 If key_event=PL_KP_EVENT_PRESSED Then
 Select Case key_code
 Case &h1: x=1
 Case &h11: x=2
 Case &h21: x=3
 Case &h2: x=4
 Case &h12: x=5
 Case &h22: x=6
 Case &h3: x=7
 Case &h13: x=8
 Case &h23: x=9
 Case &h33: x=0
 Case &h32: '<CANCEL>
 inp_str=""
 Exit Sub
 Case &h31: '<ENTER> will disable the keypad...
 process_it()
 inp_str=""
 kp.enabled=YES '... so we re-enable it
 Exit Sub
 End Select
 inp_str=inp_str+chr(x) 'we will be here only when a numerical key is
pressed (see 'exit sub' under CANCEL and ENTER keys)
 End If
End Sub

Handling keypad buffer overflows

Another event -- on_kp_overflow -- tells you that the input buffer of the keypad
has been overwhelmed with frantic user input and the kp. object is not disabled.
You respond appropriately:

Sub On_kp_overflow

314

312 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

 lcd.print("WHAT'S THE RUSH? SLOW DOWN!",0,0) 'tell the user
 inp_str="" 'clear the string
 kp.enabled=YES 're-enable the keypad
End Sub

8.3.5.5Properties, Methods, Events

Properties, methods, and events of the kp object.

.Autodisablecodes Property

Function: Defines which key event/code combinations disable the
keypad.

Type: String

Value Range: Up to four comma-separated event/code pairs. Default=
"".

See Also: Preparing the Keypad for Operation , Key States and
Transitions

Details

This property should contain a comma-separated list of event codes and key codes,
for example: "2,15,0,20". In this example, two event/code pairs are set: "2,15" and
"0,20". Event "2" is 2- PL_KP_EVENT_PRESSED, and event "0" is 0-
PL_KP_EVENT_LONGRELEASED (see on_kp event for a full list of codes). "15" and
"20" are key codes. So, the keypad will be disabled (kp.enabled set to 0- NO)
when the key with code 15 is detected to be "pressed", or the key with code 20 is
detected to be "longreleased".

The kp.autodisablecodes string should only contain a list of decimal numbers. That
is, use "2" and not "2- PL_KP_EVENT_PRESSED". Only numerical characters are
processed anyway -- writing "2- PL_KP_EVENT_PRESSED,15,0-
PL_KP_EVENT_LONGRELEASED,20" will set this property to "2,15,0,20" anyway. You
can, of course, write str(PL_KP_EVENT_PRESSED)+","+"15"+","+str
(PL_KP_EVENT_LONGRELEASED)+","+"20" instead of "2,15,0,20".

This property can only be changed when the keypad is disabled (kp.enabled= 0-
NO). Setting the property to "" means that no event and key combination will
disable the keypad automatically.

.Enabled Property

Function: Enables or disables the keypad.

Type: Enum (no_yes, byte)

Value Range: 0- NO (default): The keypad is disabled.

1- YES: The keypad is enabled.

See Also: Preparing the Keypad for Operation

307

306

314

312

307

313Platforms

©2000-2011 Tibbo Technology Inc.

Details

The keypad matrix is being scanned and your application receives the on_kp and
on_kp_overflow events only when the keypad is enabled (kp.enabled= 1- YES).

The following properties can be changed only when the keypad is disabled
(kp.enabled= 0- NO): kp.autodisablecodes , kp.longreleasedelay ,
kp.longpressdelay , kp.pressdelay , kp.repeatdelay , kp.returnlinesmapping
, kp.scanlinesmapping .

The keypad will be auto-disabled if an overflow is detected (see on_kp_overflow
event), or if one of the conditions for automatic keypad disablement is met (see
kp.autodisablecodes).

Every time the keypad is enabled, each key's state is set to 0-
PL_KP_EVENT_LONGRELEASED and the keypad event buffer is cleared.

.Longpressdelay Property

Function: Defines (in 10ms increments) the amount of time a key
should remain pressed for the key state to transition from
"pressed" into "longpressed".

Type: Byte

Value Range: 0-254. Default= 100 (1000ms).

See Also: Key States and Transitions , Preparing the Keypad for
Operation

Details

The on_kp event with 3- PL_KP_EVENT_LONGPRESSED event code will be
generated once the key transitions into the "longpressed" state.

This property can only be changed when the keypad is disabled (kp.enabled = 0-
NO). Setting the property to 0 means that the key will never transition into the
"longpressed" state.

.Longreleasedelay Property

Function: Defines (in 10ms increments) the amount of time a key
should remain released for the key state to transition from
"released" into "longreleased".

Type: Byte

Value Range: 0-254. Default= 100 (1000ms).

See Also: Key States and Transitions , Preparing the Keypad for
Operation

Details

The on_kp event with 0- PL_KP_EVENT_LONGRELEASED event code will be
generated once the key transitions into the "longreleased" state.

314

314

312 313

313 315 315 316

317

314

312

306

307

314

312

306

307

314

314 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

This property can only be changed when the keypad is disabled (kp.enabled = 0-
NO). Setting the property to 0 means that the key will never transition into the
"longreleased" state.

On_kp Event

Function: Generated whenever a key transitions to another state.

Declaration: on_kp(key_event as pl_kp_event_codes, key_code as
byte)

See Also: Servicing Keypad Events , on_kp_overflow

Part Description

key_event 0- PL_KP_EVENT_LONGRELEASED: The key has transitioned
into the "longreleased" state.

1- PL_KP_EVENT_RELEASED: The key has transitioned into
the "released" state.

2- PL_KP_EVENT_PRESSED: The key has transitioned into
the "pressed" state.

3- PL_KP_EVENT_LONGPRESSED: The key has transitioned
into the "longpressed" state.

4- PL_KP_EVENT_REPEATPRESSED: Auto-repeat for the key.

key_code Key code (byte). Bits 7-4 of this code represent scan line
number, bits 3-0 -- return line number.

Details

Pressing and releasing any key on the keypad can generate up to five different
events, as explained in Key States and Transitions . Scan lines and return lines
are numbered as they are listed in kp.returnlinesmapping and
kp.scanlinesmapping .

This event can only be generated when the keypad is enabled (kp.enabled = 1-
YES).

On_kp_overflow Event

Function: Indicates that the keypad buffer has overflown and some
key events may have been lost.

Declaration: on_kp_overflow

See Also: Servicing Keypad Events

Details

The keypad buffer stores up to 16 keypad events. Each such event causes the
on_kp generation. If your application is slow to process the keypad events, it is
possible to overflow the keypad by pressing the keys in rapid succession. Once the

312

310 314

306

316

317

312

310

314

315Platforms

©2000-2011 Tibbo Technology Inc.

buffer overflows, the keypad is disabled automatically (kp.enabled is set to 0-
NO). You can re-enable the keypad by setting kp.enabled= 1- YES (this will clear
the keypad buffer).

.Pressdelay Property

Function: Defines (in 10ms increments) the amount of time a key
should remain pressed for the key state to transition from
"released" into "pressed".

Type: Byte

Value Range: 0-254. Default= 3 (30ms).

See Also: Key States and Transitions , Preparing the Keypad for
Operation

Details

The on_kp event with 2- PL_KP_EVENT_PRESSED event code will be generated
once the key transitions into the "pressed" state.

This property can only be changed when the keypad is disabled (kp.enabled = 0-
NO). Setting the property to 0 means that the key will never transition into the
"pressed" state.

.Releasedelay Property

Function: Defines (in 10ms increments) the amount of time a key
should remain released for the key state to transition from
"pressed" or "longpressed" into "released".

Type: Byte

Value Range: 0-254. Default= 3 (30ms).

See Also: Key States and Transitions , Preparing the Keypad for
Operation

Details

The on_kp event with 1- PL_KP_EVENT_RELEASED event code will be generated
once the key transitions into the "released" state.

This property can only be changed when the keypad is disabled (kp.enabled = 0-
NO). Setting the property to 0 means that the key will never transition into the
"released" state.

.Repeatdelay Property

Function: Defines (in 10ms increments) the time period at which the
on_kp event with 4- PL_KP_EVENT_REPEATPRESSED
event code will be generated once the key reaches the
"longpressed" state and remains pressed.

312

306

307

314

312

306

307

314

312

314

316 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Type: Byte

Value Range: 0-254. Default= 50 (500ms).

See Also: Key States and Transitions , Preparing the Keypad for
Operation

Details

This property can only be changed when the keypad is disabled (kp.enabled = 0-
NO). Setting the property to 0 means that the on_kp event with 4-
PL_KP_EVENT_REPEATPRESSED event code will never be generated.

.Returnlinesmapping Property

Function: Defines the list of up to 8 I/O lines that will serve as
return lines of the keypad matrix.

Type: String

Value Range: Up to eight comma-separated I/O line numbers can be
listed. Default= "".

See Also: Possible Keypad Configurations , Preparing the Keypad
for Operation , kp.scanlinesmapping

Details

This property should contain a comma-separated list of I/O lines numbers, for
example: "24, 26, 27". Line numbers correspond to those of the pl_io_num enum.
This enum is platform-specific. The declarations for the pl_io_num can be found in
the "Platform-dependent Constants" section of your device's platform
documentation (for example, EM1000's is here).

The kp.returnlinesmapping string should only contain a list of decimal numbers. That
is, use "24" and not "24- PL_IO_NUM_24". Only numerical characters are processed
anyway -- writing "24- PL_IO_NUM_24,25-PL_IO_NUM_25" will set this property to
"24,25". You can, of course, write str(PL_IO_NUM_24)+","+str(PL_IO_NUM_25) as
well.

The order in which you list the return lines does matter -- this is the order in which
the lines will be numbered. All keys connected to the first return line will have their
return field (bits 4-0) of the key code set to 0. For keys connected to the second
line this field will contain 1, third line -- 2, and so on.

On platforms with output buffer control , all intended return lines should be
configured as inputs by your application (see io.num , io.enabled).

This property can only be changed when the keypad is disabled (kp.enabled = 0-
NO). Setting the property to "" means that the keypad will have no return lines. A
keypad must have at least one return line to be able to work.

Return lines of the keypad should be separate from the scan lines (see
kp.scanlinesmapping). The keypad will not work properly if you designate any I/O
line as both a scan and return line.

306

307

312

304

307 317

143

296

301 298

312

317

317Platforms

©2000-2011 Tibbo Technology Inc.

.Scanlinesmapping Property

Function: Defines the list of up to 8 I/O lines that will serve as scan
lines of the keypad matrix.

Type: String

Value Range: Up to eight comma-separated I/O line numbers can be
listed. Default= "".

See Also: Possible Keypad Configurations , Preparing the Keypad
for Operation , kp.scanlinesmapping

Details

This property should contain a comma-separated list of I/O lines numbers, for
example: "28, 30, 31". Line numbers correspond to those of the pl_io_num enum.
This enum is platform-specific. The declarations for the pl_io_num can be found in
the "Platform-dependent Constants" section of your device's platform
documentation (for example, EM1000's is here).

The kp.scanlinesmapping string should only contain a list of decimal numbers. That
is, use "28" and not "28- PL_IO_NUM_28". Only numerical characters are processed
anyway -- writing "28- PL_IO_NUM_28,30-PL_IO_NUM_30" will set this property to
"28,30". You can, of course, write str(28- PL_IO_NUM_28)+","+str(30-
PL_IO_NUM_30) as well.

The order in which you list the scan lines does matter -- this is the order in which
the lines will be numbered. All keys connected to the first scan line will have their
scan field (bits 7-4) of the key code set to 0. For keys connected to the second
line this field will contain 1, third line -- 2, and so on.

On platforms with output buffer control , all intended scan lines should be
configured as outputs by your application (see io.num , io.enabled).

This property can only be changed when the keypad is disabled (kp.enabled = 0-
NO). Setting the property to "" means that the keypad will have no scan lines,
which is also a valid keypad configuration.

Scan lines of the keypad should be separate from the return lines (see
kp.returnlinesmapping). The keypad will not work properly if you designate any I/
O line as both the scan line and return line.

LCD Object

This is the display (lcd.) object, it allows you to operate a display panel. With the
lcd. object you can:

Use any display from a growing list of supported controllers/panels .

Inquire about the properties of selected controller/panel.

Draw pixels , lines , and rectangles ; fill areas .

Print text -- non-aligned, aligned, rotated, etc.

Display BMP images .

304

307 317

143

296

301 298

312

316

333

318

320 321 321 321

322

329

318 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

8.3.6.1Overview

In this section:

Understanding Controller Properties

Preparing the Display for Operation

Working With Pixels and Colors

Lines, Rectangles, and Fills

Working With Text

Displaying Images

Improving Graphical Performance

Supported Controllers/Panels

Understanging Controller Properties

Display panels come in all types, shapes, and sizes. Tibbo supports a limited but
growing number of controllers/panels . Each supported controller requires its own
"mini-driver". Your application cannot specify the desired controller. Instead,
controller type is selected through the Customize Platform dialog, accessible
through the Project Settings dialog. Once this is done, a proper "mini-driver" is
added to the executable binary during compilation.

The lcd. object is ready to work with a wide range of displays, some of which are
not actually of LCD type. So, the proper name for this object should be "display
object". Nevertheless, we have decided to keep this name -- typing "lcd" is faster
and the name has been in use for a while.

A number of R/O properties inform your application about the type and other vital
parameters of the currently selected display:

Lcd.paneltype indicates whether this panel is of monochrome/grayscale or color
type.

Lcd.bitsperpixel tells you how many bits in the display controller's memory are
allocated for each display pixel. Of course, the more bits/pixel you get, the higher is
your display quality.

For displays with 1, 2, or 4 bits/pixel, a single byte of memory packs the data for 8,
4, or 2 pixels. Lcd.pixelpacking will inform you how pixels are packed into memory
bytes: vertically, or horizontally (see the drawing below). The reason you may want
to know this is to achieve faster text output .

318

320

320

321

322

329

330

333

333

349

339

350

322

319Platforms

©2000-2011 Tibbo Technology Inc.

Color displays

For color displays (lcd.paneltyle= 1- PL_LCD_PANELTYPE_COLOR), three additional
R/O properties -- lcd.redbits , lcd.greenbits , and lcd.bluebits -- will indicate
how many bits are available in each color channel, and also how three color fields
are combined into a word describing the overall color of the pixel. You need to know
this for setting pixels, as well as defining the foreground/background color used in
drawing lines and rectangles, filling areas, and printing text (see Working With Pixels
and Colors).

These three properties are of word type. Each 16-bit value packs two 8-bit
parameters: number of bits per pixel for this color channel (high byte) and the bit
position of the field in the color word (low byte). Supposing, lcd.redbits=&h0500,
lcd.bluebits=&h0605, and lcd.greenbits=&h050B. You reconstruct the composition of
the red, green, and blue bits in a word:

In this example, the red field is the first one on the right, followed by the blue field
(this field starts from bit 5), then green field (starts from bit 11 or 7hB). You now

also know that there are 52= 32 brightness levels for red and green, and 64
brightness levels for blue.

You can use this detailed information to select color values that will work correctly
on all color displays, even those you haven't tested yet. Here is a useful example
where you work out three constants -- color_red, color_green, and color_blue --
that will universally work for any color display.

Dim color_red, color_green, color_blue As word
...

352 345 340

320

320 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

lcd_red=val("&b"+strgen(lcd.redbits/&hFF,"1")+strgen(lcd.redbits And
&hFF,"0"))
lcd_green=val("&b"+strgen(lcd.greenbits/&hFF,"1")+strgen(lcd.greenbits And
&hFF,"0"))
lcd_blue=val("&b"+strgen(lcd.bluebits/&hFF,"1")+strgen(lcd.bluebits And
&hFF,"0"))

Now you can scientifically work out the constant for the white color:

...
lcd_white=lcd_red+lcd_green+lcd_blue

In reality, you don't have to bother calculating color_white like this. Just
select the highest possible value (&hFFFF) and this will be your white.

Preparing the Display for Operation

Several steps need to be taken before the display will become operational. Some of
these steps are display-specific. Supported Controllers/Panels section provides
examples of startup code for each supported display.

Generally speaking, you need to take the following steps:

Define which I/O lines and ports of your device control the display. This is done
through the lcd.iomapping property.

Configure some I/O lines/ports as outputs, as required for controlling your
particular display. This is only necessary on platforms with explicit output buffer
control . For more details see your device's platform documentation (for
example, EM1000's is here).

Set the resolution of the display (lcd.width , lcd.height). These values
depend on the panel, not the controller, so they cannot be detected
automatically. Your application needs to set them "manually".

Set lcd.rotated = 1- YES if you wish the display image to be rotated 180
degrees (that is, the display of your device is installed up side down).

Set lcd.inverted = 1- YES if you need to invert the image on the display (may
be required for certain panels).

Enable the display by setting lcd.enabled = 1- YES. This step will only work if
your display is properly connected, correct display type is selected in your
project, lcd.iomapping is set property, and necessary I/O lines are configured as
outputs. The lcd.error R/O property will indicate 1- YES if there was a problem
enabling the display.

Enable, the backlight, if needed -- this is not related to the controller/panel itself,
but is still a necessary step. Light it up, don't linger in the dark!

Working With Pixels and Colors

The lcd.setpixel method allows you to set the color of a single pixel. The method
accepts a 16-bit color word, and the interpretation of this word is controller/panel-
specific (see Understanding Controller Properties). In the following example, we
determine the proper value for the green color and put a single green dot in the
middle of the display:

333

347

194

143

357 346

353

347

341

342

354

318

321Platforms

©2000-2011 Tibbo Technology Inc.

Dim color_green As word
...
lcd_green=val("&b"+strgen(lcd.greenbits/&hFF,"1")+strgen(lcd.greenbits And
&hFF,"0"))
lcd.setpixel(lcd_green,lcd.width/2,lcd.height/2)

Lcd.setpixel is the only method that accepts the color directly. All other methods
rely on two color properties: lcd.forecolor and lcd.backcolor . Each property is
a 16-bit value, just like the one used by the lcd.setpixel. The forecolor is the color
of the "drawing pen", and the backcolor is the color of the background. In the
following example, we set the lcd.forecolor to the brightest color available, and the
lcd.backcolor to the darkest color available:

lcd.forecolor=&hFFFF
lcd.backcolor=0

The following methods are provided to output data onto the screen, and they all
use the lcd.forecolor and, where necessary, the lcd.backcolor:

Lcd.line , lcd.verline , lcd.horline -- the line is drawn using the forecolor.

Lcd.rectangle -- the border is drawn using the forecolor, the internal area of
the rectangle is not filled.

Lcd.filledrectangle -- the border is drawn using the forecolor, the internal area
is filled with the backcolor.

Lcd.fill -- the entire area is filled with the forecolor.

Lcd.print and lcd.printaligned -- print text, where each "on" dot of each
character is displayed in forecolor, while each "off" dot is displayed in backcolor.

The following two sections -- Lines, Rectangles, and Fills , and Working With Text
 -- discuss the above methods in more details.

Lines, Rectangles, and Fills

Lines

344 339

348 357 346

352

343

342

351 351

321

322

322 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

The lcd.line method draws a line between any points. Lcd.verline and
lcd.horline draw vertical and horizontal lines correspondingly. Use the last two
methods whenever possible because they work faster than generic lcd.line. The line
is drawn using the color set in the lcd.forecolor property (see Working With
Pixels/Lines), and the line width is defined by the lcd.linewidth property. In
the following example, we draw a picture as shown above, on the left:

lcd.forecolor=color_blue 'we assume we have already set color_blue
lcd.verline(0,0,20) 'vertical line, width=1 (default)
lcd.horline(0,20,0) 'horizontal line, width=1 (default)
lcd.linewidth=3 'change the width
lcd.line(2,2,20,20) 'line at 45 degrees, width=3

Defining lcd.linewidth>1 (3 for one of the lines in the above example) creates
"fatter" lines. Notice how two points of the line are drawn and where each specified
coordinate actually is.

Rectangles

Lcd.rectangle draws an unfilled rectangle using lcd.forecolor as "pen" color, and
pen width defined by the lcd.linewidth property. Lcd.filledrectangle will
additionally paint the internal area using lcd.backcolor. Example and its result:

lcd.forecolor=color_blue 'we assume we have already set color_blue
lcd.backcolor=color_green 'we assume we have already set color_green
lcd.rectangle(0,0,20,20) 'width=1 (default)
lcd.linewidth=3
lcd.filledrectangle(5,5,15,15) 'width=3, filled with background color

Fills

Lcd.fill paints specified area with the lcd.forecolor:

lcd.forecolor=color_blue 'we assume we have already set color_blue
lcd.fill(0,0,16,16)
lcd.forecolor=color_green 'we assume we have already set color_green
lcd.fill(5,5,16,16)

Working With Text

Lcd.print and lcd.printaligned display text. The text is printed using the
selected font. This means you need to have at least one font file in your project
(see how to add a file), and have this font selected before you can print
anything.

Lcd.setfont is used to select the font:

romfile.open("Tibbo-5x7(VP).bin")
lcd.setfont(romfile.offset)

348 357

346

344

320 348

352

343

342

351 351

132

353

323Platforms

©2000-2011 Tibbo Technology Inc.

Note that lcd.setfont will return 1- NG if you try to feed it a wrong file!

Once the font has been successfully selected, the lcd.fontheight and
lcd.fontpixelpacking R/O properties will tell you the maximum height of characters
in this font and how pixel data is packed within the font file. The meaning of the
first one is obvious. The meaning of the second one will become apparent after
(and if) you read Raster Font File (TRF) Format . If you don't want to read this,
it's OK too, we can just go straight to the summary:

Fonts can be encoded horizontally or vertically, and the lcd.fontpixelpacking will tell
you what type of font you have selected. You should only care about this for
displays with lcd.bitsperpixel <8. if your display has lcd.bitsperpixel>8 then it
doesn't matter what kind of font you use. If it is <8, then you are better off
selecting a font for which lcd.fontpixelpacking is equal to lcd.pixelpacking
(depends on selected controller/panel). You achieve better performance when
these two properties are "aligned". It will also work if you select a font which is
"perpendicular" to your display, but text printing might slow down considerably.

We typically offer two versions for each font, for example, "Tibbo-5x7(V).bin" and
"Tibbo-5x7(H)". V stands for "vertical" and "H" stands "horizontal".

Non-aligned text

Once the font has been selected, you can start printing. You do this with the
lcd.print method. This method always produces a single-line output. Two
properties -- lcd.textorientation and lcd.texthorizontalspacing -- affect how
your text is printed. The reference point of your text is at the top-left pixel of the
output. X and Y arguments of lcd.print specify this corner, and the text is rotated
"around" this pixel as well. Example:

lcd.print("Text",30,10)
lcd.textorientation=PL_LCD_TEXT_ORIENTATION_180
lcd.texthorizontalspacing=4
lcd.print("Text",30,10)

Lcd.print returns the total width of produced textual output in pixels. This can be
very useful. Here is an example where you draw a frame around the text, and you
want the frame size to be "just right":

x=lcd.print("Text",30,10)
lcd.rectangle(28,8,30+x+1,10+lcd.fontheight+1)

343

344

325

339

350

351

356 355

324 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Sometimes, it is desirable to know the width of the text output before actual
printing. Lcd.getprintwidth will tell you how many pixels will be taken by your
text horizontally (remember, text height is equal to lcd.fontheight). In the
following example, we align the text output along the right side of the screen. This
requires us to know how wide this output will be:

x=lcd.getprintwidth("Text")
x=lcd.print("Text",lcd.width-x,10)

Aligned text

The lcd.printaligned method outputs your text within a specified rectangular
area. Four properties -- -- lcd.textorientation , lcd.textalignment ,
lcd.texthorizontalspacing , and lcd.textverticalspacing -- define how your text
will be printed. To fit within the target area, the lcd. object will split the text into
several lines as necessary. Only the text that can fit within the area will be
displayed. You can add your own line breaks by using the ̀character (ASCII code
96). Example:

lcd.textverticalspacing=2
lcd.textalignment=PL_LCD_TEXT_ALIGNMENT_BOTTOM_RIGHT
lcd.printaligned("Multi-line text",0,0,35,33)

Note that lcd.printaligned returns the number of text lines that were produced.

345

343

351

356 355

355 356

325Platforms

©2000-2011 Tibbo Technology Inc.

Raster Font File Format

This topic details font file format used by the LCD object. The font file is a resource
file that is added to your Tibbo Basic project. Like all other resource files "attached"
to your project, font files are accessible through the romfile object. Use and
interpretation of font file data, however, is the responsibility of the lcd.object. The
Romfile object merely stores these files.

Tibbo font files have "TRF" (Tibbo Raster Font) extension. TRF file format was
designed with the following considerations in mind:

Ability to handle large character sets (such as those required for Chinese
language support). Hence, the use of 16-bit character codes.

16-bit character sets usually have large "gaps" (i.e. areas of unused codes). The
TRF format offers an efficient way to define which characters are included into
the font file and allows to conduct very efficient character search within the file.

Support for proportional fonts. Hence, each character's width is individually
defined.

Support for fonts with anti-aliasing. Anti-aliasing is achieved by adjusting the
"intensity" (brightness) of individual pixels. In an anti-aliased font, each pixel of
character bitmap is represented by 2 or more bits of data. Fonts without anti-
aliasing just need 1 data bit/pixel because each pixel can only be ON or OFF. At
the time of writing, TiOS supported only fonts with 1 bit/pixel.

Support for vertical and horizontal character bitmap encoding. Displays with
lcd.bitsperpixel = 1, 2, or 4 pack 8, 4, or 2 pixels into a single byte of display
memory. Problem is, some displays combine the pixels vertically (see drawing A
below), and some -- horizontally (drawing B). Text output on such displays is
more efficient if character bitmaps of the TRF file use the same direction of
packing.

TRF file format

The TRF file consists of four data areas:

370

339

326 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Data area Description

Header

Contains various information such as the total number of
characters in this font, character height, etc. Also contains
the number of code groups in the code groups table (see
below).

Code groups
table

Contains descriptors of "code groups". Each code group
contains information about a range of codes that has no
"gaps" (i.e. unused codes in the middle). The font file can
have as many code groups as necessary.

Bitmap offset
table

Contains addresses (offsets) of all character bitmaps in the
TRF file. In combination with the code groups table provides a
way to find the bitmap of any specific character.

Bitmaps
Contains all bitmaps of each character included into the font
file. The width of each bitmap is defined individually and is
stored together with the bitmap.

Header format

The header has a fixed length of 16 bytes and stores the following information:

Off
se
t*

B
y
t
e
s

Data Comment

+0 2
Num_of
_chars

Total number of characters in this font file

+2 1
Pixels_
per_byt
e

0- eight pixels/byte (1 bit/pixel, no anti-aliasing); 1- four
pixels/byte, 2- two pixels/byte, 3- one pixel/byte. Modes
1, 2, and 3 are currently not supported; these modes are
for anti-aliasing and will be supported in the future.

+3 1
Orientat
ion

0- pixels are grouped vertically; 1- pixels are grouped
horizontally (irrelevant when pixels_per_byte=3)

+4 1 Height Maximum character height in this font, in pixels.

+5 9
<Reserv
ed>

Reserved for future use

+1
4

2
Num_of
_groups

Number of entries in the code groups table

*With respect to the beginning of the file

Code groups table

This table has variable number of entries. This number is stored in the
num_of_groups field of the header. Each code group represents a range of codes
that contains no gaps (no unused character codes in the middle). For example,
supposing that we have a font that only contains characters '0'-'9' and 'A'-'Z'. This
means that this font file will contain two groups of codes: 0030H through 0039H
('0'-'9') and 0041H through 005AH ('A'-'Z').

327Platforms

©2000-2011 Tibbo Technology Inc.

Each entry in the code groups table is 8 bytes long and has the following format:

Of
fs
et
*

B
y
t
e
s

Data Comment

+0 2 Start_cod
e

The first code in the group

+2 2 Num_cod
es

Number of individual character codes in this group

+4 4 Bitmap_a
ddr_offse
t

Address (that falls within the bitmap offset table and is
given with respect to the beginning of the file) at which
the address of the bitmap of the first character in the
code group is stored.

* With respect to the beginning of a particular table entry

For the above example the code groups table will have two entries:

Start
_cod
e

Num_c
odes

Bitmap_offset

0030
H

000AH 00000020H

0041
H

001AH 00000048H

Here is how the above data was calculated. Start codes are obvious. Group one
starts with code 0030H because this is the character code of '0'. The second group
starts with the character code of 'A'. It is also easy to fill out the number of codes
in each group: 10 (000AH) for '0'-'9' and 26 (001AH) for 'A'-'Z'.
Bitmap_addr_offset calculation is explained in the next section.

Bitmap offset table

This table has the same number of entries as the total number of characters
included in the font file. Each entry consists of one field -- a 32-bit offset of a
particular bitmap with respect to the beginning of the font file. Now you can see
how we were able to calculate the data for the bitmap_addr_offset field of the
code groups table. The header of the font file has a fixed length of 16 bytes. There
are two code groups in our example, so the code groups table occupies 8x2=16
bytes. This means that the bitmap offset table starts from address 16+16=32
(0020H). Hence, the first entry in the code groups table points at address 0020H.
The first code group contains 10 characters ('0'-'9'). These will "occupy" 10 entries
in the bitmap offset table, which results in 10x4=40 bytes. Hence, the
bitmap_addr_offset field for the second code group is set to 32+40=72 (0048H).

Bitmaps

Each bitmap starts with a single byte that encodes the width of the bitmap in
pixels, followed by the necessary number of bytes representing this bitmap.
Depending on the pixels_per_byte field of the header, each byte of data may

328 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

encode just one or several pixels. Additionally, when using more than 1 pixel-per-
byte encoding, the orientation field of the header defines whether pixels are
combined horizontally or vertically.

The drawings below illustrate how character bitmaps are stored in the font file. As
an example, characters of 10x14 size (in pixels) are used. Drawing A is for one pixel/
byte encoding, drawing B -- for 8 pixels/byte with vertical orientation, C -- for 8
pixels/byte with horizontal orientation. Notice that for cases B and C a portion of
some bytes used to store the bitmaps is unused. Offsets of bytes relative to the
beginning of the bitmap data are shown with a '+' sign.

Bitmap A takes 140 bytes. The first byte (+0) represents the pixel at the top left
corner of the bitmap. Subsequent bytes represent all other pixels and the order is
"left-to-right, top-to-bottom".

Bitmap B takes 20 bytes. The first byte encodes 8 vertically arranged pixels at the
top left corner of the bitmap. Subsequent bytes represent all other pixel groups and
the order is "left-to-right, top-to-bottom". There are 2 rows of bytes, and bits 6
and 7 of each byte in the second row are unused.

Bitmap C takes 28 bytes. The first byte encodes 8 horizontally arranged pixels at
the top left corner of the bitmap. Subsequent bytes represent all other pixel groups
and the order is "top-to-bottom, left-to-right". There are 2 columns of bytes, and
bits 2-7 of each byte in the second column are unused.

Searching for a character bitmap

Here is how a target character bitmap is found within the font file. Again, we are
using the example of the font file that contains characters '0'-'9' and 'A'-'Z'.

Supposing, we need to find the bitmap of character 'C' (code 0043H).

First, we need to see which code group code 004AH belongs to. We read the
num_of_groups field of the header to find out how many code groups are
contained in the font file. The field tells us that there are two groups.

Next, we start reading the code groups table (located at file offset +00000010H),
entry by entry, in order to determine which code group the target character belong
to. The first group starts from code 0030H and contains 10 character. Therefore,
target character doesn't belong to it. The second group starts from code 0041H
and contains 26 characters. The target code is 0043H. Therefore, target character
belongs to this second group.

329Platforms

©2000-2011 Tibbo Technology Inc.

Next, we find the corresponding entry in the bitmap offset table. For this, we do a
simple calculation:

bitmap_offset + (desired_code - start_code)*4: 00000048H + (0043H-0041H)
*4= 00000050H.

Next, we read a 32-bit value at file offset 00000050H. This will tell us the file offset
at which the target bitmap is stored.

At this file offset, the first byte will be the width of the bitmap in pixels. Based on
this width and also height, pixels_per_byte and orientation fields of the header
we can calculate the number of bytes in the bitmap. For example, supposing that
height = 14, pixels_per_byte = 0 (8 pixels/byte), and orientation = 0 (pixels are
grouped vertically). Also, let's suppose that the width of the target character is 10
pixels. In this case the bitmap will occupy 20 bytes, as shown on the drawing B
above. Two bits of each byte in the second byte row will be unused.

Displaying Images

Lcd.bmp outputs a full image, or a portion of the image from a BMP file.
Naturally, this file must be present in your project (see how to add a file). Here
is a simple example of how to display an image:

romfile.open("mad_happiness.bmp")
lcd.bmp(romfile.offset,0,0,0,0,65535,65535) 'see how we set maxwidth and
maxheight to 65535 (max value). This way we specify that the entire image
should be displayed (if only it can fit on the screen)

One powerful feature of the lcd.bmp method is that you can selectively display a
portion of the image stored in a BMP file. This opens up two interesting possibilities.
First, you can scroll around a large file image by specifying which part you want to
see. Second, you can combine several images into one large file and display
required portions when needed. For example, if your project requires several icons
you can put them all into a single "strip". This improves performance because you

340

132

330 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

don't have to open a separate file to display each icon:

romfile.open("icon_strip.bmp")
lcd.bmp(romfile.offset,0,0,11,0,11,11) 'display the second icon (right
arrow)

Note that only 2-, 16-, and 256-color modes are currently supported and the
lcd.bmp will return 1- NG if you try to display any other type of BMP file.
Compressed BMP files will be rejected too.

The method takes into account the type of the currently selected controller/panel.
The method will check the values of lcd.paneltype , lcd.bitsperpixel , lcd.redbits

, lcd.greenbits , and lcd.bluebits (explained in Understanding Controller
Properties) and produce the best output possible for the selected display.

Improving Graphical Performance

Nobody likes sluggish products, and the way you work with your display can greatly
influence perceived performance of your product. We say "perceived" because very
often this has nothing to do with the actual speed at which your device completes
required operations.

Group display-related operations together

The most important aspect of your application's performance (related to the
display) is how fast the data on the display appears to have changed. Interestingly,
what matters most is not the total time it takes to prepare and show the new data,
but the "togetherness" at which all new displayed items pop up on the screen.

Let's illustrate this point. Here are two code examples that do the same and take
roughly the same time to execute. We calculate and print two values. In the first

349 339

352 345 340

318

331Platforms

©2000-2011 Tibbo Technology Inc.

example, we calculate and print value 1, then calculate and print value 2:

Dim dw1,dw2 As dword
...
'Note so good! The user will see a noticeable delay between the first and
the second print.
lcd.print(str(dw1*100/200),0,0)
lcd.print(str(dw2*100/200),0,10)

In the second example we calculate values 1 and 2 first, then print them together:

Dim dw1,dw2 As dword
Dim s1,s2 As String
...
'Much better. The user will have a feeling that both values were calculated
and printed instantly!
s1=str(dw1*100/200)
s2=str(dw2*100/200)
lcd.print(s1,0,0)
lcd.print(s2,0,10)

Testing both examples shows that the perceived performance of the second code
snippet is much better, while, in fact, the total working time of the processor was
roughly the same. Why is there a difference? Because the output of the two values
in the second example was spaced closer!

Bottom line: keep all display output as close together as possible. Pre-calculate
everything first, then display all your items "at once".

Use display locking

No matter how hard you try to group all display-related output together, executing
lcd. object's methods one after another may still take considerable time. Perceived
performance can be improved on displays that allow you to "lock" display picture,
change display data, then unlock the display again. With this approach, the user
will see all changes appear instantly! Not all displays are suitable for this. Typically,
this works well for TFT panels which continue to display the image for several
seconds after the "refresh" was disabled. Other display types are not suitable for
locking. We have provided locking-related info for each supported controller/panel

.

The display is locked/unlocked using the Lcd.lock and lcd.unlock methods.
You can place lcd.lock before the block of code that changes display data, and put
lcd.unlock at the end of this code block:

...
s1=str(dw1*100/200)
s2=str(dw2*100/200)
lcd.lock 'lock the display
lcd.print(s1,0,0)
lcd.print(s2,0,10)

333

348 356

332 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

lcd.unlock 'unlock the display
...

Display-related code is often nested, with one procedure calling another, and so on.
If you are using display locking, you should ideally place locks/unlocks in each
related routine. A complication arises with regards to when to unlock the display.
For example, supposing you have two subs: lcd_sub1 and lcd_sub2:

'some main routine that invokes lcd_sub1 and lcd_sub2
....
....
lcd_sub1
...
...
lcd_sub2
...
End Sub

'---
Sub lcd_sub1 'calls sub2 too
lcd.lock
...
lcd_sub2
...
lcd.unlock
End Sub

'---
Sub lcd_sub2 'called by sub1
lcd.lock
...
lcd.unlock
End Sub

Lcd_sub2 gets executed when invoked directly by the main code, and also when
the lcd_sub1 is called. In the second case, the display should not be unlocked at
the end of lcd_sub2 because the output is to be continued in lcd_sub1! And you
know what? The display won't be unlocked because with the lcd object it is possible
to nest locks/unlocks! In the following example, we do three consecutive locks and
the display is locked right on the first one. We then do three consecutive unlocks,
and the display is not unlocked until after the third one is executed:

...
lcd.lock 'lcd.lockcount=1, display is now locked
lcd.lock 'lcd.lockcount=2
lcd.lock 'lcd.lockcount=3
lcd.unlock 'lcd.lockcount=2
lcd.unlock 'lcd.lockcount=1
lcd.unlock 'lcd.lockcount=0, display is now unlocked
...

333Platforms

©2000-2011 Tibbo Technology Inc.

The lock/unlock mechanism maintains a counter, which can actually be read
through the lcd.lockcount R/O property. Each invocation of lcd.lock increments
the counter by 1, each lcd.unlock decrements it by 1. The display is only unlocked
when the counter is at 0, and locked when the counter is >0. This allows you to
nest display-related procedures and safely have lock/unlock in each one of them!

8.3.6.2Supported Controllers/Panels

The following controllers/panels are currently supported:

Samsung S6B0108 (Winstar WG12864F) .

Solomon SSD1329 (Ritdisplay RGS13128096) .

Himax HX8309 (Ampire AM176220) .

None of the above suits your project's needs? Tibbo can be contracted to
develop a driver for another display you want to use. We offer reasonable
development prices and ZNR (zero non-refundable) payment scheme, in
which your initial payment for the driver development is gradually returned to
you as you purchase Tibbo hardware.

Samsung S6B0108 (Winstar WG12864F)

Controller: Samsung S6B0108.

Panel: Winstar WG12864F and similar panels.

Type: LCD with blue backlight/white dots, monochrome (1 bit/pixel), vertical pixel
packing .

Locking: Supported, but the display image is not visible when the display is locked
. This causes a noticeable "glitch" on the display when the lock/unlock is

performed.

Test hardware: TEV-LB0 test board. This board is a part of the EM1000-TEV
development system. See Programmable Hardware Manual for details.

I/O mapping for WG12864F

This panel requires 6 I/O lines and an 8-bit data bus. Control lines are RST, EN,
CS1, CS2, D/I, and R/W. Each control line can be connected to any I/O pin of
your device, and each such I/O pin must be configured as an output (if your device
requires explicit I/O line buffer configuration). The data bus can be connected to
any 8-bit port. DO NOT configure this port for output.

The value of the lcd.iomapping property must be set correctly for the display to
work (see Preparing the Display for Operation). For this particular display, the
mapping string consists of 7 comma-separated decimal values:

1.Number of the I/O line connected to RST.

2.Number of the I/O line connected to EN.

349

333

335

336

318

330

347

320

334 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

3.Number of the I/O line connected to CS1.

4.Number of the I/O line connected to CS2.

5.Number of the I/O line connected to D/I.

6.Number of the I/O line connected to R/W.

7.Number of the I/O port connected to DATA7-0.

I/O line numbers are from the pl_io_num enum. Port number is from the
pl_io_port_num enum. Line and port numbers are platform-specific. See the list of
pl_io_num and pl_io_port_num constants in the platform specifications.

For the TEV-LB0 board, the lcd.iomapping property should be set to
"44,46,40,41,43,42,4".

Code example -- TEV-LB0

This code will properly setup and enable this controller/panel (we assume that the
testing is done using the TEV-LB0 board):

lcd.iomapping="44,46,40,41,43,42,4" 'RST,EN,CS1,CS2,D/I,R/W,DATA7-0

'configure control lines as outputs
io.num=PL_IO_NUM_46 'EN
io.enabled=YES
io.num=PL_IO_NUM_44 'RST
io.enabled=YES
io.num=PL_IO_NUM_40 'CS1
io.enabled=YES
io.num=PL_IO_NUM_41 'CS2
io.enabled=YES
io.num=PL_IO_NUM_42 'R/W
io.enabled=YES
io.num=PL_IO_NUM_43 'D/I
io.enabled=YES

'set resolution
lcd.width=128
lcd.height=64

'optionally set lcd.rotated here

lcd.enabled=YES 'done!

'turn on the backlight (strictly speaking, this is not related to the LCD
control, but we still show it here)
io.num=PL_IO_NUM_47
io.enabled=YES
io.state=HIGH

set_lcd_contrast(11) 'this is for external contrast control circuit

Contrast control

This is not a part of the panel itself, but we are still providing the code that will
work on the TEV-LB0:

335Platforms

©2000-2011 Tibbo Technology Inc.

Sub set_lcd_contrast(level As Byte)
 'enable port, output data
 io.portnum=PL_IO_PORT_NUM_4
 io.portenabled=255
 io.portstate=level

 'generate strobe for the data register (on the LCD PCB)
 io.num=PL_IO_NUM_48
 io.enabled=YES
 io.state=HIGH
 io.state=LOW

 'disable port
 io.portenabled=0
End Sub

You can design your own contrast control circuit, of course.

Solomon SSD1329 (Ritdisplay RGS13128096)

Controller: Solomon SSD1329.

Panel: Ritdisplay RGS13128096 and similar panels.

Type: OLED, green, 16 levels (4 bits/pixel), horizontal pixel packing .

Locking: Supported, but the display image is not visible when the display is locked
. This causes a noticeable "glitch" on the display when the lock/unlock is

performed.

Test hardware: TEV-LB1 test board. This board is a part of the EM1000-TEV
development system. See Programmable Hardware Manual for details.

I/O mapping for RGS13128096

This panel requires 5 I/O lines and an 8-bit data bus. Control lines are RES, D/C,
R/W, E, and CS. Each control line can be connected to any I/O pin of your device,
and each such I/O pin must be configured as an output (if your device requires
explicit I/O line buffer configuration). The data bus can be connected to any 8-bit
port. DO NOT configure this port for output.

The controller also has BS1 and BS2 interface type selection pin. For proper
operation, tie these pins to Vcc.

The value of the lcd.iomapping property must be set correctly for the display to
work (see Preparing the Display for Operation). For this particular display, the
mapping string consists of 6 comma-separated decimal values:

1.Number of the I/O line connected to RES.

2.Number of the I/O line connected to D/C.

3.Number of the I/O line connected to R/W.

4.Number of the I/O line connected to E.

5.Number of the I/O line connected to CS.

6.Number of the I/O port connected to D7-0.

318

330

347

320

336 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

I/O line numbers are from the pl_io_num enum. Port number is from the
pl_io_port_num enum. Line and port numbers are platform-specific. See the list of
pl_io_num and pl_io_port_num constants in your platform specifications.

For the TEV-LB0 board, lcd.iomapping should be set to "44,43,42,41,40,4".

Code example -- TEV-LB1

This code will properly setup and enable this controller/panel (we assume that the
testing is done using the TEV-LB1 board):

lcd.iomapping="44,43,42,41,40,4" 'RST,D/C,R/W,E,CS,D7-0

'configure control lines as outputs
io.num=PL_IO_NUM_44 'RST
io.enabled=YES
io.num=PL_IO_NUM_43 'D/C
io.enabled=YES
io.num=PL_IO_NUM_42 'R/W
io.enabled=YES
io.num=PL_IO_NUM_41 'E
io.enabled=YES
io.num=PL_IO_NUM_40 'CS
io.enabled=YES

'set resolution
lcd.width=128
lcd.height=96

'optionally set lcd.rotated here

lcd.enabled=YES 'done!

Himax HX8309 (Ampire AM176220)

Controller: Himax HX8309.

Panel: Ampire AM176220 and similar panels.

Type: TFT, color, 16 bits/pixel.

Locking: Supported, display picture stays stable for at least 1 second after the
display is locked . Unfortunately, there appears to be a hardware bug in the
HX8309. This bug causes one of the horizontal lines of the panel (usually, the top
or bottom line) to display random garbage while the display is locked. We have
some ideas for workaround -- contact us if you encounter this problem.

Test hardware: TEV-LB2 test board. This board is a part of the EM1000-TEV
development system. See Programmable Hardware Manual for details.

I/O mapping for AM176220

The panel requires 5 I/O lines and a 17-bit data bus, of which only bits DB7-0 are
used (8-bit interface mode). Control lines are RESET, RS, WR, RD, and CS. Each
control line can be connected to any I/O pin of your device, and each such I/O pin
must be configured as an output (if your device requires explicit I/O line buffer
configuration). The data bus can be connected to any 8-bit port. DO NOT configure
this port for output.

The controller also has IM0 and IM3 interface type selection pin. For proper

336

337Platforms

©2000-2011 Tibbo Technology Inc.

operation, tie IM0 to Vcc, IM3 - to the ground.

The value of the lcd.iomapping property must be set correctly for the display to
work (see Preparing the Display for Operation). For this particular display, the
mapping string consists of 6 comma-separated decimal values:

1.Number of the I/O line connected to RESET.

2.Number of the I/O line connected to RS.

3.Number of the I/O line connected to WR.

4.Number of the I/O line connected to RD.

5.Number of the I/O line connected to CS.

6.Number of the I/O port connected to DB7-0.

I/O line numbers are from the pl_io_num enum. Port number is from the
pl_io_port_num enum. Line and port numbers are platform-specific. See the list of
pl_io_num and pl_io_port_num constants in the platform specifications.

For the TEV-LB0 board, the lcd.iomapping should be set to "44,43,42,41,40,4".

Code example -- TEV-LB2

This code will properly setup and enable this controller/panel (we assume that the
testing is done using the TEV-LB2 board):

lcd.iomapping="44,43,42,41,40,4" 'RESET,RS,WR,RD,CS,DB7-0

io.num=PL_IO_NUM_44 'RESET
io.enabled=YES
io.num=PL_IO_NUM_43 'RS
io.enabled=YES
io.num=PL_IO_NUM_42 'WR
io.enabled=YES
io.num=PL_IO_NUM_41 'RD
io.enabled=YES
io.num=PL_IO_NUM_40 'CS
io.enabled=YES

'set resolution
lcd.width=176
lcd.height=220

'optionally set lcd.rotated here

lcd.enabled=YES 'done!

'turn on the backlight (strictly speaking, this is not related to the LCD
control, but we still show it here)
io.num=PL_IO_NUM_47
io.enabled=YES
io.state=HIGH

347

320

338 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

8.3.6.3Properties and Methods

The following classification groups properties and methods of the lcd. object by
their logical function.

LCD panel characteristics:

lcd.paneltype [R/O Property]

lcd.pixelpacking [R/O Property]

lcd.bitsperpixel [R/O Property]

lcd.redbits [R/O Property]

lcd.greenbits [R/O Property]

lcd.bluebits [R/O Property]

Preparing to work:

lcd.iomapping [Property]

lcd.width [Property]

lcd.height [Property]

lcd.inverted [Property]

lcd.rotated [Property]

lcd.enabled [Property]

Graphical operations:

lcd.setpixel [Method]

lcd.forecolor [Property]

lcd.backcolor [Property]

lcd.linewidth [Property]

- lcd.line [Method]

- lcd.horline [Method]

- lcd.verline [Method]

- lcd.rectangle [Method]

- lcd.filledrectangle [Method]

- lcd.fill [Method]

lcd.setfont [Method]

lcd.fontheight [R/O Property]

lcd.fontpixelpacking [R/O Property]

lcd.textalignment [Property]

lcd.textorientation [Property]

lcd.texthorizontalspacing [Property]

lcd.textverticalspacing [Property]

- lcd.print [Method]

- lcd.printaligned [Method]

- lcd.getprintwidth [Method]

lcd.bmp [Method]

349

350

339

352

345

340

347

357

346

347

353

341

354

344

339

348

348

346

357

352

343

342

353

343

344

355

356

355

356

351

351

345

340

339Platforms

©2000-2011 Tibbo Technology Inc.

Miscellaneous:

lcd.error [R/O Property]

lcd.lock [Method]

lcd.unlock [Method]

lcd.lockcount [R/O Property]

.Backcolor Property

Function: Specifies current background color.

Type: Word

Value Range: 0-65535. Default= 0.

See Also: Understanding Controller Properties , Working With Pixels
and Colors , lcd.forecolor , lcd.linewidth

Details

The background color is used when drawing filled rectangles (lcd.filledrectangle)
and performing fills (lcd.fill).

Property value interpretation depends on the currently selected controller/panel.
Selection is made through the Customize Platform dialog, accessible through the
Project Settings dialog.

The property is of word type, but only the lcd.bitsperpixel lower bits of this value
will be relevant. All higher bits will be ignored.

For monochrome and grayscale controllers/panels (lcd.paneltype = 0-
PL_LCD_PANELTYPE_GRAYSCALE), this value will relate to the brightness of the
pixel. For color panels/controllers (lcd.paneltype= 1- PL_LCD_PANELTYPE_COLOR)
the value is composed of three fields -- one each for the red, green, and blue
"channels". Check lcd.redbits , lcd.greenbits , and lcd.bluebits properties to
see how the fields are combined into the color word.

.Bitsperpixel R/O Property

Function: Returns the number of bits available for each pixel of the
currently selected controller/panel.

Type: Byte

Value Range: Value depends on the currently selected controller/panel

See Also: Understanding Controller Properties , Working With Pixels
and Colors

Details

Controller/panel selection is made through the Customize Platform dialog, accessible
through the Project Settings dialog.

For monochrome controllers/panels (see lcd.paneltype) the lcd.bitsperpixel will
return 1, that is, the pixel can only be on or off. For grayscale panels, this value will

342

348

356

349

318

320 344 348

343

342

339

349

352 345 340

318

320

349

340 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

be >1, which indicates that each pixel can be set to a number of brightness levels.
For example, if the lcd.bitsperpixel=4, then each pixel's brightness can be adjusted
in 16 steps.

For color panels, this property reflects the combined number of red, green, and blue
bits available for each pixel (see lcd.redbits , lcd.greenbits , and lcd.bluebits
).

The number of bits per pixel affects how lcd.forecolor , lcd.backcolor , and
lcd.setpixel are interpreted. Also, the output produced by lcd.bmp depends on
this property.

.Bluebits R/O Property

Function: A 16-bit value packing two 8-bit parameters: number of
"blue" bits per pixel (high byte) and the position of the
least significant blue bit within the color word (low byte).

Type: Word

Value Range: Value depends on the currently selected controller/panel.

See Also: Understanding Controller Properties , Working With Pixels
and Colors

Details

The value of this property depends on the currently selected controller/panel.
Selection is made through the Customize Platform dialog, accessible through the
Project Settings dialog. This property is only relevant for color panels (lcd.paneltype

= 1- PL_LCD_PANELTYPE_COLOR).

By taking the value of the high byte you can determine the number of the steps in
which the brightness of the blue "channel" can be adjusted. For example, if the high
byte is equal to 6, then there are 64 levels for blue.

This property also tells you the bit position and length of the blue field in color
values used by lcd.forecolor , lcd.backcolor , and lcd.setpixel . If, for
example, the lcd.redbits =&h0500, lcd.bluebits=&h0605, and lcd.greenbits
=&h050B, then you can reconstruct the composition of the red, green, and blue bits
in a word: bit 15 -> gggggbbbbbbrrrrr <- bit 0. In this example, the blue field is in
the middle and occupies 6 bits (10-5).

.Bmp Method

Function: Displays a portion of or full image stored in a BMP file.

Syntax: lcd.bmp(offset as dword, x as word, y as word, x_offset
as word, y_offset as word, maxwidth as word, maxheight
as word) as ok_ng

Returns: 0- OK: Processed successfully.

1- NG: Unsupported or invalid file format.

See Also: Displaying Images

352 345 340

344 339

354 340

318

320

349

344 339 354

352 345

329

341Platforms

©2000-2011 Tibbo Technology Inc.

Par
t

Description

offs
et

Offset within the compiled binary of your application at which the BMP file
is stored.

x X coordinate of the top-left point of the image position on the screen.
Value range is 0 to lcd.width -1.

y Y coordinate of the top-left point of the image position on the screen.
Value range is 0 to lcd.height -1.

x_o
ffse
t

Horizontal offset within the BMP file marking the top-left corner of the
image portion to be displayed.

y_o
ffse
t

Vertical offset within the BMP file marking the top-left corner of the image
portion to be displayed.

max
wid
th

Maximum width of the image portion to be displayed. Actual width of the
output will be defined by the total width of the image and specified
x_offset.

max
heig
ht

Maximum height of the image portion to be displayed. Actual height of the
output will be defined by the total height of the image and specified
y_offset.

Details

To obtain the offset, open the BMP file with romfile.open , then read the offset of
this file from the romfile.offset R/O property. Naturally, the BMP file must be
present in your project for this to work (see how to add a file).

Note that only 2-, 16-, and 256-color modes are currently supported and the
lcd.bmp will return 1- NG if you try to display any other type of BMP file.
Compressed BMP files will be rejected too.

The method takes into account the type of the currently selected controller/panel
(selection is made through the Customize Platform dialog, accessible through the
Project Settings dialog). It will check the values of lcd.paneltype , lcd.bitsperpixel

, lcd.redbits , lcd.greenbits , and lcd.bluebits and produce the best
output possible for the selected display.

X_offset, y_offset, maxwidth, and maxheight arguments allow you to display only a
portion of the BMP image. This way it is possible to scroll around a large image that
does not fit on the screen. Another use is to combine several separate images into
a single file and display selected portions. This improves efficiency because
romfile.open needs only be done once.

.Enabled Property

Function: Specifies whether the display panel is enabled.

Type: Enum (no_yes, byte)

Value Range: 0- NO: Disabled (default).

1- YES: Enabled.

See Also: Preparing the Display for Operation

357

346

374

373

132

349

339 352 345 340

374

320

342 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Details

Several properties -- lcd.iomapping , lcd.width , lcd.height , lcd.inverted ,
lcd.rotated -- can only be changed when the display panel is disabled.

When you set this property to 1- YES, the controller of the panel is initialized and
enabled. This will only work if your display is properly connected, correct display
type is selected in your project, lcd.iomapping is set property, and necessary I/O
lines are configured as outputs. The lcd.error R/O property will indicate 1- YES if
there was a problem enabling the display.

Setting the property to 0- NO disables the controller/panel.

.Error R/O Property

Function: Indicates whether controller/panel I/O error has been
detected.

Type: Enum (no_yes, byte)

Value Range: 0- NO: No error detected.

1- YES: I/O error.

See Also: Preparing the Display for Operation

Details

The lcd. object will detect a malfunction (or absence) of the controller/panel that is
expected to be connected. If the display is not properly connected, or the lcd.
object is not set up property to work with this display, the lcd.error will be set to
1- YES on attempt to enable the display (set lcd.enabled = 1- YES).

.Fill Method

Function: Paints the area with the "pen" color (lcd.forecolor).

Syntax: lcd.fill(x as word,y as word, width as word, height as
word)

Returns: ---

See Also: Lines, Rectangles, and Fills , Working With Pixels and
Colors , lcd.line , lcd.verline , lcd.horline ,
lcd.rectangle , lcd.filledrectangle

Par
t

Description

x X coordinate of the top-left point of the area to be painted. Value range
is 0 to lcd.width -1.

y Y coordinate of the top-left point of the area to be painted. Value range
is 0 to lcd.height -1.

347 357 346 347

353

342

320

341

344

321

320 348 357 346

352 343

357

346

343Platforms

©2000-2011 Tibbo Technology Inc.

wid
th

Width of the paint area in pixels.

heig
ht

Height of the paint area in pixels.

Details

The display panel must be enabled (lcd.enabled = 1- YES) for this method to
work.

.Filledrectangle Method

Function: Draws a filled rectangle.

Syntax: lcd.filledrectangle(x1 as word,y1 as word, x2 as word,
y2 as word)

Returns: ---

See Also: Lines, Rectangles, and Fills , Working With Pixels and
Colors , lcd.line , lcd.verline , lcd.horline ,
lcd.rectangle , lcd.fill

Par
t

Description

x1 X coordinate of the first point. Value range is 0 to lcd.width -1.

y1 Y coordinate of the first point. Value range is 0 to lcd.height -1.

x2 X coordinate of the second point. Value range is 0 to lcd.width -1.

y2 Y coordinate of the second point. Value range is 0 to lcd.height -1.

Details

The border is drawn with the specified line width (lcd.linewidth) and "pen" color
(lcd.forecolor). The rectangle is then filled using the background color
(lcd.backcolor). Setting the lcd.linewidth to 0 will create a rectangle with no
border -- basically, a filled area.

The display panel must be enabled (lcd.enabled = 1- YES) for this method to
work.

.Fontheight R/O Property

Function: Returns the maximum height, in pixels, of characters in the
currently selected font.

Type: Byte

Value Range: 0-255. Default= 0.

See Also: Working With Text , lcd.fontpixelpacking

341

321

320 348 357 346

352 342

357

346

357

346

348

344

339

341

320 344

344 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Details

This property will only return meaningful data after you select a font using the
lcd.setfont method.

.Fontpixelpacking R/O Property

Function: Indicates how pixels are packed into bytes in a currently
selected font.

Type: Enum (ver_hor, byte)

Value Range: 0- PL_VERTICAL: Several vertically adjacent pixels are
packed into each byte of character bitmaps.

1- PL_HORIZONTAL: Several horizontally adjacent pixels
are packed into each byte of character bitmaps.

See Also: Working With Text , lcd.fontheight

Details

Display controllers/panels can have vertical or horizontal pixel packing (see
lcd.pixelpacking). The speed at which you can output the text onto the screen
is improved when the lcd.pixelpacking and lcd.fontpixelpacking have the same value,
i.e. controller memory pixels and font encoding are "aligned". Our font files are
typically available both in vertical and horizontal pixel packing. Pick the right file for
your controller/panel.

This property will only return meaningful data after you select a font using the
lcd.setfont method.

.Forecolor Property

Function: Specifies current "pen" (drawing) color.

Type: Word

Value Range: 0-65535. Default= 65535 (&hFFFF).

See Also: Understanding Controller Properties , Working With Pixels
and Colors , lcd.backcolor , lcd.linewidth

Details

Pen color is used when drawing lines (lcd.line , lcd.verline , lcd.horline) and
rectangles (lcd.rectangle , lcd.filledrectangle), as well as displaying text
(lcd.print , lcd.printaligned).

Property value interpretation depends on the currently selected controller/panel.
Selection is made through the Customize Platform dialog, accessible through the
Project Settings dialog.

The property is of word type, but only lcd.bitsperpixel lower bits of this value will
be relevant. All higher bits will be ignored.

For monochrome and grayscale controllers/panels (lcd.paneltype = 0-

353

322 343

350

353

318

320 339 348

348 357 346

352 343

351 351

339

349

345Platforms

©2000-2011 Tibbo Technology Inc.

PL_LCD_PANELTYPE_GRAYSCALE), this value will relate to the brightness of the
pixel. For color panels/controllers (lcd.paneltype= 1- PL_LCD_PANELTYPE_COLOR)
the value is composed of three fields -- one for the red, green, and blue "channels".
Check lcd.redbits , lcd.greenbits , and lcd.bluebits properties to see how the
fields are combined into the color word.

.Getprintwidth Method

Function: Returns the width, in pixels, of the text output that will be
produced if the same line is actually printed with the
lcd.print method.

Syntax: lcd.getprintwidth(byref str as string) as word

Returns: Total width of text output in pixels.

See Also: Working With Text

Par
t

Description

str Text to estimate the output width for.

Details

This method does not produce any output on the display, it merely estimates the
width of the text if it was to be printed. Lcd.print also returns the width of the text
in pixels, but this data comes after the printing. Sometimes it is desirable to know
the output width for the line of text before printing it, and this method allows you
to do so.

The width calculation will be affected by the value of the lcd.texthorizontalspacing
 property.

.Greenbits R/O Property

Function: A 16-bit value packing two 8-bit parameters: number of
"green" bits per pixel (high byte) and the position of the
least significant green bit within the color word (low byte).

Type: Word

Value Range: Value depends on the currently selected controller/panel.

See Also: Understanding Controller Properties , Working With Pixels
and Colors

Details

The value of this property depends on the currently selected controller/panel.
Selection is made through the Customize Platform dialog, accessible through the
Project Settings dialog. This property is only relevant for color panels (lcd.paneltype

= 1- PL_LCD_PANELTYPE_COLOR).

By taking the value of the high byte you can determine the number of the steps in
which the brightness of the green "channel" can be adjusted. For example, if the

352 345 340

351

322

355

318

320

349

346 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

high byte is equal to 5, then there are 32 levels for green.

This property also tells you the bit position and length of the green field in values
used by lcd.forecolor , lcd.backcolor , and lcd.setpixel . If, for example, the
lcd.redbits =&h0500, lcd.bluebits =&h0605, and lcd.greenbits=&h050B, then you
can reconstruct the composition of the red, green, and blue bits in a word: bit 15 -
> gggggbbbbbbrrrrr <- bit 0. In this example, the green field is the last field and
occupies 5 bits (15-11).

.Height Property

Function: Sets the vertical resolution of the display panel in pixels.

Type: Word

Value Range: Appropriate value depends on the panel. Default= 0.

See Also: Preparing the Display for Operation , lcd.width

Details

Set this property according to the characteristics of your display panel.

This value is not set automatically when you select a certain controller because the
capability of the controller may exceed the actual resolution of the panel, i.e. only
"part" of the controller may be utilized.

This property can only be changed when the lcd is disabled (lcd.enabled = 0- NO)
.

.Horline Method

Function: Draws a horizontal line.

Syntax: lcd.horline(x1 as word,x2 as word,y as word)

Returns: ---

See Also: Lines, Rectangles, and Fills , lcd.rectangle ,
lcd.filledrectangle , lcd.fill

Par
t

Description

x1 X coordinate of the first point. Value range is 0 to lcd.width -1.

x2 X coordinate of the second point. Value range is 0 to lcd.width -1.

y Y coordinates of the first and second points. Value range is 0 to
lcd.height -1.

Details

The line is drawn with the specified line width (lcd.linewidth) and "pen" color
(lcd.forecolor). Drawing horizontal or vertical (lcd.verline) lines is more
efficient than drawing generic lines (lcd.line), and should be used whenever
possible.

344 339 354

352 340

320 357

341

321 352

343 342

357

357

346

348

344 357

348

347Platforms

©2000-2011 Tibbo Technology Inc.

The display panel must be enabled (lcd.enabled = 1- YES) for this method to
work.

.Inverted Property

Function: Specifies whether the image on the display panel has to
be inverted.

Type: Enum (no_yes, byte)

Value Range: 0- NO: Not inverted, higher memory value of the pixel
corresponds to higher brightness (default).

1- YES: Inverted, higher memory value of the pixel
corresponds to lower brightness.

See Also: Preparing the Display for Operation

Details

Set this property according to the characteristics of your display panel.

This value is not set automatically when you select a certain controller because the
display characteristics cannot be detected automatically, as they depend on the
panel and its backlight arrangement.

This property can only be changed when the display is disabled (lcd.enabled = 0-
NO).

.Iomapping Property

Function: Defines the list of I/O lines to interface with the currently
selected controller/panel.

Type: String

Value Range: Value depends on the currently selected controller/panel.
Default= "".

See Also: Preparing the Display for Operation

Details

Controller/panel selection is made through the Customize Platform dialog, accessible
through the Project Settings dialog.

Different controllers/panels require a different set of interface lines, and even the
number of lines depends on the hardware. This property should contain a comma-
separated list of decimal numbers that indicate which I/O lines and ports are used
to connect the controller/panel to your device. The meaning of each number in the
list is controller- and panel-specific. See the Supported Controllers section for
details.

This property can only be changed when the display is disabled (lcd.enabled = 0-
NO).

341

320

341

320

333

341

348 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

.Line Method

Function: Draws a line.

Syntax: lcd.line(x1 as word,y1 as word, x2 as word, y2 as
word)

Returns: ---

See Also: Lines, Rectangles, and Fills , lcd.rectangle ,
lcd.filledrectangle , lcd.fill

Par
t

Description

x1 X coordinate of the first point. Value range is 0 to lcd.width -1.

y1 Y coordinate of the first point. Value range is 0 to lcd.height -1.

x2 X coordinate of the second point. Value range is 0 to lcd.width -1.

y2 Y coordinate of the second point. Value range is 0 to lcd.height -1.

Details

The line is drawn with the specified line width (lcd.linewidth) and "pen" color
(lcd.forecolor). Drawing horizontal (lcd.horline) or vertical (lcd.verline) lines
is more efficient than drawing generic lines, and should be used whenever possible.

The display panel must be enabled (lcd.enabled = 1- YES) for this method to
work.

.Linewidth Property

Function: Specifies current "pen" width in pixels.

Type: Byte

Value Range: 1-255. Default= 1 (1 pixel).

See Also: Lines, Rectangles, and Fills , lcd.forecolor ,
lcd.backcolor

Details

Pen width is used when drawing lines (lcd.line , lcd.verline , lcd.horline) and
rectangles (lcd.rectangle , lcd.filledrectangle).

.Lock Method

Function: Freezes display output (on controllers/panels that support
this feature).

Syntax: lcd.lock

Returns: ---

See Also: ---

321 352

343 342

357

346

357

346

348

344 346 357

341

321 344

339

348 357 346

352 343

349Platforms

©2000-2011 Tibbo Technology Inc.

Details

When the display is locked, you can make changes to the display data without
showing these changes on the screen. You can then unlock the display (lcd.unlock)
and show all the changes made at once. This usually greatly improves the display
agility perception by the user (see Improving Graphical Performance).

Locking the display also prolongs the life of some displays, notably the displays of
the OLED type.

When you execute this method for the first time, the display gets locked and the
lcd.lockcount R/O property changes from 0 to 1. You can invoke lcd.lock again
and again, and the lcd.lockcount will increase with each call to the lcd.lock. This
allows you to nest locks/unlocks (again, see Improving Graphical Performance).
Of course, the display is not locked "any harder" at lcd.lockcount=2 compared to
lcd.lockcount=1. The display is simply locked for all lcd.lockcount values other than
0.

Not all controllers/panels support this feature. See the Supported Controllers/Panels
 section for details on the display you are using. If your display does not support

locking, executing lcd.lock will have no effect and lcd.lockcount will always stay
at 0.

.Lockcount R/O Property

Function: Indicates the current nesting level of the display lock.

Type: Byte

Value Range: 0-255. Default= 0 (display unlocked).

See Also: ---

Details

Invoking lcd.lock increases the value of this property by 1. If 255 is reached, the
value does not roll over to 0 and stays at 255. Invoking lcd.unlock decreases the
value of this property by 1. When 0 is reached, the value does not roll over to 255
and stays at 0. The display is locked when lcd.lockcount is not at 0. Of course, the
display does not get locked any "harder" with every increment of the lcd.lockcount.

When the display is locked, you can make changes to the display data without
showing these changes on the screen. You can then unlock the display and show
all the changes made at once. This usually greatly improves the display agility
perception (see Improving Graphical Performance).

Not all controllers/panels support this feature. See the Supported Controllers/Panels
 section for details on the display you are using. If your display does not support

locking, executing lcd.lock will have no effect and lcd.lockcount will always stay
at 0.

.Paneltype R/O Property

Function: Returns the type of the currently selected controller/
panel.

Type: Enum (pl_lcd_paneltype, byte)

330

349

330

333

349

348

356

330

333

349

350 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Value Range: 0- PL_LCD_PANELTYPE_GRAYSCALE: This is a monochrome
or grayscale panel/controller.

1- PL_LCD_PANELTYPE_COLOR: This is a color panel/
controller.

See Also: Understanding Controller Properties , Working With Pixels
and Colors

Details

Controller/panel selection is made through the Customize Platform dialog, accessible
through the Project Settings dialog.

Monochrome panels/controllers only allow you to turn pixels on and off. Grayscale
panels/controllers allow you to set the brightness of pixels in steps. The number of
available steps is defined by the number of bits assigned to each pixel (see
lcd.bitsperpixel property). Finally, color panels/controllers allow you to set the
brightness separately for the red, green, and blue components of each pixel.
Lcd.redbits , lcd.greenbits , and lcd.bluebits R/O properties will tell you how
many bits there are for each color "channel".

Panel/controller type affects how lcd.forecolor , lcd.backcolor , and lcd.setpixel
 are interpreted. Also, the output produced by lcd.bmp is affected by this.

.Pixelpacking R/O Property

Function: Indicates how pixels are packed into controller memory for
the currently selected controller/panel.

Type: Enum (ver_hor, byte)

Value Range: 0- PL_VERTICAL: Several vertically adjacent pixels are
packed into each byte of controller memory.

1- PL_HORIZONTAL: Several horizontally adjacent pixels
are packed into each byte of controller memory.

See Also: Understanding Controller Properties

Details

Controller/panel selection is made through the Customize Platform dialog, accessible
through the Project Settings dialog.

This property is only relevant for controllers/panels whose lcd.bitsperpixel value
is less than 8. In this case, 2, 4, or 8 pixels are packed into a single byte of
controller memory.

This property is purely informational and largely has no influence over how you write
your application. The only exception is related to working with text . Fonts
can also have vertical or horizontal packing and the speed at which you can output
the text onto the screen is improved when the lcd.pixelpacking and
lcd.fontpixelpacking have the same value, i.e. controller memory pixels and font
encoding are "aligned".

318

320

339

352 345 340

344 339

354 340

318

339

322 325

344

351Platforms

©2000-2011 Tibbo Technology Inc.

.Print Method

Function: Prints a line of text.

Syntax: lcd.print(byref str as string,x as word,y as word) as
word

Returns: Total width of created output in pixels.

See Also: Working With Text , lcd.getprintwidth

Par
t

Description

str Text to print.

x X coordinate of the top-left corner of the text output. Value range is 0
to lcd.width -1.

y Y coordinate of the top-left corner of the text output. Value range is 0
to lcd.height -1.

Details

For this method to work, a font must first be selected with the lcd.setfont
method. The lcd.textorientation and lcd.texthorizontalspacing properties
affect how the text is printed.

This method always produces a single-line text output. Use lcd.printaligned if
you want to print several lines of text at once.

The display panel must be enabled (lcd.enabled = 1- YES) for this method to
work.

.Printaligned Method

Function: Print texts, on several lines if necessary, within a specified
rectangular area.

Syntax: lcd.printaligned(byref str as string,x as word,y as
word,width as word,height as word) as byte

Returns: Total number of text lines produced.

See Also: Working With Text

Par
t

Description

str Text to print. Inserting ̀character will create a line break.

x X coordinate of the top-left point of the print area. Value range is 0 to
lcd.width -1.

y Y coordinate of the top-left point of the print area. Value range is 0 to
lcd.height -1.

wid
th

Width of the print area in pixels.

322 345

357

346

353

356 355

351

341

322

357

346

352 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

heig
ht

Height of the print area in pixels.

Details

For this method to work, a font must first be selected with the lcd.setfont
method. The lcd.textalignment , lcd.textorientation , lcd.texthorizontalspacing

, and lcd.textverticalspacing properties will affect how the text is printed.

This method breaks the text into lines to stay within the specified rectangular
output area. Whenever possible, text is split without breaking up the words. A word
will be split if it is wider than the width of the print area. You can add arbitrary line
brakes by inserting ̀(ASCII code 96).

The display panel must be enabled (lcd.enabled = 1- YES) for this method to
work.

.Rectangle Method

Function: Draws an unfilled rectangle.

Syntax: lcd.rectangle(x1 as word,y1 as word, x2 as word, y2 as
word)

Returns: ---

See Also: Lines, Rectangles, and Fills , lcd.line , lcd.verline ,
lcd.horline , lcd.filledrectangle , lcd.fill

Par
t

Description

x1 X coordinate of the first point. Value range is 0 to lcd.width -1.

y1 Y coordinate of the first point. Value range is 0 to lcd.height -1.

x2 X coordinate of the second point. Value range is 0 to lcd.width -1.

y2 Y coordinate of the second point. Value range is 0 to lcd.height -1.

Details

The rectangle is drawn with the specified line width (lcd.linewidth) and "pen"
color (lcd.forecolor).

The display panel must be enabled (lcd.enabled = 1- YES) for this method to
work.

.Redbits R/O Property

Function: A 16-bit value packing two 8-bit parameters: number of
"red" bits per pixel (high byte) and the position of the
least significant red bit within the color word (low byte).

Type: Word

Value Range: Value depends on the currently selected controller/panel.

353

355 356

355 356

341

321 348 357

346 343 342

357

346

357

346

348

344

341

353Platforms

©2000-2011 Tibbo Technology Inc.

See Also: Understanding Controller Properties , Working With Pixels
and Colors

Details

The value of this property depends on the currently selected controller/panel.
Selection is made through the Customize Platform dialog, accessible through the
Project Settings dialog. This property is only relevant for color panels (lcd.paneltype

= 1- PL_LCD_PANELTYPE_COLOR).

By taking the value of the high byte you can determine the number of the steps in
which the brightness of the red "channel" can be adjusted. For example, if the high
byte is equal to 5, then there are 32 levels for red.

This property also tells you the bit position and length of the red field in values
used by lcd.forecolor , lcd.backcolor , and lcd.setpixel . If, for example, the
lcd.redbits=&h0500, lcd.bluebits =&h0605, and lcd.greenbits =&h050B, then you
can reconstruct the composition of the red, green, and blue bits in a word: bit 15 -
> gggggbbbbbbrrrrr <- bit 0. In this example, the red field is the first field and
occupies 5 bits (4-0).

.Rotated Property

Function: Specifies whether the image on the display panel is to be
rotated 180 degrees.

Type: Enum (no_yes, byte)

Value Range: 0- NO: Not rotated (default).

1- YES: Rotated 180 degrees.

See Also: Preparing the Display for Operation

Details

Set this property according to the orientation of the display panel in your device.

This property can only be changed when the display is disabled (lcd.enabled = 0-
NO).

.Setfont Method

Function: Selects a font to use for printing text.

Syntax: lcd.setfont(offset as dword) as ok_ng

Returns: 0- OK: The font was found and the data appears to be
valid.

1- NG: There is no valid font data at specified offset.

See Also: Working with Text

Par Description

318

320

349

344 339 354

340 345

320

341

322

354 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

t

offs
et

Offset within the compiled binary of your application at which the font file
is stored.

Details

A valid font file must be selected before you can use the lcd.print ,
lcd.printaligned , or lcd.getprintwidth methods. Naturally, the font file must be
present in your project for this to work (see how to add a font file). To obtain
correct offset, open the file using the romfile.open method, then read the offset
of this file from the romfile.offset R/O property.

When the font file is successfully selected, the lcd.fontheight and
lcd.fontpixelpacking R/O properties will be updated to reflect actual font
parameters.

.Setpixel Method

Function: Directly writes pixel data for a single pixel into the
controller's memory.

Syntax: lcd.setpixel(dt as word,x as word,y as word)

Returns: ---

See Also: Working With Pixels and Colors , Understanding
Controller Properties

Par
t

Description

dt Pixel data to write.

x X coordinate of the pixel. Value range is 0 to lcd.width -1.

y Y coordinate of the pixel. Value range is 0 to lcd.height -1.

Details

Interpretation of the dt argument depends on the selected controller/panel.
Selection is made through the Customize Platform dialog, accessible through the
Project Settings dialog.

The dt argument is of word type, but only lcd.bitsperpixel lower bits of this value
will be relevant. All higher bits will be ignored.

For monochrome and grayscale controllers/panels (lcd.paneltype = 0-
PL_LCD_PANELTYPE_GRAYSCALE), the value of the dt argument sets the brightness
of the pixel. For color panels/controllers (lcd.paneltype= 1-
PL_LCD_PANELTYPE_COLOR) the value is composed of three fields -- one for the
red, green, and blue "channels". Check lcd.redbits , lcd.greenbits , and
lcd.bluebits properties to see how the fields are combined into the dt word.

The display panel must be enabled (lcd.enabled = 1- YES) for this method to
work.

351

351 345

132

374

373

343

344

320

318

357

346

339

349

352 345

340

341

355Platforms

©2000-2011 Tibbo Technology Inc.

.Textalignment Property

Function: Specifies the alignment for text output produced by the
lcd.printaligned method.

Type: Enum (pl_lcd_text_alignment, byte)

Value Range: 0- PL_LCD_TEXT_ALIGNMENT_TOP_LEFT: Top, left
(default).

1- PL_LCD_TEXT_ALIGNMENT_TOP_CENTER: Top, center.

2- PL_LCD_TEXT_ALIGNMENT_TOP_RIGHT: Top, right.

3- PL_LCD_TEXT_ALIGNMENT_MIDDLE_LEFT: Middle, left.

4- PL_LCD_TEXT_ALIGNMENT_MIDDLE_CENTER: Middle,
center.

5- PL_LCD_TEXT_ALIGNMENT_MIDDLE_RIGHT: Middle,
right.

6- PL_LCD_TEXT_ALIGNMENT_BOTTOM_LEFT: Bottom,
left.

7- PL_LCD_TEXT_ALIGNMENT_BOTTOM_CENTER: Bottom,
center.

8- PL_LCD_TEXT_ALIGNMENT_BOTTOM_RIGHT: Bottom,
right.

See Also: Working With Text , lcd.textorientation ,
lcd.texthorizontalspacing , lcd.textverticalspacing

Details

Lcd.printaligned fits the text within a specified rectangular area.
Lcd.textalignment defines how the text will be aligned within this area. The property
has no bearing on the output produced by lcd.print .

.Texthorizontalspacing Property

Function: Specifies the gap, in pixels, between characters of text
output produced by the lcd.print and lcd.printaligned
methods.

Type: Byte

Value Range: 0- 255. Default= 1 (1 pixel).

See Also: Working With Text , lcd.textalignment ,
lcd.textorientation , lcd.textverticalspacing

Details

351

322 356

355 356

351

351

351 351

322 355

356 356

356 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

.Textorientation Property

Function: Specifies the print angle for text output produced by the
lcd.print and lcd.printaligned methods.

Type: Enum (pl_lcd_text_orientation, byte)

Value Range: 0- PL_LCD_TEXT_ORIENTATION_0: At 0 degrees (default)
.

1- PL_LCD_TEXT_ORIENTATION_90: At 90 degrees.

2- PL_LCD_TEXT_ORIENTATION_180: At 180 degrees.

3- PL_LCD_TEXT_ORIENTATION_270: At 270 degrees.

See Also: Working With Text , lcd.textalignment ,
lcd.texthorizontalspacing , lcd.textverticalspacing

Details

.Textverticalspacing Property

Function: Specifies the gap, in pixels, between the lines of text
output produced by the lcd.printaligned method.

Type: Byte

Value Range: 0- 255. Default= 1 (1 pixel).

See Also: Working With Text , lcd.textalignment ,
lcd.textorientation , lcd.texthorizontalspacing

Details

The property has no bearing on the output produced by lcd.print , because this
method always creates a single-line output.

.Unlock Method

Function: Unfreezes display output (on controllers/panels that
support this feature).

Syntax: lcd.unlock

Returns: ---

See Also: ---

Details

When the display is locked (see lcd.lock), you can make changes to the display
data without showing these changes on the screen. You can then unlock the
display with lcd.unlock and show all the changes made at once. This usually greatly
improves the display agility perception by the user, even if your application is not

351 351

322 355

355 356

351

322 355

356 355

351

348

357Platforms

©2000-2011 Tibbo Technology Inc.

working any faster (see Improving Graphical Performance).

Each time you execute this method on a previously locked display, the value of the
lcd.lockcount R/O property decreases by 1. Once this value reaches 0, the
display is unlocked and the user sees updated display data. The lcd.lockcount
allows you to nest locks/unlocks (again, see Improving Graphical Performance).

Not all controllers/panels support this feature. See the Supported Controllers/Panels
 section for details on the display you are using. If your display does not support

locking, executing lcd.lock will have no effect and lcd.lockcount will always stay
at 0.

.Verline Method

Function: Draws a vertical line.

Syntax: lcd.verline(x as word,y1 as word,y2 as word)

Returns: ---

See Also: Lines, Rectangles, and Fills , lcd.rectangle ,
lcd.filledrectangle , lcd.fill

Par
t

Description

x X coordinates of the first and second points. Value range is 0 to lcd.width
-1.

y1 Y coordinate of the first point. Value range is 0 to lcd.height -1.

y2 Y coordinate of the second point. Value range is 0 to lcd.height -1.

Details

The line is drawn with the specified line widht (lcd.linewidth) and "pen" color
(lcd.forecolor). Drawing horizontal (lcd.horline) or vertical lines is more
efficient than drawing generic lines (lcd.line) and should be used whenever
possible.

The display panel must be enabled (lcd.enabled = 1- YES) for this method to
work.

.Width Property

Function: Sets the horizontal resolution of the display panel in pixels.

Type: Word

Value Range: Appropriate value depends on the panel. Default= 0.

See Also: Preparing the Display for Operation , lcd.height

Details

Set this property according to the characteristics of your display panel.

The reason why this value is not set automatically when you select a certain

330

349

330

333

349

321 352

343 342

357

346

346

348

344 346

348

341

320 346

358 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

controller is because the capability of the controller may exceed the actual
resolution of the panel, i.e. only "part" of the controller may be utilized.

This property can only be changed when the display is disabled (lcd.enabled = 0-
NO).

Net Object

The net object represents the Ethernet interface of your device. This object only
specifies various parameters related to the Ethernet interface and is not responsible
for sending/transmitting network data. The latter is the job of the sock object.

Here is what you can do with the net object:

Check if the Network Interface Controller (NIC) IC is functioning properly.

Check your device's Ethernet MAC address.

Set the IP-address of the Ethernet Interface.

Set default gateway IP and the netmask.

Be notified when the Ethernet cable is plugged or unplugged and check current
link status.

Be notified when data overflow occurs in the NIC.

8.3.7.1Overview

Here you will find:

Main Parameters (IP, gateway IP, netmask, MAC).

Checking Ethernet status (link status change, failure, overflows).

Main Parameters

To enable Ethernet communications, you need to set the net.ip , net.gatewayip
, and the net.netmask properties. Actually, net.gatewayip and net.netmask

are only needed when your device will be establishing outgoing connections to
other hosts on the network (perform active opens). If your device will only be
accepting incoming connections then you do not have to set the net.gatewayip
and the net.netmask.

Strangely, a lot of people hold a passionate belief that default gateway IP
and the netmask are necessary always, even for incoming connections.
This is not true!

The net object is usually initialized once on startup, like this:

sub on_sys_init
... some other stuff

net.ip = "192.168.1.95" 'just an example! May not work on your

341

421

358

359

360

361 360

359Platforms

©2000-2011 Tibbo Technology Inc.

network!
net.gatewayip = "192.168.1.1" 'just an example! May not work on your

network!
net.netmask= "255.255.255.0" 'just an example! May not work on your

network!

...some other stuff
end sub

On a lot of networks the IP, gateway IP, and the netmask parameters of
the hosts are configured automatically, through the use of a special
protocol called "DHCP". The net object does not support dhcp directly by
we provide a BASIC library that implements DHCP functionality.

One additional read-only property- the net.mac - can be used to extract the
MAC address of your device. Your program cannot change the MAC address
directly. The MAC is stored in the special configuration area of the EEPROM. Access
to the EEPROM is provided by the stor object. To change the MAC address you
need to rewrite the data in the EEPROM. For more details, see the Stor Object
and Stor.Base Property topics.

Checking Ethernet Status

The net.failure read-only property tells you if the NIC is functioning properly.

The net.linkstate read-only property tells you if there is a live Ethernet cable
plugged into the Ethernet port of your device, and, if yes, whether this is a
10BaseT or 100BaseT connection. The on_net_link_change event is generated
each time the link status changes:

sub on_net_link_change

if net.linkstate= PL_NET_LINKSTATE_NOLINK then
 'switch the RED LED on (just an example of what you could do)

pat.play("RRRRRRRRRRRRRRRR", YES)
else

'switch the GREEN LED on
pat.play("GGGGGGGGGGGGGGGG", YES)

end if

end sub

Notice, that the net.linkstate always reflects current link status, not the link at the
time of event generation.

Finally, there is a on_net_overrun event that is generated when internal RX
buffer of NIC overflows.

360

522

522

523

361

361

362

362

360 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

8.3.7.2Properties, Methods, Events

This section provides an alphabetical list of all properties, methods, and events of
the net object.

.Mac R/O Property

Function: Returns the MAC address of the Ethernet interface.

Type: Dot-decimal string

Value Range: Any valid MAC address, i.e. "0.1.2.3.4.5". Each device is
preset with individual MAC address during production.

See Also: ---

Details

BASIC application cannot change MAC address directly. The MAC is stored in the
EEPROM memory. This is the same memory used by the stor object. On power-up
the MAC address is loaded from the EEPROM and programmed into the Ethernet
controller of the device. Stor object provides a way to change MAC address in the
EEPROM- see Stor Object for details.

.Ip Property

Function: Sets/returns the IP address of the Ethernet interface of
your device.

Type: Dot-decimal string

Value Range: Any IP address, such as "192.168.100.40". Default=
"1.0.0.1"

See Also: net.gatewayip , net.netmask

Details

This property can only be written to when no socket is engaged in communications
through the Ethernet interface, i.e. there is no socket for which sock.statesimple
<> 0- PL_SSTS_CLOSED and sock.currentinterface = 1-
PL_INTERFACE_ETHERNET.

.Netmask Property

Function: Sets/returns the netmask of the Ethernet interface of
your device.

Type: String

Value Range: Any valid netmask, such as "255.255.255.0". Default=
"0.0.0.0"

See Also: net.ip , net.gatewayip

522

522

361 360

505

478

360 361

361Platforms

©2000-2011 Tibbo Technology Inc.

Details

This property can only be written to when no socket is engaged in communications
through the Ethernet interface, i.e. there is no socket for which sock.statesimple
<> 0- PL_SSTS_CLOSED and sock.currentinterface = 1-
PL_INTERFACE_ETHERNET.

.Gatewayip Property

Function: Sets/returns the IP address of the default gateway for the
Ethernet interface of your device.

Type: String

Value Range: Any valid IP address, such as "192.168.100.40". Default=
"127.0.0.1"

See Also: net.ip , net.netmask

Details

This property can only be written to when no socket is engaged in communications
through the Ethernet interface, i.e. there is no socket for which sock.statesimple
<> 0- PL_SSTS_CLOSED and sock.currentinterface = 1-
PL_INTERFACE_ETHERNET.

.Failure R/O Property

Function: Reports whether the Network Interface Controller (NIC) IC
has failed.

Type: Enum (no_yes, byte)

Value Range: 0- NO (default): No failure

1- YES: NIC failure

See Also: ---

Details

.Linkstate R/O Property

Function: Returns current link status of the Ethernet port of the
device.

Type: Enum (pl_net_linkstate, byte)

Value Range: 0- PL_NET_LINKSTAT_NOLINK: No physical Ethernet link
exists at the moment (the Ethernet port of the device is
not connected to a hub).

505

478

360 360

505

478

362 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

1- PL_NET_LINKSTAT_10BASET: The Ethernet port of the
device is linked to a hub (or directly to another device) at
10Mbit/sec.

2- PL_NET_LINKSTAT_100BASET: The Ethernet port of the
device is linked to a hub (or directly to another device) at
100Mbit/sec.

See Also: on_net_link_change

Details

On_net_link_change Event

Function: Generated when the state of the physical link of Ethernet
port changes.

Declaration: on_net_link_change

See Also: ---

Details

Multiple on_net_link_change events may be waiting in the event queue. This event
does not "bring" with it new link state at the time of event generation. Current link
state can be queried through the net.linkstate property.

On_net_overrun Event

Function: Generated when overflow occurs on the internal RX buffer
of the Network Interface Controller (NIC) IC.

Declaration: on_net_overrun

See Also: ---

Details

Another on_net_overrun event is never generated until the previous one is
processed. Notice, that this event signifies the overrun of the hardware RX buffer
of the NIC itself. This has nothing to do with the overrun of RX buffers of individual
sockets (see on_sock_overrun event).

362

361

491

363Platforms

©2000-2011 Tibbo Technology Inc.

Pat Object

The pat object allows you to "play" signal patters on up to five LED pairs, each pair
consisting of a green and red LED.

The channel to work with is selected through the pat.channel property. The first
channel (channel 0) is the primary channel of your system. It utilizes green and red
status LEDs that are present on all external devices, boards, and some modules
offered by Tibbo. All modules have SG and SR I/O lines that are meant for
controlling external status LEDs. Note that when the Tibbo BASIC application is not
running, green and red status LEDs are used to display various status information
.

The remaining four channels (channel 1-4) are identical in function, but use regular
I/O lines of Tibbo devices. Moreover, pat.greenmap and pat.redmap properties
allow you to flexibly map the green and red LED control lines of each channel to any
I/O lines of the device.

The pattern you play can be up to 16 steps long. Each "step" can be either
"-" (both LEDs off), "R" (red LED on), "G" (green LED on), or "B" (both LEDs on). You
can also define whether the pattern will only execute once or loop and play
indefinitely. Additionally, you can make the pattern play at a normal, double, or
quadruple speed.

You load the new pattern to play with the pat.play method. If the pattern is
looped it will continue playing until you change it. If the pattern is not looped it will
play once and then the on_pat event will be generated. When the event handler
is entered, the pat.channel property will be automatically set to the channel
number for which the event was generated.

LED patterns offer a convenient way to tell the user what your system is doing.
You can devise different patterns for different states of your device.

Here is a simple example in which we keep the green LED on at all times, except
when the button is pressed, after which the green LED is turned off and the red
LED blinks three times fast. Additionally, both green and red LEDs blink 4 times on
startup. In this example we work on channel 0:

Sub On_sys_init
 pat.channel=0 'not really necessary since 0 is the default value for this
property
 pat.play("B-B-B-B-",PL_PAT_CANINT)
End Sub

Sub On_button_pressed
 pat.play("*R-R-R-",PL_PAT_CANINT)
End Sub

Sub On_pat
 If pat.channel=0 Then 'not really necessary since we are not using any
other channels
 pat.play("~G",PL_PAT_CANINT)
 End If
End Sub

In the above example, the power-up pattern is loaded inside the on_sys_init
event handler. This is not a looped pattern, so once it finishes playing the on_pat

 event is generated and the "permanent" pattern "green LED on" is loaded inside

364

200

364 366

365

365

533

365

364 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

this event's handler. This new pattern is looped (notice "~"). When the button is
pressed, a fast pattern (notice "*") is loaded. This one makes the red LED blink
three times. Again, this is not a looped pattern, so after it finishes playing the
on_pat event is generated and the "permanent green" pattern is loaded again.

8.3.8.1.Channel Property

Function: Selects/returns the LED channel (status LED pair) to work
with.

Type: Byte

Value Range: The value of this property won't exceed 4 (even if you
attempt to set higher value). Default= 0 (channel 0
selected).

See Also: ---

Details

Channels are enumerated from 0. All other properties, methods, and an event of
this object relate to the currently selected channel. Note that this property's value
will be set automatically when the event handle for the on_pat event is entered.

8.3.8.2.Greenmap Property

Function: For the selected LED channel (selection is made through
the pat.channel property), sets/returns the number of
the I/O line that will act as a green LED control line.

Type: Enum (pl_int_num, byte)

Value Range: Platform-specific, see the list of pl_int_num constants in
the platform specifications.

Default values:

Channel 0: (-1) (no mapping, read-only): the green status
LED (control line) of Tibbo device is always used by this
channel;

Channels 1-4: PL_IO_NULL (non-existent line).

See Also: Pat.redmap

Details

Channel 0 is special -- its LED control lines can't be remapped. This is because
channel 0 uses standard green and red status LEDs (they are called SG and SR).
For channel 0, reading the property always returns (-1), and writing has no effect.

All other channels use regular I/O lines of Tibbo devices. Any I/O line can be
selected to be the green control line of the selected channel. By default, all control
lines are mapped to the non-existent line PL_IO_NULL. Remap as needed and don't
forget to configure the selected I/O line as an output -- this won't happen
automatically.

365

364

366

365Platforms

©2000-2011 Tibbo Technology Inc.

8.3.8.3On_pat Event

Function: Generated when an LED pattern finishes playing.

Declaration: on_pat

See Also: Pat.play

Details

This can only happen for "non-looped" patterns. Multiple on_pat events may be
waiting in the event queue. When the event handler for this event is entered the
pat.channel property is automatically set to the channel for which this event
was generated.

8.3.8.4.Play Method

Function: Loads a new LED pattern to play on the currently selected
LED channel (selection is made through the pat.channel
property).

Syntax: pat.play(byref pattern as string, patint as pl_pat_int)

Returns: ---

See Also: ---

Part Description

pattern Pattern string, can include the following characters:

'-': both LEDs off

'R' or 'r': red LED on

'G' or 'g': green LED on

'B' or 'b': both LEDs on

'~': looped pattern (can reside anywhere in the pattern
string)

'*': double-speed pattern (can reside anywhere in the
pattern string). You can use this symbol twice to x4 speed.
Adding even more '*' will not have any effect.

patint Defines whether the pat.play method is allowed to interrupt
another pattern that is already playing:

0- PL_PAT_NOINT: cannot interrupt

1- PL_PAT_CANINT: can interrupt)

365

364

364

366 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Details

Maximum pattern length is 16 "steps". The on_pat event is generated once the
pattern finishes playing. Looped patterns never finish playing and thus the event is
never generated for them.

Note that channels 1-4 require you to map LED control lines. See pat.greenmap
and pat.redmap properties for details.

8.3.8.5.Redmap Property

Function: For the selected LED channel (selection is made through
the pat.channel property), sets/returns the number of
the I/O line that will act as a red LED control line.

Type: Enum (pl_int_num, byte)

Value Range: Platform-specific, see the list of pl_int_num constants in
the platform specifications.

Default values:

Channel 0: (-1) (no mapping, read-only): the green status
LED (control line) of Tibbo device is always used by this
channel;

Channels 1-4: PL_IO_NULL (non-existent line).

See Also: Pat.greenmap

Details

Channel 0 is special -- its LED control lines can't be remapped. This is because
channel 0 uses standard green and red status LEDs (they are called SG and SR).
For channel 0, reading the property always returns (-1), and writing has no effect.

All other channels use regular I/O lines of Tibbo devices. Any I/O line can be
selected to be the red control line of the selected channel. By default, all control
lines are mapped to the non-existent line PL_IO_NULL. Remap as needed and don't
forget to configure the selected I/O line as an output -- this won't happen
automatically.

Ppp Object

The ppp. object represents the PPP interface of your device. This is the interface
that uses one of the serial ports of your device and works with traditional landline
or GPRS modems.

The ppp. object itself does not handle the PPP link negotiation, which is quite
complex. This needs to be done in Tibbo BASIC code. For GPRS modems there is a
very convenient GPRS library that implements the entire link negotiation process.

The ppp. object only specifies parameters related to the PPP interface and is not
responsible for sending/transmitting network data. The latter is the job of the sock.

365

364

366

364

364

645

367Platforms

©2000-2011 Tibbo Technology Inc.

 object. You will find PPP interface listed or available on the following sock.
object's properties:

Sock.availableinterfaces

Sock.allowedinterfaces

Sock.currentinterface

Sock.targetinterface

8.3.9.1.Buffrq Method

Function: Pre-requests "numpages" number of buffer pages (1 page=
256 bytes) for the TX buffer of the ppp. object.

Syntax: ppp.buffrq(numpages as byte) as byte

Returns: Actual number of pages that can be allocated (byte).

See Also: ppp.buffsize

Part Description

nump
ages

Requested numbers of buffer pages to allocate (recommended value is 5)
.

Details

Actual allocation happens when the sys.buffalloc method is used.

The PPP object will be unable to operate properly if its buffer has inadequate
capacity. Recommended buffer size is 5 pages.

The buffer can only be allocated when the PPP channel is not enabled (ppp.enabled
= 0- NO). Executing sys.buffalloc while ppp.enabled= 1- YES will leave the buffer

size unchanged.

The actual current buffer size can be verified through the ppp.buffsize read-only
property.

8.3.9.2.Buffsize R/O Property

Function: Returns the current capacity (in bytes) of the ppp.
object's buffer.

Type: Word

Value Range: 0-65535, default= 0 (0 bytes).

See Also: wln.buffrq

Details

Buffer capacity can be changed through the ppp.buffrq method followed by the
sys.buffalloc method invocation.

The PPP object will be unable to operate properly if its buffer has inadequate
capacity. Recommended buffer size is 5 pages.

421

475

474

478

506

367

530

368

367

367

367

530

368 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

8.3.9.3.Enabled Property

Function: Enables/disables PPP interface on the serial port specified
by the ppp.portnum property.

Type: Enum (no_yes, byte)

Value Range: 0- NO (default): not enabled

1- YES: enabled

See Also: ---

Details

Once this property is set to 1- YES, the selected serial port seizes to be under the
control of your application and works exclusively for the ppp. object.

PPP channel setup (ppp.buffrq , ppp.ip , ppp.portnum) can only be altered
when the ppp. object is disabled.

8.3.9.4.Ip Property

Function: Sets/returns the IP address of the PPP interface of your
device.

Type: Dot-decimal string

Value Range: Any IP address, such as "192.168.100.40". Default=
"1.0.0.1".

See Also: ---

Details

Typically, the IP address of the PPP interface is negotiated with the ISP. Our (very
convenient) GPRS library implements all necessary steps of PPP link negotiation
for GPRS modems.

This property can only be written to when the ppp. object is disabled (ppp.enabled
= 0- NO).

8.3.9.5.Portnum Property

Function: Sets/returns the number of the serial port that will be
used by the ppp. object.

Type: Byte

Value Range: 0 to ser.numofports -1

See Also: ---

Details

Once the PPP interface is enabled (ppp.enabled = 1- YES), the selected serial
port seizes to be under the control of your application and works exclusively for the

368

367 368 368

645

368

411

368

369Platforms

©2000-2011 Tibbo Technology Inc.

ppp. object.

The value of this property won't exceed ser.numofports -1 (even if you attempt
to set a higher value).

You can only change this property when the PPP channel is disabled (ppp.enabled=
0- NO).

Pppoe Object

The pppoe. object represents the PPPoE interface of your device. This is the
interface that works over the Ethernet (net.) interface to carry the data
between the device and the ADSL modem, the kind that needs user name and login
to connect to the Internet. More about PPPoE here: http://en.wikipedia.org/wiki/
Pppoe.

It is important to understand that net. and pppoe. represent two different network
interfaces of your system, even though they both send and receive data through
the same Ethernet wire. For example, PPPoE interface has its own IP address
(pppoe.ip), which is different from net.ip .

The pppoe. object itself does not handle the ADSL login, which is quite complex.
This task is performed by the PPPOE library . This library's code will perform all
necessary login and configuration steps, and then set the only three properties that
are needed for pppoe. object's operation:

The IP address of your device on the PPPoE interface (pppoe.ip);

The MAC address of the ADSL modem, a.k.a. "access
concentrator" (pppoe.acmac);

Session ID (pppoe.sessionid).

It follows from the above that the PPPoE interface is not automatically ready after
the device boot. It has to be properly configured by the PPPoE library.

The pppoe. object only specifies parameters related to the PPPoE interface and is
not responsible for sending/transmitting network data. The latter is the job of the
sock. object. You will find PPPoE interface listed or available on the following
sock. object's properties:

Sock.availableinterfaces

Sock.allowedinterfaces

Sock.currentinterface

Sock.targetinterface

8.3.10.1.Acmac Property

Function: Sets/returns the MAC address of the ADSL modem (a.k.a.
"access concentrator").

Type: Dot-decimal string

Value Range: Any MAC address, i.e. "0.1.2.3.4.5". Default=
"0.0.0.0.0.0"

See Also: ---

411

358

370 360

655

370

369

370

421

475

474

478

506

http://en.wikipedia.org/wiki/Pppoe
http://en.wikipedia.org/wiki/Pppoe

370 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Details

This property uniquely identifies the ADSL modem (access concentrator) that your
device will use to access the Internet.

8.3.10.2.Ip Property

Function: Sets/returns the IP address of the PPPoE interface of your
device.

Type: Dot-decimal string

Value Range: Any IP address, such as "192.168.100.40". Default=
"0.0.0.0"

See Also: ---

Details

This property can only be written to when no socket is engaged in communications
through the PPPoE interface, i.e. there is no socket for which sock.statesimple
<> 0- PL_SSTS_CLOSED and sock.currentinterface = 1- PL_INTERFACE_PPPOE.

8.3.10.3.Sessionid Property

Function: Sets/returns the ID of the current PPPoE session.

Type: Word

Value Range: 0-65535. Default= 0

See Also: ---

Details

Session ID is required for correct interaction between your device and ADSL modem
(access concentrator). Use the PPPOE library and let it take care of this and
(almost) everything else.

Romfile Object

The romfile object allows you to access resource (ROM) files of your project.
Resource files appear in the "Resource Files" folder of your project tree. These are
files that are not processed by the compiler in any way -- they are just added to
the compiled binary. Resource files are ideal for storing permanent data that never
changes.

Data bytes in resource files are counted from 1.

505

478

655

371Platforms

©2000-2011 Tibbo Technology Inc.

Calling romfile.open opens a resource file. Only one file can be opened at any
given time and there is no need to close it. The size of the file you have opened
can be checked through the romfile.size read-only property. If you attempt to
open a non-existent file its size will be returned as 0. This is how you know that the
file does not exist!

There is a file pointer. When you open or reopen the file the pointer is set to 1 (the
first byte in the file), unless the file does not exist or empty, in which case the
pointer will be at 0.

You read the data from the file using the romfile.getdata method. As you read
from the file, the pointer moves - each time by the number of characters you've
just read. The pointer can't exceed romfile.size+1 (unless the file does not exist or
is empty, in which case the pointer will always be at 0).

You can read and set the pointer position directly using two properties --
romfile.pointer and romfile.pointer32 . The difference between them is that
romfile.pointer is of the word type and, hence, can only be used to set the
pointer in the 1-65535 range. If the pointer is already above 65535, romfile.pointer
will still return 65535.

The romfile.pointer32 property is of the dword type and can handle all pointer
positions. Use it if you access resource files that are larger than 65535 bytes. The
disadvantage of romfile.pointer32 is that using it will result in reduced code
performance. For this reason, rely on romfile.pointer whenever possible.

The romfile.find and romfile.find32 methods search through the currently
opened resource file. For example, supposing you have the following data in the file
<parameters.txt>:

IP=192.168.1.40
PORT=1001
...

This sample data represents the list of parameters that your program uses. Now,
supposing you need to extract the value of the "PORT" parameter. Here is the
code:

dim dw,dw2 as dword
dim s as string(10)

'look for "PORT" first
romfile.open("resource2.txt")
dw=romfile.find(1,"PORT",1)
if dw=0 then sys.halt
dw=dw+len("PORT=")

'OK, now loop for CR after "PORT"
dw2=romfile.find(dw,chr(13),1)
if dw2=0 then sys.halt

'extract the value
romfile.pointer=dw
s=romfile.getdata(dw2-dw)
's now contains the port number

374

375

373

374 374

48

48

372 372

372 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

The difference between romfile.find and romfile.find32 is that the former is of
the word type and the latter is of the dword type . Romfile.find can only
"report back" file positions that are in the 1-65535 range. If the target instance of
the substring was found beyond the 65535 position, romfile.find will still return
65535. Romfile.find32 doesn't have this limitation, but it will slow down your code,
so use romfile.find whenever possible.

Sometimes you will need to open a resource file not for the purpose of accessing it,
but for the purpose of "passing" this file to another object. Such reference is
provided by the romfile.offset read-only property. For illustration of use, see
lcd.setfont and wln.boot .

8.3.11.1.Find Method

Function: Locates the Nth occurrence of a substring within the
currently opened resource (ROM) file.

Syntax: romfile.find(frompos as dword, byref substr as string,
num as word) as word

Returns: 16-bit value indicating the file position at which the
specified occurrence of the substring was found or 0 if the
specified occurrence wasn't found. If the specified
occurrence was found at file position 65535 or higher, the
value of 65535 will be returned.

See Also: Romfile Object

Part Description

frompos Starting search position in the file.

substr Substring to search for.

num Substring occurrence to search for.

Details

Bytes in the resource files are counted from 1. Use romfile.find32 if you are
searching within a file larger than 65535 bytes.

8.3.11.2.Find32 Method

Function: Locates the Nth occurrence of a substring within the
currently opened resource (ROM) file.

Syntax: romfile.find32(frompos as dword, byref substr as
string, num as word) as dword

Returns: 32-bit value indicating the file position at which the
specified occurrence of the substring was found or 0 if the
specified occurrence wasn't found.

See Also: Romfile Object

372 372

48 48

373

353 558

370

372

370

373Platforms

©2000-2011 Tibbo Technology Inc.

Part Description

frompos Starting search position in the file.

substr Substring to search for.

num Substring occurrence to search for.

Details

Bytes in the resource files are counted from 1. When searching inside files that do
not exceed 65535 bytes, use romfile.find instead -- this will speed up your
application.

8.3.11.3.Getdata Method

Function: Reads data from a currently opened resource (ROM) file.

Syntax: romfile.getdata(maxinplen as byte) as string

Returns: String containing a part of the ROM file's data

See Also: Romfile Object

Part Description

maxinplen Maximum number of characters to read from the file.

Details

The actual return string length is limited by three factors, whichever is smaller: the
capacity of the receiving string, the amount of remaining data in the file
(romfile.size +1-romfile.pointer), and the maxinplen argument.

Invoking this method moves the current pointer position forward by the actual
number of bytes read.

8.3.11.4.Offset R/O Property

Function: For the currently opened resource (ROM) file returns the
absolute file offset in the compiled project binary.

Type: Dword

Value Range: ---

See Also: Romfile Object

Details

The property is used to pass the file data to some other object that may need this
data. This way, the "separation of labor" is maintained between the objects. The
romfile object opens the ROM file (romfile.open) and passes the pointer to this
file (through romfile.offset) to another object that requires this information.

372

370

375 374

370

374

374 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

For illustration of use, see lcd.setfont and wln.boot .

8.3.11.5.Open Method

Function: Opens or re-opens a resource (ROM) file.

Syntax: romfile.open(byref filename as string)

Returns: ---

See Also: Romfile Object

Part Description

filename Name of the resource file to open.

Details

'If the file exists and is not empty, the romfile.pointer and romfile.pointer32
properties are set to 1 (each time you (re)open the file). If the file doesn't exist or
is empty, these two properties are set to 0.

There is no method (or need) to explicitly close resource files. Only one resource
file can be opened at any given time.

8.3.11.6.Pointer Property

Function: Sets/returns the current pointer position in the resource
(ROM) file.

Type: Word

Value Range: See the explanation below.

See Also: Romfile Object

Details

When the file is (re)opened with the romfile.open method, the pointer is reset to
the first character of the file (position 1). If the file is not found or contains no
data, the pointer is set to 0.

Pointer position cannot exceed romfile.size +1. When you read from the file with
romfile.getdata , the pointer is automatically moved forward by the number of
bytes that have been read out.

Since this property is of the word type, the maximum pointer value you can set
with it is 65535. Reading the current pointer position with this property will return
65535 for all pointer positions from 65535 and up. To navigate within the files that
exceed 65535 bytes, use romfile.pointer32 instead.

8.3.11.7.Pointer32 Property

Function: Sets/returns the current pointer position in the resource
(ROM) file.

353 558

370

374 374

370

374

375

373

374

375Platforms

©2000-2011 Tibbo Technology Inc.

Type: Dword

Value Range: See the explanation below.

See Also: Romfile Object

Details

When the file is (re)opened with the romfile.open method, the pointer is reset to
the first character of the file (position 1). If the file is not found or contains no
data, the pointer is set to 0.

Pointer position cannot exceed romfile.size +1. When you read from the file with
romfile.getdata , the pointer is automatically moved forward by the number of
bytes that have been read out.

To navigate within files that do not exceed 65535 bytes, use romfile.pointer
instead -- this will speed up your application.

8.3.11.8.Size R/O Property

Function: Returns the size of the currently opened resource (ROM)
file.

Type: Dword

Value Range: ---

See Also: romfile.open

Details

Zero size is returned when the file does not exist or the file is empty.

RTC Object

The RTC object facilitates access to the real-time counter (RTC) of the device. The
RTC is an independent hardware counter that has its own power input. When the
backup battery is installed, the RTC will continue running even when the rest of the
device is powered off. The RTC keeps track of elapsed days, minutes, and seconds,
not actual date and time. This is why it is called the "counter", not "clock". This
platform includes a set of convenient date and time conversion syscalls that can be
used to transform RTC data into current date/time and back (see year , month
, date , weekday , daycount , hours , minutes , and mincount).

Two methods of the RTC object- rtc.getdata and rtc.setdata are used to
read and set the counter value.

Supposing that your project has curr_year, curr_month, curr_date, curr_hours,
curr_minutes, and curr_seconds variables, here is how you set and get the time:

370

374

375

373

374

374

230 221

208 230 209 213 221 220

376 377

376 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

dim curr_year, curr_month, curr_date, curr_hours, curr_minutes,
curr_seconds as byte
dim x,y as word
...
...
'set RTC now (data is supposed to be prepared in curr_ variables)
rtc.set(daycount(curr_year,curr_month,curr_date),mincount(curr_hours,
curr_minutes),curr_seconds)
...
...
'get RTC now- first get the daycount and mincout into x and y
rtc.getdata(x,y,curr_seconds)
'now convert daycount and mincount into date and time
curr_year=year(x)
curr_month=month(x)
curr_date=date(x)
curr_hours=hours(y)
curr_minutes=minutes(y)

There is also rtc.running read-only property that tells you whether the RTC is
working.

Notice, that after the device powers up and provided that the backup power
was not present at all times the RTC may be in the undetermined state and
not work properly until the rtc.set method is executed at least once.
Incorrect behavior may include failure to increment or incrementing at an
abnormal rate. Rtc.running cannot be used to reliably check RTC state in this
situation.

It is not necessary to use rtc.set if the backup power was present at all
times while the device was off.

8.3.12.1.Getdata Method (Previously .Get)

Function: Returns current RTC data as the number of elapsed days,
minutes and seconds.

Syntax: rtc.getdata(byref daycount as word, byref mincount as
word, byref seconds as byte)

Returns: Number of elapsed days, minutes, and seconds. Notice
that this is done indirectly, through byref arguments.

See Also: RTC Object

Part Description

daycount Number of elapsed days.

mincount Number of elapsed minutes.

seconds Number of elapsed seconds.

Details

377

375

377Platforms

©2000-2011 Tibbo Technology Inc.

Some platforms include a set of convenient date and time conversion functions that
can be used to transform "elapsed time" values into current weekday, date, and
time (see weekday , year , month , date , hours , minutes).

When the RTC is powered up after being off (that is, device had not power
AND no backup power for a period of time), it may not work correctly until
you set it using rtc.set method. Incorrect behavior may include failure to
increment or incrementing at an abnormal rate. Rtc.running cannot be used
to reliably check RTC state in this situation.

It is not necessary to use rtc.set if the backup power was present while the
device was off.

With Tibbo Basic release V2, this method had to be renamed from .get to
.getdata. This is because the period (".") separating "rtc" from "getdata" is
now a "true" part of the language, i.e. it is recognized as a syntax unit, not
just part of identifier. Hence, Tibbo Basic sees "rtc" and "get" as separate
entities and "get" is a reserved word that can't be used.

8.3.12.2.Running R/O Property

Function: Returns current RTC state.

Type: Enum (no_yes, byte)

Value Range: 0- NO: RTC is not running.

1- YES: RTC is running.

See Also: RTC Object

Details

When this property returns 0- NO this typically is the sign of a hardware
malfunction (for instance, RTC crystal failure).

When the RTC is powered up after being off (that is, device had not power
AND no backup power for a period of time), it may not work correctly until
you set it using rtc.set method. Rtc.running cannot be used to reliably
check RTC state in this situation.

8.3.12.3.Setdata Method (Previously .Set)

Function: Presets the RTC with a number of elapsed days , minutes ,
and seconds.

Syntax: rtc.setdata(daycount as word, mincount as word,
seconds as byte)

Returns: ---

See Also: RTC Object

230 230 221 208 213 221

377

375

377

375

378 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Part Description

daycount Number of elapsed days.

mincount Number of elapsed minutes.

seconds Number of elapsed seconds.

Details

Some platforms includes a set of convenient date and time conversion functions
that can be used to transform actual date into time into "elapsed time" values (see
daycount and mincount).

Notice, that after the device powers up and provided that the backup power
was not present at all times the RTC may be in the undetermined state and
not work properly until the rtc.set method is executed at least once.
Incorrect behavior may include failure to increment or incrementing at an
abnormal rate. Rtc.running cannot be used to reliably check RTC state in this
situation.

It is not necessary to use rtc.set if the backup power was present at all
times while the device was off.

With Tibbo Basic release V2, this method had to be renamed from .get to
.getdata. This is because the period (".") separating "stor" from "setdata" is
now a "true" part of the language, i.e. it is recognized as a syntax unit, not
just part of identifier. Hence, Tibbo Basic sees "stor" and "set" as separate
entities and "set" is a reserved word that can't be used.

Ser Object

This is the serial port object. This object encompasses all serial ports available on a
particular platform. Each serial port can function as a standard UART , Wiegand

 device, or clock/data device. Direct support for Wiegand and clock/data
interfaces is a unique feature of the serial port object.

Each serial port has a set of standard programmable parameters that you would
expect to find, such as baudrate and parity. In addition, it has some unique
features like the ability to automatically filter out so-called 'escape sequences' or
select UART, Wiegand, or clock/data operating mode.

Follows is the list of features offered by the serial port object:

Ability to work in UART, Wiegand, or clock/data mode

Fully asynchronous operation with separate "data arrival" and "data sent" events.

Automatic data overrun detection on the RX buffer.

Adjustable receive (RX) and transmit (TX) buffer sizes for optimal RAM utilization.

Data "grouping" in the RX buffer based on "intercharacter" delay (gap between
two consecutive arriving characters) and amount of data in the buffer.

209 220

380

383 386

379Platforms

©2000-2011 Tibbo Technology Inc.

Optional automatic port disabling when a data group has been received.

Buffer shorting feature for fast data exchange between the ser object and other
objects (such as the sock object) that support standard Tibbo Basic data
buffers.

For the UART mode:

Ability to set any baudrate (that is physically possible on a particular platform) by
specifying "divider value" instead of a "baudrate from a list" as is usually done on
other products

Standard parity selection: parity off, even, odd, mark, or space.

Choice of word length- 7 or 8 data bits/word.

Full duplex or half duplex operation.

Optional automatic CTS/RTS flow control in the full-duplex mode.

Automatic direction control via RTS line in the half-duplex mode with direction
control polarity selection.

Automatic detection of "escape sequences", active even when the buffer shorting
is enabled (see below).

8.3.13.1Overview

This section covers the serial port object in detail. Here you will find:

Anatomy of a Serial Port

Three modes of the serial port

Port Selection

Serial Settings

Sending and Receiving Data (TX and RX buffers)

Anatomy of a Serial Port

A serial port is composed of actual hardware which controls serial port lines, and of
buffers that store incoming data (which is to be processed by your application) and
outgoing data (which has not yet left the port).

The serial port object contains properties, methods and events which relate both to
the buffers and the UART itself (see Serial Settings).

The buffers available are:

The TX buffer, which contains data due to be sent out of the port (i.e, it's the
transmit of your device!). Your Tibbo Basic application puts the data into the TX
buffer.

The RX buffer, which contains incoming data received by the port. This data is
to be processed by your application.

The logical lines available are:

The TX/W1out/dout output line.

The RX/W1in/din input line.

The RTS/W0out/cout output line.

The CTS/W0&1in/cin input line.

TX/W1out/dout and RX/W1in/din lines always have fixed "position" in the device i.e.
they cannot be re-mapped to a different I/O pin. RTS/W0out/cout and CTS/
W0&1in/cin lines can be re-mapped on select devices. Also, depending on the
device and the serial port mode you may or may not require to explicitly configure

421

379

380

388

390

393

390

380 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

the lines of the serial port as inputs or outputs. Sometimes it will happen
automatically, and sometimes you need to take care of this in your application
through the io object. You will find this information in the "Platform-related
Programming Information" topic inside your platform specifications section.

Details of I/O line usage in each of the three operating modes of the port can be
found here .

Three Modes of the Serial Port

Each port of the serial object can operate in one of the three modes:

UART Mode

Wiegand Mode

Clock/data Mode

The following subsections detail the signals that the serial port sends and expects
to receive in each mode.

UART Mode

In the UART mode the serial port has standard UART functionality. You can select
the baudrate, parity, number of bits in each character, and full- or half-duplex
operation (see Serial Settings). The UART works with signals of "TTL-serial"
polarity -- RX and TX lines are at logical HIGH when no data transmission is taking
place, the start bit is LOW, stop bit is HIGH (shown below for the case of 8 bits/
character and enabled parity).

UART data is sent and received via TX output and RX input lines. Two additional
lines- RTS output and CTS input may also be used depending on the serial port
setup (see below).

Please, remember that on your platform you may be required to correctly
configure some of your serial port's lines as inputs or outputs through
the io.enabled property of the io object. Additionally, you may have
the freedom of re-mapping certain serial port lines to different I/O pins of
the device if required. For more information, refer to your device's platform
documentation (for example, EM1000's is here).

How the serial port sends and receives UART data

The serial port can send and receive the data with no parity, or even, odd, mark, or
space parity configuration. Additionally, you can specify the number of bits in each

294

380

380

383

386

390

194

298 294

143

381Platforms

©2000-2011 Tibbo Technology Inc.

character (7 or 8). The serial port takes care of parity calculation automatically.
When parity bit is enabled, it will automatically calculate parity bit value for each
character it transmits. When receiving, the serial port will correctly process
incoming characters basing on the specified number of bits and parity mode. Actual
parity check is not done. The serial port will receive the parity bit but won't
actually check if it is correct.

 Actual parity check is not done. The serial port will receive the parity bit
but won't actually check if it is correct. Parity is mostly kept for
compatibility with older devices, so the serial port transmits it correctly.

How the UART data is stored in the RX and TX buffers of the serial port

When in the UART mode, each data byte in the TX or RX buffer of the serial port
represents one character. When the serial port is configured to send and receive 7-
bit characters, the most significant bit of each byte in the RX buffer will be 0, and
the most significant bit of each byte in the TX buffer will be ignored. Parity bits are
not stored in the buffers. For the outgoing data stream, the serial port will calculate
and append the parity bit automatically. For the incoming serial data, the serial port
will discard the parity bit so the RX buffer will only get "pure" data.

Full-duplex operation

The full-duplex mode of operation is suitable for communicating with RS232, RS422
devices, 4-line RS485 devices, and most TTL-serial devices. Naturally, external
transceiver IC is needed for RS232, RS4222, or RS485. TTL serial devices can be
connected to the serial port lines directly in most cases.

In the full-duplex mode, the RTS output and CTS input lines can be used for
optional flow control. The RTS output is low whenever the serial port is ready to
receive the data from "attached" serial device (port is opened and the RX buffer
has at least 64 bytes of free space). The RTS line is high whenever the serial port
is closed or the RX buffer has less than 64 bytes of free space left. Figure below
illustrates RTS operation.

All diagrams show TTL-serial signals. If you are dealing with the lines of the
RS232 port you will see all signals in reverse!

382 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

The CTS input is used by the serial port to check if attached serial device is able to
accept the data. The serial port will only start to send the data when the CTS
input is low. The serial port will stop sending the data once the line goes high.
Note, that some Tibbo devices have a hardware buffer called "FIFO " ("fist-in-
first-out" if you really need to know ;-). Once the TX data is in the FIFO it will be
sent out even if the CTS line goes low. Therefore, after the attached serial device
switches the CTS line to low the serial port may still output the number of bytes
not exceeding the capacity of the FIFO. For more information, refer to your device's
platform documentation (for example, EM1000's is here).

196

143

383Platforms

©2000-2011 Tibbo Technology Inc.

When the flow control is enabled, the RTS and CTS lines are controlled by the serial
port and cannot be manipulated by your application. When the flow control is off,
your application can set and read the state of these lines through the io object.

Half-duplex operation

The half-duplex mode of operation is suitable for communicating with 2-wire RS485
devices. Again, appropriate interface transceiver IC is required to be connected to
the serial port.

In the half-duplex mode the RTS output is used to control data transmission
direction. You can select the polarity of the direction control signal, i.e. which state
will serve as "data in" direction, and which- as "data out" direction (see Serial
Settings).

When the serial port has no data to transmit (the TX buffer is empty), it is always
ready to receive the data, so the RTS line is in the "data in" state. When the serial
port needs to send out some data (the TX buffer is not empty) it switches the RTS
line into the "data out" state, transmits the data, then switches the RTS back into
the "data in" state. Assuming "LOWFORINPUT" direction control polarity, direction
control looks like this:

The CTS line is not controlled by the serial port when in the half-duplex mode. Your
application can manipulate this line through the io object.

Wiegand Mode

In the Wiegand mode the serial port is able to receive the data directly from any
Wiegand device, such as card reader and also output the data in the Wiegand
format, as if it was a card reader itself. Wiegand interface is popular in the security,
access control, and automation industry.

Standard Wiegand data transmission is shown below. There are two data lines- W0
and W1. Negative pulse on the W0 line represents data bit 0. Negative pulse on the
W1 line represents data bit 1. There is no standard Wiegand timing, so pulse widths
as well as inter-gap widths wary greatly between devices. Averagely, pulse width is
usually in the vicinity of 100uS (microseconds), while the inter-pulse gap is usually
around 20-100ms (milliseconds).

294

390

294

384 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

There is no explicit way to indicate the end of transmission. Receiving device either
counts received bits (if it knows how many to expect) or assumes the transmission
to be over when the time since the last pulse on the W0 or W1 line exceeds certain
threshold, for example, ten times the expected inter-pulse gap.

The serial port outputs Wiegand data through W0out and W1out lines and receives
the data via W0&1in and W1in lines. "W0&1in" means that the signal on this input
must be a logical AND of W0 and W1 output lines of attached Wiegand device (see
below for details). Your application should not attempt to work with W0out and
W1out outputs directly through the io object when the serial port is in the
Wiegand mode.

Please, remember that on your platform you may be required to correctly
configure some of your serial port's lines as inputs or outputs through
the io.enabled property of the io object. Additionally, you may have
the freedom of re-mapping certain serial port lines to different I/O pins of
the device if required. For more information, refer to your device's platform
documentation (for example, EM1000's is here).

How the serial port sends and receives raw Wiegand data

There are many Wiegand data formats currently in use. These formats define how
"raw" data bits are processed and converted into actual data. Typically, there are 2
parity bits- one at the beginning, and another one at the end of Wiegand data.
Parity calculation, however, varies from format to format. Additionally, the length of
Wiegand output is not standardized.

All this makes it impossible for the serial port object to verify incoming Wiegand
data, i.e. check the data length and calculate the checksum. Instead, this task is
delegated to your application while the serial object only receives raw data.
Similarly, before sending out Wiegand data your application needs to prepare this
data in the desired format- the serial object itself will output any data stream.

How the Wiegand data is stored in the RX and TX buffers of the serial port

When in the Wiegand mode, each data byte in the TX or RX buffer of the serial port
represents one bit of Wiegand data. This bit is recorded in the least significant bit
position of each data byte in the buffer. For your application's convenience, when
the serial port receives Wiegand bit stream, it adds an offset of 30Hex to each data
bit. Therefore, the data recorded into the RX buffer can only consist of bytes 30H

294

194

298 294

143

385Platforms

©2000-2011 Tibbo Technology Inc.

and 31H. These correspond to ASCII characters '0' and '1'. This way, when your
application reads RX buffer contents into a string variable the data will be
"readable" without any additional conversion (ASCII characters with codes 0 and 1
would not be "readable").

When the serial port outputs Wiegand data, it only takes bit 0 of each byte in the
TX buffer. Other bits can contain any data. You can, for instance, put a string of
ASCII characters '0' and '1' into the TX buffer and these will be correctly
interpreted as data bits 0 and 1. This, again, is convenient for your BASIC
application.

How the serial port transmits Wiegand data

Wiegand data output timing is fixed and your application cannot change it. Data
pulses are 100uS wide and inter-pulse gaps are 2mS wide.

How the serial port receives Wiegand data

You already know that W0&1in input of the serial port must receive a logical AND of
W0 and W1 output of attached Wiegand device. A simple AND gate will do the job
(figure A below). Actually, NOR-AND gates are more popular and these can be used
too (figure B). In case you are building a product that will also accept clock/data
input, you may need to control whether the W0&1in input should receive a logical
AND of two lines, or just one of the lines. Schematic diagram C uses an additional I/
O line of the device to control this. When the control line is HIGH the W0&1in input
receives a logical AND of both W0 and W1 lines, when the control line is LOW, the
W0&1in input receives just the signal from the W0 line. Four gates are required for
this, so you will get away with using a single 74HC00 IC.

The serial port does not require an incoming Wiegand data stream to adhere to any
strict timing. The port is simply registering high-to-low transitions on the W0&1in

386

386 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

line. When such transition is detected, the port checks the state of W1 line. If the
line is HIGH, data bit 0 is registered, when the line is low, data bit 1 is registered.

The end of Wiegand transmission is identified by timeout- the serial port has a
special property for that, called "intercharacter delay" (see Serial Settings).
Another property- "auto-close"- can be used to disable the serial port after the
delay has been encountered. This way, when the Wiegand output is over the port
will be disabled and no further data will enter the port until you re-enable it.

Clock/Data Mode

In the clock/data mode the serial port is able to receive the data directly from any
clock/data or "magstripe interface" device, such as a card reader. The serial port is
also able to output the data in the clock/data format, as if it was the card reader
itself. Magstripe and clock/data interfaces are popular in the security, access
control, automation, and banking industry.

Standard clock/data transmission is shown below. There are two data lines- clock
and data. Each negative transition on the clock line marks the beginning of the data
bit. The data line carries actual data. When the state of the data line is LOW it
means data bit 1, and vise versa. There is no standard clock/data timing and some
devices, such as non-motorized magnetic card readers, output the data at variable
speeds (depending on how fast the user actually swipes the card).

The magstripe interface only differs from the clock/data interface in that it has a
third line- card present. This line goes LOW before the data transmission and goes
back to HIGH after the transmission is over. The serial port does not require the
card present line for data reception. Just like with Wiegand data , it identifies the
end of incoming data by measuring the time since the last negative transition on
the clock line. For data transmission, your application can easily use any regular I/O
line to serve as card present line.

Compared to Wiegand interface, the data format of clock/data interface is very

390

383

387Platforms

©2000-2011 Tibbo Technology Inc.

standardized and its varieties include standard data formats for different "tracks" of
the magnetic card. Most clock/data devices you will actually encounter have
nothing to do with magnetic cards but terminology persists.

The serial port outputs clock/data signals through cout and dout lines and receives
the data via cin and din lines. Your application should not attempt to work with
cout and dout outputs directly through the io object when the serial port is in
the clock/data mode.

Please, remember that on your platform you may be required to correctly
configure some of your serial port's lines as inputs or outputs through
the io.enabled property of the io object. Additionally, you may have
the freedom of re-mapping certain serial port lines to different I/O pins of
the device if required. For more information, refer to your device's platform
documentation (for example, EM1000's is here).

How the serial port sends and receives raw clock/data data

Clock/data from different "tracks" has different encoding. Encoding defines how
"raw" data bits are processed and converted into actual data. To allow maximum
flexibility, and also to maintain the data processing style used by the Wiegand
interface , the serial port leaves the task of converting between the raw and
actual data to your application. The serial port only sends and receives raw data
without checking or transforming its contents.

How the clock/data stream is stored in the RX and TX buffers of the serial
port

When in the clock/data mode, each data byte in the TX or RX buffer of the serial
port represents one bit of the clock/data stream. This bit is recorded in the least
significant bit position of each data byte in the buffer. For your application's
convenience, when the serial port receives clock/data bit stream, it adds an offset
of 30Hex to each data bit. Therefore, the data recorded into the RX buffer can only
consist of bytes 30H and 31H. These correspond to ASCII characters '0' and '1'.
This way, when your application reads RX buffer contents into a string variable the

294

194

298 294

143

383

388 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

data will be "readable" without any additional conversion (ASCII characters with
codes 0 and 1 would not be "readable").

When the serial port outputs clock/data stream, it only takes bit 0 of each byte in
the TX buffer. Other bits can contain any data. You can, for instance, put a string
of ASCII characters '0' and '1' into the TX buffer and these will be correctly
interpreted as data bits 0 and 1. This, again, is convenient for your BASIC
application.

How the serial port transmits clock/data stream

Clock/data output timing is fixed and your application cannot change it. The data is
output at a rate of 400us/bit (both LOW and HIGH phases of the clock signal are
200us in length).

How the serial port receives clock/data stream

The serial port does not require an incoming clock/data stream to adhere to any
strict timing. The port is simply registering high-to-low transitions on the clock line.
When such transition is detected, the port checks the state of the data line. If the
line is HIGH, data bit 0 is registered, when the line is low, data bit 1 is registered.

The end of clock/data transmission is identified by timeout- the serial port has a
special property for that, called "intercharacter delay" (see Serial Settings).
Another property- "auto-close"- can be used to disable the serial port after the
delay has been encountered. This way, when the clock/data output is over the port
will be disabled and no further data will enter the port until you re-enable it.

Port Selection

There may be platforms with more than one serial port. You can obtain the number
of serial ports available for your platform using the ser.numofports property.

Since there can be multiple ports, you must state which port you are referring to
when changing properties or invoking methods. This is done using the ser.num
property. For example:

390

411

411

389Platforms

©2000-2011 Tibbo Technology Inc.

ser.mode = PL_SER_MODE_WIEGAND

Can you tell what serial port the statement above applies to? Neither can the
platform. Thus, the correct syntax would be:

ser.num = 0
ser.mode = PL_SER_MODE_WIEGAND

Now the platform knows what port you're working with. Once you have set the port
selector (using ser.num), every method and property after that point is taken to
refer to that port. Thus:

ser.num = 0
ser.enabled = 1
ser.baudrate = 1
ser.bits = 1 ' etc

The events generated by the ser object are not separate for each port. An event
such as on_ser_data_arrival serves all serial ports on your platform. Thus, when
an event handler for the serial port object is entered, the port selector is
automatically switched to the port number on which the event has occurred:

sub on_ser_data_arrival

dim s as string
s = ser.getdata(255) ' Note that you did not have use ser.num before

this statement.

end sub

As a result of this automatic switching, when an event handler for a serial port
event terminates, the ser.num property retains its new value (nothing changes it
back). You must take this into account when processing other event handlers
which make use of the serial port (and are not serial port events). In other words,
you should explicitly set the ser.num property whenever entering such an event
handler, because the property might have been automatically changed prior to this
event. To illustrate:

sub on_sys_init ' This is always the first event executed.

ser.num = 0 ' Supposedly, this would make all subsequent properties and
methods refer to this port.

end sub

sub on_ser_data_arrival ' Then, supposing this event executes.

dim s as string
s = ser.getdata(255) ' However, this event happens on the second port. So

412

390 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

now ser.num = 1.

end sub

sub on_sock_data_arrival ' And then this socket event executes.

ser.txclear ' You meant to do this for ser.num = 0 (as specified at
on_sys_init). But now port.num was changed to 1. You did not explicitly
specify a ser.num here, and now the tx buffer for the wrong port is cleared.
Oops.

end sub

Same precautions should be taken when using doevents . This is because
doevents will let other events execute and so serial object events will potentially
execute and cause the ser.num to change.

To recap, only one of two things may change the current ser.num: (1) Manual
change or (2) a serial port event. And you cannot assume the number has
remained unchanged if you set it somewhere else (because a serial port event
might have happened since).

Specifying a port number for a single-port platform may seem redundant,
but it makes your program portable. You will have an easier time migrating
your program to a multi-port platform in the future.

Serial Settings

This topic briefly outlines the range of configurable options available on the serial
port (this does not include the bulk of data on RX and TX buffers, which are
described here).

Opening and closing the serial port

The ser.enabled property defines whether the port is opened or closed. The port
is closed by default, so you need to open it explicitly. The serial port won't receive
or transmit the data when it is closed, but you will still be able to access its RX and
TX buffers even at that time.

Serial port lines remapping

Depending on your platform, you may or may not be allowed to remap RTS/
W0out/cout output and CTS/W0&1in/cin input, i.e. choose what I/O pins of the
device these lines should be on. For more information, refer to your device's
platform documentation (for example, EM1000's is here). If your device supports
remapping, you can use ser.ctsmap and ser.rtsmap properties to select
required mapping. If your device does not support remapping then its platform will
not have these properties. You can only perform remapping when the serial port is
closed.

UART, Wiegand, or clock/data mode selection

The ser.mode property selects UART , Wiegand , or clock/data mode for
the serial port. You can only change the mode when the serial port is closed.

73

393

405

195

143

403 415

409 380 383 386

391Platforms

©2000-2011 Tibbo Technology Inc.

How the incoming data is committed

One important concept you will need to understand is "RX data committing". You
already know that the serial port records all incoming data into the RX buffer. New
information is that the data recorded into the buffer is not immediately "reported" to
your application. Instead, this buffer remains "uncommitted" until certain conditions
are met. Uncommitted data is effectively invisible to your application, as if it is not
there at all.

For UART mode, the data is committed either when the total amount of
uncommitted and committed data in the RX buffer exceeds 1/2 of this buffer's
capacity or when the intercharacter gap, defined by the ser.interchardelay
property is exceeded. For Wiegand and clock/data modes, the first condition
is not monitored, so only the intercharacter gap can commit the data.

The intercharacter gap is the time elapsed since the start of the most recent UART
character reception in the UART mode or the most recent falling edge on the
W0&1in/cin line in the Wiegand and clock/data modes. The idea is that once the
data stops coming in, the serial port starts counting the delay. Once the delay
exceeds the time set by the ser.interchardelay property, the data is committed and
becomes visible to your application.

Another property -- ser.autoclose -- defines whether the port will be closed
(ser.enabled = NO) once the intercharacter gap reaches ser.interchardelay value.

For the UART mode, the intercharacter delay allows your application to process the
data more efficiently. By keeping the data invisible for a while the serial port can
accumulate a large chunk of data that your application will be able to process at
once. Imagine, for instance, that the data is flowing into the serial port character
by character and your application has to also process this stream character by
character. The overhead may be significant and overall performance of your
application greatly reduced! Now, if this incoming data is combined into sizeable
portions your application won't have to handle it in small chunks, and this will
improve performance. Of course, you need to strike a balance here -- attempting to
combine the data into blocks that are too large may reduce your application's
responsiveness and make your program appear sluggish.

Notice, that the intercharacter gap is not counted when the new data is not being
received because the serial port has set the RTS line to LOW (not ready). This
could happen when flow control is enabled (more on flow control below).

For the Wiegand and clock/data modes, the intercharacter delay is the way to
detect the end of incoming data stream. You are recommended to program the gap
to about 10 times the data rate. For example, if you are receiving the Wiegand data
at a rate of 1 bit per 20ms, then set the delay to 200 ms and it will serve as a
reliable indicator of transmission end. This is when the ser.autoclose will come
handy- once the gap is detected the port will be closed and this will prevent
another Wiegand transmission from entering the RX buffer before your application
processes the previous one.

How the outgoing data is committed

Outgoing data uses similar "data committing" concept as the incoming data. The
objective is to be able to commit the data for sending once, even if the data was
prepared bit by bit. This way your application can avoid sending out data in small
chunks. Buffer Memory Status topic details this.

UART mode settings

Several settings are unique to UART mode. The serial port has all the usual

380

408

383 386

402

405

394

380

392 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

UART-related communication parameters: baudrate , parity , 7/8 bits . There
is no property to select the number of stop bits. Second stop bit can be emulated
by setting ser.parity= 3- PL_SER_PR_MARK.

The baudrate property actually keeps a divisor value. You can set any baudrate
you want by providing the correct divisor. There is even a read-only ser.div9600
property that allows you to calculate the divisor value in a platform-independent
way, by returning the required divisor value (for the current platform) to reach
9600bps.

The actual baudrate is calculated as follows: baudrate=(9600*ser.div9600)/
ser.baudrate. For example, if we need to achieve 38400bps and ser.div9600 returns
12, then we need to set ser.baudrate=3, because (9600*12)/38400=3. This serves
as a platform-independent baudrate calculation, as ser.div9600 will return different
values for different platforms.

For example:

function set_baud(baud as integer) as integer
'baud: 0- 1200, 1-2400, 2-4800, 3- 9600, 4-19200, other-38400

select case baud
case 0: ser.baudrate=ser.div9600*8 '9600/1200=8
case 1: ser.baudrate=ser.div9600*4 '9600/2400=4
case 2: ser.baudrate=ser.div9600*2 '9600/4800=2
case 3: ser.baudrate=ser.div9600 '9600/9600=1
case 4: ser.baudrate=ser.div9600/2 '19200/9600=2
case else: ser.baudrate=ser.div9600/4 '38400/9600=4

end function

The serial port can be used in full-duplex or half-duplex mode, as determined by
the ser.interface property (see UART Mode for details). In the full-duplex
mode, the serial port can optionally use the flow control . in the half-duplex
mode, you can select the polarity of the direction control signal.

In the UART mode, the serial port can recognize so-called 'escape sequences'. They
are defined using the ser.esctype and ser.escchar properties.

When such a sequence is recognized, a special event (on_ser_esc) is generated
and the port is disabled. Of course this can be achieved programmatically, but it
would require you to parse all incoming data and really slow things down. Escape
sequences were implemented with efficiency and speed in mind.

Escape sequences are rather arbitrary. They follow the style of escape sequences
that Tibbo introduced before. However, they are useful for certain things. For
example , if your application has a normal mode and serial 'setup' mode, you can
use this sequence to switch into setup mode.

Escape sequence will work even if you are using buffer shorting , and that makes
them especially powerful. If you are building a device which just routes the data
between a serial interface and an Ethernet interface, you will use buffer shorting for
performance, but you could still detect the escape sequences to switch into the
serial programming mode or perform some other similar task.

402 413 403

404

408 380

407

404

405 405

413

399

393Platforms

©2000-2011 Tibbo Technology Inc.

Sending and Receiving Data (TX and RX buffers)

The serial port sends and receives data through TX (transmit) and RX (receive)
buffers. Read on and you will know how to allocate memory for buffers, use them,
handle overruns, and perform other tasks related to sending and receiving of data.

Allocating Memory for Buffers

Each buffer has a certain size, i.e, a memory capacity. This capacity is allocated
upon request from your program. When the device initially boots, no memory is
allocated to buffers at all.

Memory for buffers is allocated in pages. A page is 256 bytes of memory. Allocating
memory for a buffer is a two-step process: First you have to request for a specific
allocation (a number of pages) and then you have to perform the actual allocation.
For the RX buffer, request memory using ser.rxbuffrq , and for the TX buffer,
request it using ser.txbuffrq .

The allocation method (sys.buffalloc) applies to all buffers previously specified, in
one fell swoop. Hence:

dim in, out as byte
out = ser.txbuffrq(10) ' Requesting 10 pages for the TX buffer. Out will
then contain how many can actually be allocated.

in = ser.rxbuffrq(7) ' Requesting 7 pages for the RX buffer. Will return
number of pages which can actually be allocated.

' Allocation requests for buffers of other objects

sys.buffalloc ' Performs actual memory allocation, as per previous requests.

Actual memory allocation takes up to 100ms, so it is usually done just once, on
boot, for all required buffers. If you do not require some buffer, you may choose not
to allocate any memory to it. In effect, it will be disabled.

You may not always get the full amount of memory you have requested. Memory is
not an infinite resource, and if you have already requested (and received)
allocations for 95% of the memory for your platform, your next request will get up
to 5% of memory, even if you requested for 10%.

There is a small overhead for each buffer. Meaning, not 100% of the memory
allocated to a buffer is actually available for use. 16 bytes of each buffer are
reserved for variables needed to administer this buffer, such as various pointers
etc.

Thus, if we requested (and received) a buffer with 2 pages (256 * 2 = 512), we
actually have 496 bytes in which to queue data (512 - 16).

You can only change the size of buffers that belong to serial ports that are
closed (ser.enabled = 0) at the moment sys.buffalloc methods executes. If
the port is opened at the time the sys.buffalloc method executes then buffer
capacities for this port will remain unchanged, even if you requested changes
through ser.rxbuffrq and ser.txbuffrq.

415

419

530

405

394 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Using Buffers

Once you have allocated memory for the TX and RX buffers you can start sending
and receiving data through them.

Sending Data (through TX buffer)

Sending data is a two-step process. First, you put the data in the TX buffer using
the ser.setdata method, and then you perform the actual sending (commit the
data) using the ser.send method. For example:

ser.setdata ("Foo") ' Placed our data in the TX buffer - not being sent out
yet.

' ... more code...

ser.setdata ("Bar") ' Added even more data to our buffer, waiting to be
sent.

ser.send ' Now data will actually start going out. Data sent will be
'FooBar'.

Since this is a two-step process, you may first prepare a large block of data in the
TX buffer and only then commit this data (this may come handy in some
applications).

TiOS features non-blocking operation. This means that on ser.send, for
example, the program does not halt and wait until the data is completely
sent. In fact, execution resumes immediately, even before the first byte
goes out. Your program will not freeze just because you ordered it to send
a large chunk of data.

Receiving Data (through RX buffer)

Receiving data is a one-step process. To extract the data from a buffer, use the
ser.getdata method. Data may only be extracted once from a buffer. Once
extracted, it is no longer in the buffer. For example:

dim whatigot as string
whatigot = ser.getdata(255)

The variable whatigot now contains up to 255 bytes of data which came from the
TX buffer of the serial port.

Buffer Memory Status

You cannot effectively use a buffer without knowing what its status is. Is it
overflowing? Can you add more data? etc. Thus, each of the serial buffers has
certain properties which allow you to monitor it:

418

417

407

395Platforms

©2000-2011 Tibbo Technology Inc.

The RX buffer

You can check the total capacity of the buffer with the ser.rxbuffsize property.
You can also find out how much committed data the RX buffer currently contains
with the ser.rxlen property (see Serial Settings for explanation of what
committed data is).

Sometimes you need to clear the RX buffer without actually extracting the data. In
such cases the ser.rxclear comes in handy.

The TX buffer

Similarly to the RX buffer, the TX buffer also has a ser.txbuffsize property which
lets you discover its capacity.

Unlike the RX buffer, the TX buffer has two "data length" properties: ser.txlen
and ser.newtxlen . The txlen property returns the amount of committed data
waiting to be sent from the buffer (you commit the data by using the ser.send
method). The newtxlen property returns the amount of data which has entered the
buffer, but has not yet been committed for sending.

The TX buffer also has a ser.txfree property, which directly tells you how much
space is left in it. This does not take into account uncommitted data in the buffer
-- actual free space is ser.txfree-ser.newtxlen!

ser.txlen + ser.txfree = ser.txbuffsize.

When you want to clear the TX buffer without sending anything, use the ser.txclear
 method.

An example illustrating the difference between ser.txlen and ser.newtxlen:

sub on_sys_init

dim x,y as word ' declare variables

ser.rxbuffrq(1) ' Request one page for the rx buffer.
ser.txbuffrq(5) ' Request 5 pages for the tx buffer (which we will use).
sys.buffalloc ' Actually allocate the buffers.

ser.setdata("foofoo") ' Set some data to send.
ser.setdata("bar") ' Some more data to send.
ser.send ' Start sending the data (commit).
ser.setdata("baz") ' Some more data to send.
x = ser.txlen ' Check total amount of data in the tx buffer.
y = ser.newtxlen ' Check length of data not yet committed. Should be 3.

end sub 'Set up a breakpoint HERE.

Don't step through the code. The sending is fast -- by the time you reach x and y
by stepping one line at a time, the buffer will be empty and x and y will be 0. Set a
breakpoint at the end of the code, and then check the values for the variables (by
using the watch).

416

417 390

416

419

420

410

417

420

420

33

396 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Receiving Data

In a typical system, there is a constant need to handle an inflow of data. A simple
approach is to use polling. You just poll the buffer in a loop and see if it contains
any data, and when fresh data is available, you do something with it. This would
look like this:

sub on_sys_init

while ser.rxlen = 0
wend ' basically keeps executing again and again as long as ser.rxlen = 0
s = ser.getdata(255) ' once loop is exited, it means data has arrived. We
extract it.

end sub

This approach will work, but it will forever keep you in a specific event handler
(such as on_sys_init) and other events will never get a chance to execute. This
is an example of blocking code which could cause a system to freeze. Of course,
you can use the doevents statement, but generally we recommend you to avoid
this approach.

Since our platform is event-driven, you should use events to tell you when new
data is available. There is an on_ser_data_arrival event which is generated
whenever there is data in the rx buffer:

sub on_ser_data_arrival

dim s as string
s = ser.getdata(255) ' Extract the data -- but in a non-blocking way.
' code to process data
end sub

This on_ser_data_arrival event is generated whenever there is data in the RX
buffer, but only once. There are never two on_ser_data_arrival events waiting in
the queue. The next event is only generated after the previous one has completed
processing, if and when there is any data available in the RX buffer.

This means that when handling this event, you don't have to get all the data in the
RX buffer. You can simply handle a chunk of data and once you leave the event
handler, a new event of the same type will be generated if there is still unprocessed
data left.

Here is a correct example of handling arriving serial data through the
on_ser_data_arrival event. This example implements a data loopback -- whatever is
received by the serial port is immediately sent back out.

sub on_ser_data_arrival
ser.setdata(ser.getdata(ser.txfree))
ser.send

end sub

533

87

412

412

397Platforms

©2000-2011 Tibbo Technology Inc.

We want to handle this loopback as efficiently as possible, but we must not overrun
the TX buffer. Therefore, we cannot simply copy all arriving data from the RX buffer
into the TX buffer. We need to check how much free space is available in the TX
buffer. The first line of this code implements just that: Ser.getdata method
takes as much data from the RX buffer as possible, but not more than ser.txfree
(the available room in the TX buffer). The second line just sends the data.

Actually, this call will handle no more than 255 bytes in one pass. Even
though we seemingly copy the data directly from the RX buffer to the TX
buffer, this is done via a temporary string variable automatically created
for this purpose. In this platform, string variables cannot exceed 255
bytes.

Polling method of data processing can sometimes be useful. See
Generating Dynamic HTML Pages .

Sending Data

In the previous section, we explained how to handle an incoming stream of data.
You could say it was incoming-data driven. Sometimes you need just the opposite
-- you need to perform operations based on the sending of data.

For example, supposing that in a certain system, you need to send out a long string
of data when a button is pressed. A simple code for this would look like this:

sub on_button_pressed
ser.setdata("This is a long string waiting to be sent. Send me

already!")
ser.send

end sub

The code above would work, but only if at the moment of code execution the
necessary amount of free space was available in the TX buffer (otherwise the data
would get truncated). So, obviously, you need to make sure that the TX buffer has
the necessary amount of free space before sending. A simple polling solution would
look like this:

sub on_button_pressed
dim s as string
s = "This is a long string waiting to be sent. Send me already!"
while ser.txfree < len(s) 'we will wait for the necessary amount of

free space to become available
wend
ser.setdata(s)
ser.send

end sub

Again, this is not so good, as it would block other event handlers. So, instead of
doing that, we would employ a code that uses on_ser_data_sent :

407

420

466

412

398 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

dim s as string
s = "This is a long string waiting to be sent. Send me already!"

sub on_button_pressed
ser.notifysent(ser.txbuffsize-len(s)) ' causes the on_ser_data_sent

event to fire when the tx buffer has space for our string
end sub

sub on_ser_data_sent
ser.setdata(s) ' put data in tx buffer
ser.send ' start sending it.

end sub

When we press the button, on_button_pressed event is generated, so now the
system knows we have a string to send. Using ser.notifysent we make the
system fire the on_ser_data_sent event when the necessary amount of free
space becomes available. This event will only be fired once -- and will be fired
immediately if there is already enough available space.

Within the on_ser_data_sent event handler we put the data in the TX buffer and
start sending it.

Amount of data that will trigger on_ser_data_sent does not include
uncommitted data in the TX buffer.

Handling Buffer Overruns

Handling RX buffer overruns

The on_ser_overrun event is generated when an RX buffer overrun has occurred.
It means the data has been arriving to the UART faster than you were handling it
and that some data got lost.

This event is generated just once, no matter how much data is lost. A new event
will be generated only after exiting the handler for the previous one. In the UART/
full-duplex mode (see UART Mode for details) you can typically prevent this from
happening by using the flow control (ser.flowcontrol).

Typically, the user of your system wants to know when an overrun has occurred.
For example, you could blink a red LED when this happens.

sub on_ser_overrun
pat.play("R-R-R-R")

end sub

Are TX buffer overruns possible?

TX buffer overruns are not possible. The serial port won't let you overload its TX
buffer. If you try to add more data to the TX buffer than the free space in the
buffer allows to store then the data you are adding will be truncated.

See Sending Data for explanation on how to TX data correctly.

234

410

412

413

380

407

397

399Platforms

©2000-2011 Tibbo Technology Inc.

Redirecting Buffers
The following example appeared under Receiving Data :

sub on_ser_data_arrival
ser.setdata(ser.getdata(ser.txfree))
ser.send

end sub

This example shows how to send all data incoming to the RX buffer out from the TX
buffer, in just two lines of code. However fast, this technique still passes all data
through your BASIC code, even though you are not processing (altering, sampling)
it in any way.

A much more efficient and advanced way to do this would be using a technique
called buffer redirection (buffer shorting). With buffer shorting, instead of receiving
the data into the RX buffer of your serial port, you are receiving it directly into the
TX buffer of another object which is supposed to send out this data. This can be a
serial object (the same port or a different one), a socket object, etc.

To use buffer shorting, you invoke the ser.redir method and specify the buffer to
which the data is to be redirected. Once this is done, the on_ser_data_arrival
event won't be generated at all, because the data will be going directly to the TX
buffer that you have specified. As soon as the data enters this buffer, it will be
automatically committed for sending.

The ser.redir method will only work if the serial port is closed (ser.enabled = 0-
NO) at the time when this method is executed. Therefore, it makes sense to check
the result of ser.enabled execution, as in the example below:

sub on_sys_init

if ser.redir(PL_REDIR_SER)= PL_REDIR_SER then
'redirection succeeded

else
'redirection failed (perhaps, the port is opened?)

end if
end sub

The performance advantage of buffer shorting is enormous, due to two factors:
first, you are not handling the data programmatically, so the VM isn't involved at all.
And second, the data being received is received directly into the TX buffer from
which it is transmitted, so there is less copying in memory.

Of course you cannot do anything at all with this data -- you are just pumping it
through. However, very often this is precisely what is needed! Additionally, you can
still catch escape sequences .

To stop redirection, you can use ser.redir(0), which means "receive data into the
RX buffer in a normal fashion".

Sinking Data

Sometimes it is desirable to ignore all incoming data while still maintaining the serial
port opened. The ser.sinkdata property allows you to do just that.

Set the ser.sinkdata to 1- YES, and all incoming data will be automatically

396

414

405

405

418

400 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

discarded. This means that the on_ser_data_arrival event will not be generated,
reading ser.rxlen will always be returning zero, and so on. No data will be
reaching its destination even in case of buffer redirection . Escape characters ,
however, will still be detected in the incoming data stream.

8.3.13.2Properties, Methods, Events

This section provides an alphabetical list of all properties, methods, and events of
the ser object. For your convenience, here is a hierarchical map of the serial port's
events, properties and methods.

All properties, methods, and events under ser.num are shown as sub-nodes of
this property because they refer to a serial port currently selected by the ser.num.
The _on_ser_data_sent event is subordinate to the set.notifysent method
because this method needs to be called each time you want to receive the
_on_ser_data_sent.

The ser.ctsmap , ser.rtsmap , sys.buffalloc , ser.redir , and ser.mode
are subordinate to ser.enabled because they can be changed (or have effect) only
when ser.enabled= 0- NO (the sys.buffalloc method is not a part of the ser object
but its use is required for normal serial port operation- this is why it is listed here).

Ser.baudrate , ser.parity , ser.bits , ser.esctype , and ser.interface are
only relevant in the UART mode of operation.

Ser.escchar is only relevant when ser.esctype is not DISABLED.

412

417

399 390

411

412 410

403 415 530 414 409

402 413 403 405 408

405

401Platforms

©2000-2011 Tibbo Technology Inc.

402 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

.Autoclose Property

Function: For currently selected serial port (selection is made
through ser.num) specifies whether the port will be
disabled once the intercharacter gap expires.

Type: dis_en (enum, byte)

Value Range: 0- DISABLED (default)

1- ENABLED

See Also: Serial Settings

Details

The serial port is disabled by setting ser.enabled = 0- NO. Intercharacter gap
duration is specified by the ser.interchardelay property.

This property offers a way to make sure that no further data is received once the
gap of certain length is encountered. This property is especially useful in Wiegand

 or clock/data mode (ser.mode = 1- PL_SER_MODE_WIEGAND or 2-
PL_SER_MODE_CLOCKDATA) where intercharacter gap is the only way to reliably
identify the end of one data transmission.

.Baudrate Property

Function: Sets/returns the baudrate "divisor value" for the selected
serial port (selection is made through ser.num).

Type: Word

Value Range: 0-65535, default value is platform dependent, results in
9600bps.

See Also: UART Mode , Serial Settings

Details

Actual baudrade is calculated as follows: (9600*ser.div9600)/ser.baudrate. The
ser.div9600 read-only property returns the value ser.baudrate must be set to in
order to obtain 9600 bps on a particular platform.

For example, if we need to achieve 38400bps and ser.div9600 returns 12, then we
need to set ser.baudrate=3, because (9600*12)/38400=3. This serves as a
platform-independent baudrate calculation, as ser.div9600 will return different
values for different platforms.

This property is only relevant when the serial port is in the UART mode (ser.mode
= 0- PL_SER_MODE_UART).

411

390

405

408

383 386 409

411

380 390

404

409

403Platforms

©2000-2011 Tibbo Technology Inc.

Technically speaking, this property should be called divisor, not baudrate.
We called it baudrate so that you could easily find it.

.Bits Property

Function: Specifies the number of data bits in a word TXed/RXed by
the serial port for the currently selected port (selection is
made through ser.num)

Type: Enum (pl_ser_bits, byte)

Value Range: 0- PL_SER_BB_7: data word TXed/RXed by the serial port
is to contain 7 data bits

1- PL_SER_BB_8 (default): data word TXed/RXed by the
serial port is to contain 8 data bits.

See Also: UART Mode , Serial Settings

Details

This property is only relevant when the serial port is in the UART mode (ser.mode
= 0- PL_SER_MODE_UART).

.Ctsmap property (Selected Platforms Only)

Function: Sets/returns the number of the I/O line that will act as
CTS/W0&1in/cin input of currently selected serial port
(selection is made through ser.num).

Type: Enum (pl_int_num, byte)

Value Range: Platform-specific, see the list of pl_int_num constants in
the platform specifications.

See Also: Three modes of the Serial Port , Serial Settings

Details

This property is only available on selected platforms. For more information
please refer to your device's platform documentation (for example,
EM1000's is here).

Default value of this property is different for each serial port. See the list of
pl_int_num constants in the platform specifications -- it shows default values as
well.

Selection can be made only among interrupt lines. Regular, non-interrupt I/O lines
cannot be selected. Property value can only be changed when the port is closed
(ser.enabled =0- NO).

On certain platforms, you may need to configure the line as input. This is done
through the io.enabled property of the io object.

411

380 390

409

411

380 390

143

405

194

298 294

404 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

.Dircontrol Property

Function: Sets/returns the polarity of the direction control line
(RTS) for selected serial port (selection is made through
ser.num).

Type: Enum (pl_ser_dircontrol, byte)

Value Range: 0- PL_SER_DCP_LOWFORINPUT (default): The RTS output
will be LOW when the serial port is ready to RX data and
HIGH when the serial port is TXing data.

1- PL_SER_SI_HIGHFORINPUT: The RTS output will be
HIGH when the serial port is ready to rx data and LOW
when the serial port is txing.

See Also: UART Mode , Serial Settings

Details

This property is only relevant in the UART/half-duplex mode (ser.mode = 0-
PL_SER_MODE_UART and ser.interface = 1- PL_SER_SI_HALFDUPLEX).

Note, that HIGH/LOW states specified above are for the TTL-serial interface of the
MODULE-level products. If you are dealing with the RS232 port then the states will
be in reverse (for example, 1- PL_SER_SI_HIGHFORINPUT will mean "RTS LOW for
input, HIGH for output").

Depending on your platform, you may be allowed to remap RTS line to other I/O
pins of the device through the ser.rtsmap and ser.ctsmap properties. Also,
you may be required to correctly configure RTS line as an input through the
io.enabled property of the io object. For more information, refer to your
device's platform documentation (for example, EM1000's is here).

When the serial port is in the UART/half-duplex mode you can use the CTS line as a
regular I/O line of your device.

.Div9600 R/O Property

Function: Returns the value to which the ser.baudrate property
must be set in order to achieve the baudrate of 9600bps
on the current device and under present conditions.

Type: Word

Value Range: ---

See Also: Serial Settings

Details

"Smart" applications will use this property to set baudrates in a platform-
independent fashion. Even for the same device, the value required to achieve
9600bps may be different at different times. For example, some devices have PLLs
(see sys.currentpll). Enabling and disabling PLL changes the clock frequency of
the device and this affects the value returned by ser.div9600.

411

380 390

409

408

195

415 403

194

298 294

143

402

390

531

405Platforms

©2000-2011 Tibbo Technology Inc.

.Enabled Property

Function: Enables/disables currently selected serial port (selection is
made through ser.num).

Type: Enum (no_yes, byte)

Value Range: 0- NO (default): not enabled

1- YES: enabled

See Also: Buffer Memory Status

Details

Enabling/disabling the serial port does not automatically clear its buffers, this is
done via ser.rxclear and ser.txclear . Notice that certain properties can only
be changed and methods executed when the port is not enabled. These are
ser.rtsmap , ser.ctsmap , ser.mode , ser.redir . You also cannot allocate
buffer memory for the port (do sys.buffalloc) when the port is enabled.

.Escchar Property

Function: For selected serial port (selection is made through ser.num
) sets/retrieves ASCII code of the escape character

used for type1 or type2 serial escape sequences.

Type: Byte

Value Range: 0-255, default=1 (SOH character)

See Also: UART Mode , Serial Settings

Details

Which escape sequence is enabled is defined by the ser.esctype property. This
property is irrelevant when ser.esctype= 0- PL_SER_ET_DISABLED or when the
serial port is in the Wiegand or clock/data mode (ser.mode= 1-
PL_SER_MODE_WIEGAND or ser.mode= 2- PL_SER_MODE_CLOCKDATA) -- serial
escape sequences are only recognized in the UART data.

.Esctype Property

Function: Defines, for selected serial port (selection is made
through ser.num), whether serial escape sequence
recognition is enabled and, if yes, what type of escape
sequence is to be recognised.

Type: Enum (pl_ser_esctype, byte)

Value Range: 0- PL_SER_ET_DISABLED (disabled): Recognition of serial
escape sequences disabled.

411

394

416 420

415 403 409 414

530

411

380 390

405

383 386

411

406 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

1- PL_SER_ET_TYPE1: Escape sequences of type 1 are to
be recognized.

2- PL_SER_ET_TYPE2: Escape sequences of type 2 are to
be recognized.

See Also: UART Mode , Serial Settings

Details

Escape sequence is a special occurrence of characters in the incoming data
received by the serial port. Escape sequences are only recognized in the UART
mode of operation (ser.mode = 0- PL_SER_MODE_UART).

When escape sequence is detected the on_ser_esc event is generated and the
serial port is disabled (ser.enabled = 0- NO). When enabled, serial escape
sequence detection works even when the buffer shorting is employed (see
ser.redir property).

Follows is the description of two escape sequence types:

Type 1 Type1 escape sequence consists of three consecutive escape
characters (ASCII code of escape character is defined by the
ser.escchar property). For the escape sequence to be recognized
each of the escape characters must be preceded by a time gap of at
least 100ms:

...previous
data

<--100ms--
>

E.C. <--100ms--
>

E.C. <--100ms--
>

E.C.

If the time gap before a certain escape character exceeds 100ms
then this character is considered to be a part of the escape
sequence and is not recorded into the RX buffer. If the time gap
before a certain escape character is less than 100ms than this
character is considered to be a normal data character and is saved
into the RX buffer. Additionally, escape character counter is reset
and the escape sequence must be started again. The following
example illustrates one important point (escape characters are shown
as). Supposing the serial port receives the following string:

ABC<--100ms--> <--100ms--> DE

First two escape characters is this example had correct time gap
before them, so they were counted as a part of the escape sequence
and not saved into the buffer. The third escape character did not
have a correct time gap so it was interpreted as a data character
and saved into the buffer. The following was recorded into the RX
buffer:

ABC DE

The side effect and the point this example illustrates is that first two
escape characters were lost -- they neither became a part of a
successful escape sequence (because this sequence wasn't
completed), nor were saved into the buffer.

Type 2 Type 2 escape sequence is not based on any timing. Escape
sequence consists of escape character (defined by the ser.escchar
property) followed by any character other than escape character. To

380 390

380

409

413

405

399

414

405

407Platforms

©2000-2011 Tibbo Technology Inc.

receive a data character whose ASCII code matches that of escape
character the serial port must get this character twice. This will
result in a single character being recorded into the RX buffer.

The following sequence will be recognized as escape sequence (that
is, if current escape character is not 'D'):

ABC D

In the sequence below two consecutive escape characters will be
interpreted as data (data recorded to the RX buffer will contain only
one such character):

ABC

.Flowcontrol Property

Function: Sets/returns flow control mode for currently selected
serial port (selection is made through ser.num)

Type: dis_en (enum, byte)

Value Range: 0- DISABLED (default)

1- ENABLED

See Also: UART Mode , Serial Settings

Details

Only relevant when the ser.mode = 0- PL_SER_MODE_UART and ser.interface=
0- PL_SER_SI_FULLDUPLEX (full-duplex). Flow control uses two serial port lines-
RTS and CTS- to regulate the flow of data between the serial port of your device
and another ("attached") serial device.

Depending on your platform, you may be allowed to remap RTS and CTS lines to
other I/O pins of the device through the ser.rtsmap and ser.ctsmap
properties. Also, you may be required to correctly configure RTS and CTS lines
as an input and output through the io.enabled property of the io object. For
more information, refer to your device's platform documentation (for example,
EM1000's is here).

When the flow control is disabled both RTS and CTS lines are not used by the serial
port and become regular I/O lines that can be controlled through the io object.

.Getdata Method

Function: For the selected serial port (selection is made through
ser.num) returns the string that contains the data
extracted from the RX buffer.

Syntax: ser.getdata(maxinplen as word) as string

Returns: String containing data extracted from the RX buffer

See Also: Three Modes of the Serial Port , Receiving data

411

380 390

409 408

195

415 403

194

298 294

143

294

411

380 396

408 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Part Description

maxinplen Maximum amount of data to return (word).

Details

Extracted data is permanently deleted from the buffer. Length of extracted data is
limited by one of the three factors (whichever is smaller): amount of committed
data in the RX buffer itself, capacity of the "receiving" string variable, and the limit
set by the maxinplen argument.

In the UART mode (ser.mode = 0- PL_SER_MODE_UART) the data is extracted
"as is". For Wiegand and clock/data mode (ser.mode= 1-
PL_SER_MODE_WIEGAND and ser.mode= 2- PL_SER_MODE_CLOCKDATA) each
character of extracted data represents one data bit and only two characters are
possible: '0' or '1'.

.Interchardelay Property

Function: Sets/returns maximum intercharacter delay for the
selected serial port (selection is made through ser.num)
in 10ms steps.

Type: Byte

Value Range: 0-255, default= 0 (no delay)

See Also: Three Modes of the Serial Port , Serial Settings

Details

For UART mode (ser.mode = 0- PL_SER_MODE_UART) specifies the time that
needs to elapse since the arrival of the most recent serial character into the RX
buffer to cause the data to be committed (and on_ser_data_arrival event
generated). For Wiegand and clock/data mode (ser.mode= 1-
PL_SER_MODE_WIEGAND or 2- PL_SER_MODE_CLOCKDATA) the time since the most
recent data bit (high-to-low transition on the W0&1in/cin line) is counted.

In the UART mode this property allows you to combine incoming serial data into
larger "chunks", which typically improves performance. Notice, that the
intercharacter gap is not counted when the new data is not being received because
the serial port has set the RTS line to LOW (not ready). For this to happen, the
serial port must be in the UART/full-duplex/flow control mode (ser.mode= 0-
PL_SER_MODE_UART, ser.interface = 0- 0- PL_SER_SI_FULLDUPLEX, and
ser.flowcontrol = 1- ENABLED) and the RX buffer must be getting nearly full (less
than 64 bytes of free space left).

For Wiegand and clock/data modes, counting timeout since the last bit is the only
way to determine the end of the data output. Suggested timeout is app. 10 times
the bit period of the data output by attached Wiegand or clock/data device.

.Interface Property

Function: Chooses full-duplex or half-duplex operating mode for
currently selected serial port (selection is made through
ser.num).

380 409

383 386

411

380 390

409

412

408

407

411

409Platforms

©2000-2011 Tibbo Technology Inc.

Type: Enum (pl_ser_interface, byte)

Value Range: 0- PL_SER_SI_FULLDUPLEX (default): full-duplex mode.

1- PL_SER_SI_HALFDUPLEX: half-duplex mode.

See Also: UART Mode , Serial Settings

Details

Full-duplex mode is suitable for RS232, RS422, or four-wire RS485 communications.
RTS output (together with CTS input) can be used for optional hardware flow
control (ser.flowcontrol).

Half-duplex mode is suitable for two-wire RS485 communications. RTS line is used
for direction control. Hardware flow control is not possible, so ser.flowcontrol value
is irrelevant. Direction control polarity can be set through ser.dircontrol .

This property is only relevant when the port is in the UART mode (ser.mode = 0-
PL_SER_MODE_UART).

Depending on your platform, you may be allowed to remap RTS and CTS lines to
other I/O pins of the device through the ser.rtsmap and ser.ctsmap
properties. Also, you may be required to correctly configure RTS and CTS lines
as an input and output through the io.enabled property of the io object. For
more information, refer to your device's platform documentation (for example,
EM1000's is here).

.Mode Property

Function: Sets operating mode for the currently selected serial port
(selection is made through ser.num).

Type: Enum (pl_ser_mode, byte)

Value Range: 0- PL_SER_MODE_UART (default): UART mode.

1- PL_SER_MODE_WIEGAND: Wiegand mode.

2- PL_SER_MODE_CLOCKDATA: clock/data (magstripe
interface) mode.

See Also: Three Modes of the Serial Port , Serial Settings

Details

Follows is a short introduction of three operating modes of the serial port:

UART mode Suitable for RS232, RS422, RS485, etc. communications in full-
duplex or half-duplex mode (see ser.interface). Data is
transmitted through the TX pin and received through the RX pin.
Optionally, RTS (output) and CTS (input) lines are used for flow
control (see ser.flowcontrol) in the full-duplex mode.
Additionally, RTS can be used for direction control in the half-
duplex mode.

380 390

407

404

409

195

415 403

194

298 294

143

411

380 390

408

407

410 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Wiegand mode Suitable for sending to or receiving data from any standard
Wiegand device. Data transmission is through pins W0out and
W1out, reception- through W0&1in and W1in. "W0&1in" means
that a logical AND of W0 and W1 signals must be applied to this
input. Therefore, external logical gate is needed in order to
receive Wiegand data.

Clock/data mode Suitable for sending to or receiving data from any standard
clock/data (or magstripe) device. Data transmission is through
pins cout and dout, reception- through cin and din. Third line of
the magstripe interface- card present- is not required for data
reception. For transmission, any I/O line can be used as card
present output (under software control).

Changing port mode is only possible when the port is closed (ser.enabled = 0-
NO). Depending on your platform, you may be allowed to remap RTS/W1out/cout
and CTS/W0&1in/cin lines to other I/O pins of the device through the ser.rtsmap
and ser.ctsmap properties. Also, depending on selected mode and your platform
you may be required to correctly configure some of your serial port's lines as
inputs or outputs through the io.enabled property of the io object. For more
information, refer to your device's platform documentation (for example, EM1000's
is here).

We understand that it would be much more logical to call this property
"interface", not "mode". Problem is, this property was added later, when
ser.interface already came to mean something else . So, we had no
choice but to choose unused term.

.Newtxlen R/O Property

Function: For the selected serial port (selection is made through
ser.num) returns the amount of uncommited TX data in
bytes.

Type: Word

Value Range: 0-65535, default= 0 (bytes)

See Also: Sending (Transmitting) Data , ser.txlen , ser.txfree

Details

Uncommitted data is the one that was added to the TX buffer with the ser.setdata
 method but not yet committed using the ser.send method.

.Notifysent Method

Function: Using this method for the selected serial port (selection is
made through ser.num) will cause the
on_ser_data_sent event to be generated when the
amount of committed data in the TX buffer is found to be
below "threshold" number of bytes.

405

195

415

403

194

298 294

143

408

411

397 420 420

418 417

411

412

411Platforms

©2000-2011 Tibbo Technology Inc.

Syntax: notifysent(threshold as word)

Returns: ---

See Also: Sending (Transmitting) Data

Part Description

threshold Amount of bytes in the TX buffer below which the event it
so be generated.

Details

Only one on_ser_data_sent event will be generated each time after the
ser.notifysent method is invoked. This method, together with the on_ser_data_sent
event provides a way to handle data sending asynchronously.

Just like with ser.txfree , the trigger you set won't take into account any
uncommitted data in the TX buffer.

.Num Property

Function: Sets/returns the number of currently selected serial port
(ports are enumerated from 0).

Type: Byte

Value Range: The value of this property won't exceed ser.numofports
-1 (even if you attempt to set higher value). Default= 0
(port #0 selected)

See Also: ---

Details

All other properties and methods of this object relate to the serial port selected
through this property. Note that serial port-related events such as
on_ser_data_arrival change currently selected port!

.Numofports R/O Property

Function: Returns total number of serial ports found on the current
platform.

Type: Byte

Value Range: platform-dependent

See Also: ser.num

397

420

411

412

411

412 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Details

On_ser_data_arrival Event

Function: Generated when at least one data byte is present in the
RX buffer of the serial port (i.e. for this port the ser.rxlen

>0).

Declaration: on_ser_data_arrival

See Also: Buffer Memory Status

Details

When the event handler for this event is entered the ser.num property is
automatically switched to the port for which this event was generated. Another
on_ser_data_arrival event on a particular port is never generated until the
previous one is processed. Use ser.getdata method to extract the data from the
RX buffer.

You don't have to process all data in the RX buffer at once. If you exit the
on_ser_data_arrival event handler while there is still some unprocessed data in the
RX buffer another on_ser_data_arrival event will be generated immediately.

This event is not generated for a particular port when buffer redirection is set for
this port through the ser.redir method.

On_ser_data_sent Event

Function: Generated after the total amount of committed data in
the TX buffer of the serial port (ser.txlen) is found to
be less than the threshold that was preset through the
ser.notifysent method.

Declaration: on_ser_data_sent

See Also: Sending (Transmitting) Data

Details

This event may be generated only after the ser.notifysent method was used. Your
application needs to use the ser.notifysent method EACH TIME it wants to cause
the on_ser_data_sent event generation for a particular port. When the event
handler for this event is entered the ser.num is automatically switched to the
port on which this event was generated.

Please, remember that uncommitted data in the TX buffer is not taken into account
for on_ser_data_sent event generation.

417

394

411

412

407

414

420

410

397

411

413Platforms

©2000-2011 Tibbo Technology Inc.

On_ser_esc Event

Function: Generated when currently enabled escape sequence is
detected in the RX data stream.

Declaration: on_ser_esc

See Also: Serial Settings

Details

Once the serial escape sequence is detected on a certain serial port this port is
automatically disabled (ser.enabled= 0- NO).

When event handler for this event is entered the ser.num property is
automatically switched to the port on which this event was generated.

Whether or not escape sequence detection is enabled and what kind of escape
sequence is expected is defined by the ser.esctype property. Escape sequence
detection works even when buffer redirection is set for the serial port using the
ser.redir method.

On_ser_overrun Event

Function: Generated when data overrun has occurred in the RX
buffer of the serial port.

Declaration: on_ser_overrun

See Also: Handling Buffer Overruns

Details

Another on_ser_overrun event for a particular port is never generated until the
previous one is processed. When the event handler for this event is entered the
ser.num property is automatically switched to the port on which this event was
generated.

Data overruns are a common occurrence on serial lines. The overrun happens when
the serial data is arriving into the RX buffer faster than your application is able to
extract it, the buffer runs out of space and "misses" some incoming data.

Data overruns are typically prevented through the use of RTS/CTS flow control (see
the ser.flowcontrol property).

.Parity Property

Function: Sets/returns parity mode for the selected serial port
(selection is made through ser.num)

Type: Enum (pl_ser_parity, byte)

Value Range: 0- PL_SER_PR_NONE: no parity bit to be transmitted.

1- PL_SER_PR_EVEN: even parity.

2- PL_SER_PR_ODD: odd parity.

390

411

405

414

398

411

407

411

414 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

3- PL_SER_PR_MARK: parity bit always at "1".

4- PL_SER_PR_SPACE: parity bit always at "0".

See Also: UART Mode , Serial Settings

Details

Mark parity is equivalent to having a second stop-bit (there is no separate property
to explicitly select the number of stop bits).

This property is only relevant when the serial port is in the UART mode (ser.mode
= 0- PL_SER_MODE_UART).

.Redir Method

Function: For the selected serial port (selection is made through
ser.num) redirects the data being RXed to the TX
buffer of the same serial port, different serial port, or
another object that supports compatible buffers.

Syntax: ser.redir(redir as pl_redir) as pl_redir

Returns: Returns 0- PL_REDIR_NONE if redirection failed or the same
value as was passed in the redir argument.

See Also: Redirecting Buffers (Shorting)

Part Description

redir Platform-specific. See the list of pl_redir constants in the
platform specifications.

Details

Data redirection (sometimes referred to as "buffer shorting") allows to arrange
efficient data exchange between ports, sockets, etc. in cases where no data
alteration or parsing is necessary, while achieving maximum possible throughput is
important.

The redir argument, as well as the value returned by this method are of "enum
pl_redir" type. The pl_redir defines a set of platform inter-object constants that
include all possible redirections for this platform. Specifying redir value of 0-
PL_REDIR_NONE cancels redirection. When the redirection is enabled for a particular
serial port, the on_ser_data_arrival event is not generated for this port.

Once the RX buffer is redirected certain properties and methods related to the RX
buffer will actually return the data for the TX buffer to which this RX buffer was
redirected:

Ser.rxbuffsize will actually be returning the size of the TX buffer.

Ser.rxclear method will actually be clearing the TX buffer.

Ser.rxlen method will be showing the amount of data in the TX buffer.

380 390

409

411

399

412

416

416

417

415Platforms

©2000-2011 Tibbo Technology Inc.

If the redirection is being done on a serial port that is currently opened
(ser.enabled = 1- YES) then this port will be closed automatically.

.Rtsmap Property (Selected Platforms Only)

Function: Sets/returns the number of the I/O line that will act as
RTS/W0out/cout output of currently selected serial port
(selection is made through ser.num).

Type: Enum (pl_io_num, byte)

Value Range: Platform-specific, see the list of pl_io_num constants in
the platform specifications.

See Also: Three modes of the Serial Port , Serial Settings

Details

This property is only available on selected platforms. For more information,
refer to your device's platform documentation (for example, EM1000's is
here).

Default value of this property is different for each serial port. See the list of
pl_int_num constants in the platform specifications -- it shows default values as
well.

Absolutely any I/O line can be selected by this property, as long as this line is not
occupied by some other function. Property value can only be changed when the
port is closed (ser.enabled = 0- NO).

On certain platforms, you may need to configure the line as output. This is done
through the io.enabled property of the io object.

.Rxbuffrq Method

Function: For the selected serial port (selection is made through
ser.num) pre-requests "numpages" number of buffer
pages (1 page= 256 bytes) for the RX buffer of the serial
port.

Syntax: ser.rxbuffrq(numpages as byte) as byte

Returns: Actual number of pages that can be allocated (byte)

See Also: Allocating Memory for Buffers , ser.txbuffrq

Part Description

numpages Requested numbers of buffer pages to allocate.

405

411

380 390

143

405

194

298 294

411

393 419

416 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Details

Returns actual number of pages that can be allocated. Actual allocation happens
when the sys.buffalloc method is used. The serial port is unable to RX data if its
RX buffer has 0 capacity. Actual current buffer capacity can be checked through
the ser.rxbuffsize which returns buffer capacity in bytes.

Relationship between the two is as follows: ser.rxbuffsize=num_pages*256-16 (or
=0 when num_pages=0), where "num_pages" is the number of buffer pages that
was GRANTED through the ser.rxbuffrq. "-16" is because 16 bytes are needed for
internal buffer variables.

Buffer allocation will not work if the serial port to which this buffer belongs is
opened (ser.enabled = 1- YES) at the time when sys.buffalloc executes. You can
only change buffer sizes of ports that are closed.

.Rxbuffsize R/O Property

Function: For the selected serial port (selection is made through
ser.num) returns current RX buffer capacity in bytes.

Type: Word

Value Range: 0-65535

See Also: Buffer Memory Status

Details

Buffer capacity can be changed through the ser.rxbuffrq method followed by
the sys.buffalloc method.

The ser.rxbuffrq requests buffer size in 256-byte pages whereas this property
returns buffer size in bytes. Relationship between the two is as follows:
ser.rxbuffsize=num_pages*256-16 (or =0 when num_pages=0), where "num_pages"
is the number of buffer pages that was GRANTED through the ser.rxbuffrq. "-16" is
because 16 bytes are needed for internal buffer variables. The serial port cannot RX
data when the RX buffer has zero capacity.

.Rxclear Method

Function: For the selected serial port (selection is made through
ser.num) clears (deletes all data from) the RX buffer.

Syntax: ser.rxclear

Returns: ---

See Also: Buffer Memory Status

530

416

405

411

394

415

530

411

394

417Platforms

©2000-2011 Tibbo Technology Inc.

Details

.Rxlen R/O Property

Function: For the selected serial port (selection is made through
ser.num) returns total number of committed bytes
currently waiting in the RX buffer to be extracted and
processed by your application.

Type: Word

Value Range: 0-65535

See Also: Serial Settings , Buffer Memory Status

Details

The on_ser_data_arrival event is generated once the RX buffer is not empty, i.e.
there is data to process. There may be only one on_ser_data_arrival event for each
port waiting to be processed in the event queue. Another on_serial_data_arrival
event for the same port may be generated only after the previous one is handled.

If, during the on_ser_data_arrival event handler execution, not all data is extracted
from the RX buffer, another on_ser_data_arrival event is generated immediately
after the on_ser_data_arrival event handler is exited.

Notice that the RX buffer of the serial port employes "data committing" based on
the amount of data in the buffer and intercharacter delay (ser.interchardelay).
Data in the RX buffer may not be committed yet. Uncommitted data is not visible to
your application and is not included in the count returned by the ser.rxlen.

.Send Method

Function: For the selected serial port (selection is made through
ser.num) commits (allows sending) the data that was
previously saved into the TX buffer using the ser.setdata

 method.

Syntax: ser.send

Returns: ---

See Also: Serial Settings

Details

You can monitor the sending progress by checking the ser.txlen property or
using the ser.notifysent method and the on_ser_data_sent event.

411

390 394

412

408

411

418

390

420

410 412

418 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

.Setdata Method

Function: For the selected serial port (selection is made through
ser.num) adds the data passed in the txdata argument
to the contents of the TX buffer.

Syntax: ser.setdata(byref txdata as string)

Returns: ---

See Also: Three Modes of the Serial Port , Sending Data ,
ser.txlen , ser.txfree ,

Part Description

txdata The data to send.

Details

In the UART mode (ser.mode = 0- PL_SER_MODE_UART) the data is added "as
is". For Wiegand and clock/data mode (ser.mode= 1- PL_SER_MODE_WIEGAND
and ser.mode= 2- PL_SER_MODE_CLOCKDATA) each data character represents one
data bit and only bit0 (least significant bit) of each character is relevant (therefore,
adding "0101" will result in the 0101 sequence of data bits).

If the buffer doesn't have enough space to accommodate the data being added
then this data will be truncated. Newly saved data is not sent out immediately. This
only happens after the ser.send method is used to commit the data. This allows
your application to prepare large amounts of data before sending it out.

Total amount of newly added (uncommitted) data in the buffer can be checked
through the ser.newtxlen setting.

.Sinkdata Property

Function: For the currently selected serial port (selection is made
through ser.num) specifies whether the incoming data
should be discarded.

Type: Enum (yes_no, byte)

Value Range: 0- NO (default): normal data processing.

1- YES: discard incoming data.

See Also: Sinking Data

Details

Setting this property to 1- YES causes the serial port to automatically discard all
incoming data without passing it to your application. The on_ser_data_arrival
event will not be generated, reading ser.rxlen will always return zero, and so on.
No data will be reaching its destination even in case of buffer redirection . Escape
characters , however, will still be detected in the incoming data stream.

411

380 397

420 420

380 409

383 386

417

410

411

399

412

417

399

390

419Platforms

©2000-2011 Tibbo Technology Inc.

.Txbuffrq Method

Function: For the selected serial port (selection is made through
ser.num) pre-requests "numpages" number of buffer
pages (1 page= 256 bytes) for the TX buffer of the serial
port.

Syntax: ser.txbuffrq(numpages as byte) as byte

Returns: Actual number of pages that can be allocated (byte).

See Also: Allocating Memory for Buffers , ser.rxbuffrq

Part Description

numpages Requested numbers of buffer pages to allocate.

Details

Returns actual number of pages that can be allocated. Actual allocation happens
when the sys.buffalloc method is used. The serial port is unable to TX data if its
TX buffer has 0 capacity. Actual current buffer capacity can be checked through
the ser.txbuffsize which returns buffer capacity in bytes.

Relationship between the two is as follows: ser.txbuffsize=num_pages*256-16 (or
=0 when num_pages=0), where "num_pages" is the number of buffer pages that
was GRANTED through the ser.txbuffrq. "-16" is because 16 bytes are needed for
internal buffer variables.

Buffer allocation will not work if the serial port to which this buffer belongs is
opened (ser.enabled = 1- YES) at the time when sys.buffalloc executes. You can
only change buffer sizes of ports that are closed.

.Txbuffsize R/O Property

Function: For the selected serial port (selection is made through
ser.num) returns current TX buffer capacity in bytes.

Type: Word

Value Range: 0-65535

See Also: Buffer Memory Status

Details

Buffer capacity can be changed through the ser.txbuffrq method followed by
the sys.buffalloc method.

The ser.txbuffrq requests buffer size in 256-byte pages whereas this property
returns buffer size in bytes. Relationship between the two is as follows:
ser.txbuffsize=num_pages*256-16 (or =0 when num_pages=0), where "num_pages"
is the number of buffer pages that was GRANTED through the ser.txbuffrq. "-16" is

411

393 415

530

419

405

411

394

419

530

420 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

because 16 bytes are needed for internal buffer variables. The serial port cannot TX
data when the TX buffer has zero capacity.

.Txclear Method

Function: For the selected serial port (selection is made through
ser.num) clears (deletes all data from) the TX buffer.

Syntax: ser.txclear

Returns: ---

See Also: Buffer Memory Status

Details

This method will only work when the port is closed (Ser.Enabled Property = NO).
You cannot clear the TX buffers while the port is open.

.Txfree R/O Property

Function: For the selected serial port (selection is made through
ser.num) returns the amount of free space in the TX
buffer in bytes.

Type: Word

Value Range: 0-65535

See Also: Buffer Memory Status

Details

Notice, that the amount of free space returned by this property does not take into
account any uncommitted data that might reside in the buffer (this can be checked
via ser.newtxlen). Therefore, actual free space in the buffer is ser.txfree-
ser.newtxlen. Your application will not be able to store more data than this amount.

To achieve asynchronous data processing, use the ser.notifysent method to get
on_ser_data_sent event once the TX buffer gains required amount of free
space.

.Txlen R/O Property

Function: For the selected serial port (selection is made through
ser.num) returns total number of committed bytes
currently found in the TX buffer.

411

394

405

411

394

410

410

412

411

421Platforms

©2000-2011 Tibbo Technology Inc.

Type: Word

Value Range: 0-65535

See Also: Serial Settings , Buffer Memory Status , ser.newtxlen

Details

The data in the TX buffer does not become committed until you use the ser.send
method.

Your application may use the ser.notifysent method to get on_ser_data_sent
event once the total number of committed bytes in the TX buffer drops below the
level defined by the ser.notifysent method.

Sock Object

This is the sockets object. It allows you to maintain up to 16 simultaneous UDP or
TCP ("normal" or HTTP) connections (actual number supported by the platform may
be lower, due to memory constraints).

Very commonly, each connection is called a "socket". This is the term we will use as
well. On other programming systems, sockets are often dynamic, created and
destroyed as needed. With TiOS, you receive a preset number of sockets which
have already been created for you, and just use them. A socket may be idle, but it
will still be there.

Individual sockets have all the traditional settings you would expect to find, such as
destination port number, protocol, etc. At the same time, their functionality goes
significantly beyond what you usually find, and includes a lot of additional features
that significantly lower the amount of code you need to write. For example, you
can restrict incoming connections to your device, automatically filter out certain
messages within the TCP data stream, etc.

The sockets object also implements webserver (HTTP) functionality. Each socket
can carry a "normal" data connection or be in the HTTP mode.

Currently, the socket object can only access first 65534 bytes of each HTML
file, even if the actual file is larger! Make sure that all HTML files in your
project are not larger than 65534 bytes. This is not to be confused with the
size of HTTP output generated by the file. A very large output can be
generated by a small HTML file (due to dynamic data)- and that is OK. What's
important is that the size of each HTML file in your project does not exceed
65534 bytes.

The sock object should not be confused with objects used to represent actual
network interfaces, such as the net object which represents the Ethernet
interface. The socket object is responsible for actual IP (TCP or UDP)
communications -- it doesn't matter which interface these communications are

390 394

410

417

410 412

358

422 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

effected through. Therefore, this is not the right place to look for a property such
as 'IP address'. This is an attribute of a particular network interface.

Follows is the list of features offered by each socket of the sock object:

Support for UDP, TCP and HTTP protocols (this is a submode of TCP).

An extensive set of properties that define which hosts can connect to the
socket, whether broadcasts are supported, which listening ports are associated
with the socket, etc.

Support for automatic processing of inband commands-- messages that are
passed within the TCP data stream.

Detailed socket state reporting with 30 different states supported!

Fully asynchronous operation with separate "data arrival" and "data sent" events.

Automatic data overrun detection on the RX buffer.

Adjustable receive (RX), transmit (TX), and other buffer sizes for optimal RAM
utilization.

Buffer shorting feature for fast data exchange between the sock object and other
objects (such as the ser object) that support standard Tibbo Basic data
buffers.

8.3.14.1Overview

This section covers the socket object in detail. Here you will find:

Anatomy of a socket

Socket selection

Handling Network Connection

Sendind and Receiving Data

Working With Inband Commands

Using HTTP

Anatomy of a Socket

A socket is composed of a send/receive logic that actually handles UDP, TCP
(including HTTP) communications, and of 6 buffers. Each socket is capable of
maintaining one connection with another node (host) on a network.

The socket object contains properties, methods and events which relate both to
the buffers and the send/receive logic.

The buffers available are:

The RX buffer, which stores data incoming from the host on the other side of a
connection (this buffer doesn't have to be used for HTTP connections).

The TX buffer, which stores data which is due for sending to the host on the
other side of a connection (for HTTP connection, this buffer can store both the
request and the reply).

The TX2 buffer, which is used internally, and only when inband commands are
enabled.

378

422

423

424

444

456

461

461

456

423Platforms

©2000-2011 Tibbo Technology Inc.

The CMD buffer, which is used to store incoming inband commands (messages).
It is used only when inband commands are enabled.

The RPL buffer, which is used to store outgoing inband replies (messages). It is
used only when inband commands are enabled.

The VAR buffer, which is used to store HTTP request string. It is needed only
when the socket is in the HTTP mode.

Socket Selection

TiOS supports up to 16 sockets, but there may be platforms with less than 16
sockets available. You can obtain the number of sockets available for your platform
using the sock.numofsock property.

Since there can be multiple sockets, you must state which socket are you referring
to when changing properties or invoking methods. This is done using the sock.num

 property. For example:

sock.protocol = 1

Can you tell what socket the statement above applies to? Neither can the platform.
Thus, the correct syntax would be:

sock.num = 0
sock.protocol = 1

Now the platform knows which socket you're working with. Once you have set the
socket selector (using sock.num), every socket-specific method and property after
that point is taken to refer to that socket. Thus:

sock.num = 0
sock.protocol = 1
sock.connectiontimeout = 10
sock.httpmode = 1 ' etc

The events for this object are not separate for each socket. An event such as
on_sock_data_arrival serves all sockets on your platform. Thus, when an event
handler for the socket object is entered, the socket selector is automatically
switched to the socket number on which the event occurred:

sub on_sock_data_arrival
dim s as string
s = sock.getdata(255) ' Note that you did not have to specify any

sock.num preceding this statement.
end sub

As a result of this automatic switching, when an event handler for a socket event
terminates, the sock.num property retains its new value (nothing changes it back).

461

488

488

489

424 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

You must take this into account when processing other event handlers which make
use of a socket (and are not socket events). In other words, you should explicitly
set the sock.num property whenever entering such an event handler, because the
property might have been automatically changed prior to this event. To illustrate:

sub on_sys_init ' This is always the first event executed.
sock.num = 0 ' Supposedly, this would make all subsequent properties

and methods refer to this socket.
end sub

sub on_sock_data_arrival ' Then, supposing this event executes.
dim s as string
s = sock.getdata(255) ' However, this event happens on the second

socket. So now sock.num = 1.
end sub

sub on_ser_data_arrival ' And then this serial port event executes.
sock.txclear ' You meant to do this for sock.num = 0 (as specified at

on_sys_init). But now sock.num was changed to 1! Oops...
end sub

To recap, only one of two things may change the current sock.num: (1) manual
change or (2) a socket event. You cannot assume the number has remained
unchanged if you set it somewhere else (because a socket event might have
happened since).

Handling Network Connections

The whole purpose of socket's existence is to engage in network connections with
other network hosts. Each socket can maintain a single connection using a UDP/IP
or TCP/IP transport protocol. Which of the two is used is defined by the
sock.protocol property.

Sockets are also capable of working with HTTP. HTTP is not a transport protocol,
rather, it is based on the TCP. Therefore, when your socket is using TCP it may be
for "plain data transmission" or for HTTP.

TCP connection basics

What is TCP

The TCP is the most widely used transmission protocol. It is the backbone of all
Internet traffic. The idea behind the TCP is to provide two communicating points
(we can call them host A and host B) with a reliable, stream-oriented data link.
"Stream-oriented" means that neither the host A, nor the host B have to worry
about how the data travels across the connection. A just puts the stream of bytes
in and B receives exactly the same stream of bytes on its side. It is the
responsibility of the TCP to split the data into packets for transmission through the
network, retransmit lost packets, make sure there are no data overruns, etc.

The TCP is strictly a "point-to-point" protocol: only two parties can engage in a
connection and no third party can "join in".

TCP connections

492

425Platforms

©2000-2011 Tibbo Technology Inc.

Before any data can be transmitted one of the hosts has to establish a connection
to another host. This is similar to placing a telephone call: one of the parties has to
call the other end.

The host that takes initiative to establish a connection is said to be opening an
"outgoing connection" or "performing an active open". This is like dialing a telephone
number of the desired party, only the number is the IP address of another host.

The host that accepts the "call" is said to be accepting an "incoming connection" or
"performing a passive open". This is similar to picking up the phone when it starts
ringing.

Once connection has been established, both parties can "say something" (send
data) at any time and the TCP will make sure that all data sent on one end arrives
to the other end.

TCP connections are expected to be closed (terminated) properly- there is a special
exchange of messages between the host to let each other know that connection is
being terminated. This is called "graceful disconnect". There is also a "reset" (abort)
which is much simpler and is akin to hanging up abruptly. Finally, there is a "discard"
way to end the connection is which the host simply "forgets" that there was a
connection.

The TCP connection can be closed purposefully, or it can timeout .

A TCP connection in progress is fully defined by 4 parameters: IP address and the
port number on host A and the IP address and port number on host B. When the
host is performing an active open, it has to "dial" not just the IP address of the
target host, but also the port number on this host. Ports are not physical- they are
just logical subdivisions of the IP address (65536 ports per IP). If the IP is a
telephone number of the whole office then the port is an extension. The "calling"
host is also calling not just from its IP address but also from specific port.

UDP "connection" basics

What is UDP

In many aspects, the UDP protocol is the opposite of the TCP protocol. Whereas
the TCP provides a realiable, stream-oriented transport, the UDP offers a way to
send data as separate packets or "UDP datagrams". This is similar to "paging" (as in,
sending a message with a "pager" -- remember those?). What is sent is a packet
containing some data. There is no guarantee that the other side will receive the
packet and the sender won't know whether the packet was received or not.

Each UDP datagram lives its own life and you are responsible for dividing your data
into chunks of reasonable size and sending it in separate datagrams. There is no
connection establishment or termination on UDP- the datagram can be sent
instantly, without any preparation.

Unline TCP, the UDP is not point-to-point. For example, several hosts can send the
datagrams to the same socket of your device- and all of them can be accepted- a
situation that is impossible with TCP. There is also an option to broadcast the
datagram to all hosts connected to the same network segment- something that is
also impossible with TCP.

And now to UDP "connections"...

This said, it should come as a bit of a surprise that we will now turn 180 degrees
and start talking about UDP "connections". Didn't we just say that there is no such
thing? Well, yes and no. On the physical network there is, indeed, no such thing.
However, on our socket object level we have deliberately made UDP

437

426 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

communications look more like TCP connections. And, since the UDP "connection" is
nothing more than our sock object's abstraction, we use the word "connection" in
quotation marks.

We consider an active open to have been performed when our host has sent the
first UDP datagram to the destination. A passive open is when we have received
the first incoming UDP datagram from another host (provided that this datagram
was accepted- more on that in Handling Incoming Connections).

There is no graceful disconnect for UDP connections. The connection can only be
discarded (our host "forgets" about it). The UDP connection can also timeout .

Accepting Incoming Connections

Master switch for incoming connections

It is possible to globally enable or disable acceptance of incoming connections on all
sockets, irregardless of the setup of individual sockets. This is done using the
sock.inconenabledmaster property. By default, this property is set to 1- YES.

Defining who can connect to your socket

The sock.inconmode ("incoming connections mode") property allows you do
define whether incoming connections will be accepted and, if yes, from who. By
default (0- PL_SOCK_INCONMODE_NONE), incoming connections are not allowed at
all. For TCP this means that incoming connection requests will be rejected. For UDP,
incoming datagrams will simply be ignored.

If you don't mind to accept an incoming connection from any host/port then set
the sock.inconmode = 3- PL_SOCK_INCONMODE_ANY_IP_ANY_PORT. This way,
whoever wants to connect to your socket will be able to do so as long as this party
is using correct transport protocol (you define this through the sock.protocol
property) and is connecting to the right port number (more on this below).

If you are only interested in accepting connections from a particular host on the
network then set sock.inconmode = 2-
PL_SOCK_INCONMODE_SPECIFIC_IP_ANY_PORT. This way, only the host with IP
matching the one defined by the sock.targetip property will be able to connect
to your socket.

You can restrict things further and demand that not only the IP of the other host
must match the one you set in sock.targetip property, but also the port from
which the connection is being originated must match the port defined by the
sock.targetport property. To achieve this, set the sock.inconmode = 1-
PL_SOCK_INCONMODE_SPECIFIC_IPPORT.

Here is an example of how to only accept incoming TCP connections from host
192.168.100.40 and port 1000:

sock.protocol= PL_SOCK_PROTOCOL_TCP
sock.inconmode= PL_SOCK_INCONMODE_SPECIFIC_IPPORT
sock.targetip= "192.168.1.40"
sock.targetport= 1000

The sock object rejects an incoming connection by sending out a reset TCP packet.
This way, the other host is instantly notified of the rejection. There is an exception
to this -- see Socket Behavior in the HTTP Mode .

426

437

484

485

485

492

485

506

506

507 485

465

427Platforms

©2000-2011 Tibbo Technology Inc.

Listening ports

Ports on which your socket will accept an incoming connection are called "listening
ports". These are defined by two properties: the sock.localportlist and the
sock.httpportlist . Notice that both properties are of string type, so each one can
accept a list of ports.

For example, to accept a normal data connection either on port 1001, port 2000, or
port 3000, set the sock.localportlist= "1001,2000,3000". Once the connection is in
progress, you can check which of the socket's local ports is actually engaged in
this connection. This is done through the sock.localport read-only property.

For UDP connections, the sock.localportlist is all there is. For TCP, which can be
used for "plain vanilla data connections" or for HTTP, you have another property-
sock.httpportlist. To be accepted by your socket, an incoming TCP connection has
to target either one of the ports on the sock.localportlist, or one of the ports on
the sock.httpportlist. The socket will automatically switch into the HTTP mode if
the connection is accepted on one of the ports from the sock.httpportlist.

Here is an example:

sock.localportlist = "1001,2000"
sock.httpportlist = "80"

The above means that any incoming TCP connection that targets either port 1001
or port 2000 will be interpreted as a regular data connection. If connection target
port 80 it will be accepted as an HTTP connection.

And what if the same port is listed both under the sock.localportlist and
sock.httpportlist?

sock.localportlist = "1001,2000,80"
sock.httpportlist = "80"

In this example, if there is an incoming connection targeting "our" port 80 and the
protocol is TCP then the mode will be HTTP- the sock.httpportlist has priority over
sock.localportlist. Of course, for UDP the sock.httpportlist won't matter since the
HTTP is only possible on TCP!

Setting allowed interfaces

The sock object is interface-independent and supports communications over more
than one interface. The sock.allowedinterfaces property defines the list of
interfaces on which the current socket will accept incoming connections. The list is
different and depends on the platform. To find out what interfaces are available,
refer to your device's platform documentation (for example, EM1000's is here).

The sock.allowedinterfaces property stored the string that lists all interfaces
that the socket will listen on:

sock.allowedinterfaces = "NET,WLN" 'listen on Ethernet and Wi-Fi interfaces

486

483

485

474

143

474

428 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Connections accepted even when the VM is paused

Once the socket has been setup it will accept an incoming connection even when
the VM is paused (for example, has stopped on your breakpoint). All
communications are handled by the master process , so the socket does not
need the VM to accept an incoming connection (or, for that matter, receive and
send the data).

Accepting UDP broadcasts

UDP datagrams can be sent as broadcasts. Broadcast, instead of specifying a
particular network host as a destination, targets a group of hosts on the network.

The sock object supports link-level broadcasts. Such broadcast packets
have their destination MAC address set to 255.255.255.255.255.255. Link-
level broadcasts are received by all network hosts connected to the
current network segment. Link-level broadcasts cannot penetrate routers,
bridges, etc.

For the socket to accept incoming UDP broadcasts, the sock.acceptbcast
property must be set to 1- YES. In every other aspect working with incoming
broadcast UDP datagrams is like working with regular incoming datagrams.

Understanding TCP Reconnects

The sock object has a unique feature- support for "reconnects". To simplify the
explanation, let us start from a description of a real-life problem first.

When reconnects save the day

Supposing, you have a host on the network that is engaged in a TCP connection
with one of the sockets of the socket object. The data is sent across this
connection from the host to our socket. For a while, everything is fine and then the
host momentarily loses power and reboots. Our socket doesn't know anything about
this- from its point of view, the TCP connection is still OK. Just because no data is
arriving from the host does not mean that there is a problem!

Meanwhile, the host reboots and attempts to establish a new connection to the
socket- and gets rejected! This is because the socket thinks it is already engaged
in a TCP connection- the one that has been left hanging since the host went down!
This stagnant connection will remain in place until it times out- if timeouts are
enabled at all through the sock.connectiontout property.

Reconnects are a nifty way out of this situation. You enable reconnects through
the sock.reconmode (reconnection mode) property. For the above example, you
typically set the sock.reconmode= 2- PL_SOCK_RECONMODE_2. This mode means,
that if the socket is already engaged in a connection, and then there is an incoming
connection attempt that originated from the same host (and any port), then the
socket will forget everything about the original connection and accept the new one.

For our example case, this is the solution- after rebooting the host tries to establish

7

474

477

492

429Platforms

©2000-2011 Tibbo Technology Inc.

a new connection to our socket. The socket then "realizes" that this new
connection is being attempted from the same host as the connection already in
progress, discards the original connection and accepts the new one!

Reconnects must target the same port and interface!

Even when the socket has more than one listening port (i.e. sock.localportlist =
"1000,1001") the reconnect will only be accepted if it targets the same local port of
the socket as the one already engaged in the current connection being "replaced".
In other words, to be successful, the reconnect must target the port that is
currently returned by the sock.localport read-only property.

The interface must also be the same. The host can't make an original connection
through Ethernet, and then reconnect through Wi-Fi.

Which mode to choose?

As you can see, the sock.reconmode property gives you several "strictness levels"
of dealing with reconnects. Which one to choose? Let us explain why the choice of
sock.reconmode= 2- PL_SOCK_RECONMODE_2 is the most common. Typically, when
the host is establishing an outgoing connection it does so from the ever changing
port number. Basically, there is a "pool" of ports for this purpose and each new
connection the host needs to establish will be made from the next port in the pool.

Each time the host connects to our socket the port on the host could be different.
This is why it makes sense to accept reconnects from the same IP but any port.
Disadvantage? Any connection originating from this host will essentially be treated
as the same and the only connection!

Some programs (few!) establish connections from a specific, preset port. This may
be done for a variety of reasons- no time to go into this here- just let us say,
sometimes this is the case. If you are dealing with such a case then you can safely
set sock.reconmode= 1- PL_SOCK_RECONMODE_1. This way, reconnects will only
be accepted from the same IP and the same port as the original connection.

Total promiscuity -- mode 3!

Finally, there is a mode (3- PL_SOCK_RECONMODE_3) when the socket will accept a
reconnect from any host or port. Basically, this means, that whatever connection is
in progress, it will be interrupted and replaced by any other incoming connection.

Do not use reconnects for HTTP sockets!

Reconnects and HTTP do not play nicely together. When you request an HTML
page, several simultaneous HTTP requests may be generated (one for the page
itself, several -- for pictures on this page, etc.). All these requests will use a
separate TCP socket, so multiple sockets will be opened (almost) at the same time.
Now, what will happen if even just one of your application's "HTML" sockets has
reconnects enabled? This single socket will intercept all HTML requests. So, if
loading the HTML page needed 3 separate requests and TCP sessions, this socket
will get them all -- and each next session opening will discard the previous one.
Result won't be pretty!

Understanding UDP Reconnects and Port Switchover

For UDP "connections", there is also such a thing as reconnects. Due to a very
different nature of UDP (compared to TCP), reconnects for UDP must be explained
separately. Additionally, we need to introduce something called "port switchover".

486

485

430 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Port switchover explained

With TCP, each side of the connection uses a single port both to send and receive
data. With UDP, this doesn't have to be the case. The sock object, when it is
engaged in a connection, can receive the data from one port but send the data to
a different port!

When port switchover is disabled, the socket always addresses its outgoing UDP
datagrams to the port, specified by the sock.targetport property. When port
switchover is enabled, the socket will address its outgoing datagrams to the port
from which the most recent incoming datagram was received!

Notice, that we did not say anything about the IP switchover- so far we have only
discussed ports.

UDP reconnects

Just like with TCP, the sock.reconmode property defines, for UDP, what kind of
incoming UDP datagram will be able to make the socket forget about its previous
"connection" and switch to the new one. You have two choices: either define that
reconnects are only accepted from a specific IP but any port or choose reconnects
to be accepted from any IP and any port. Combine this with two options for port
switchover and you have four combinations- four options for the sock.reconmode
property. All this is best understood on the example.

Example: PL_SOCK_RECONMODE_0

Setup:

sock.protocol= PL_SOCK_PROTOCOL_UDP 'we are dealing with UDP
sock.inconmode= PL_SOCK_INCONMODE_ANY_IPPORT
sock.reconmode= PL_SOCK_RECONMODE_0 'reconnects accepted from the same IP,
any port, port switchover off
sock.localportlist= "3000"
sock.targetport= "900"

Two hosts are sending us datagrams and here is how the socket will react:

Incoming datagram Socket reaction

192.168.100.40:1000 sends UDP
datagram to the port 3000 of our
device

Datagram accepted, UDP "connection"
is now in progress, the socket will be
sending all further outgoing datagrams
to 192.168.100.40:900.

192.168.100.44:1001 sends UDP
datagram to the port 3000 of our
device

Datagram ignored- it came from a
different IP. The socket will still be
sending its outgoing datagrams to
192.168.100.40:900.

192.168.100.40:1100 sends UDP
datagram to the port 3000 of our
device

Reconnection accepted (so datagram
is accepted), but the socket will still
be sending all further outgoing
datagrams to 192.168.100.40:900
(because port switchover is off).

Example: PL_SOCK_RECONMODE_1

507

492

431Platforms

©2000-2011 Tibbo Technology Inc.

Setup:

sock.protocol= PL_SOCK_PROTOCOL_UDP 'we are dealing with UDP
sock.inconmode= PL_SOCK_INCONMODE_ANY_IPPORT
sock.reconmode= PL_SOCK_RECONMODE_1 'reconnects accepted from any IP/port,
port switchover off
sock.localportlist= "3000"
sock.targetport= "900"

Two hosts are sending us datagrams and here is how the socket will react:

Incoming datagram Socket reaction

192.168.100.40:1000 sends UDP
datagram to the port 3000 of our
device

Datagram accepted, UDP "connection"
is now in progress, the socket will be
sending all further outgoing datagrams
to 192.168.100.40:900.

192.168.100.44:1001 sends UDP
datagram to the port 3000 of our
device

Reconnection accepted, the socket will
be sending all further outgoing
datagrams to 192.168.100.44:900.

Example: PL_SOCK_RECONMODE_2

Setup:

sock.protocol= PL_SOCK_PROTOCOL_UDP 'we are dealing with UDP
sock.inconmode= PL_SOCK_INCONMODE_ANY_IPPORT
sock.reconmode= PL_SOCK_RECONMODE_2 'reconnects accepted from the same IP,
any port, port switchover on
sock.localportlist= "3000"
sock.targetport= "900"

Two hosts are sending us datagrams and here is how the socket will react:

Incoming datagram Socket reaction

192.168.100.40:1000 sends UDP
datagram to the port 3000 of our
device

Datagram accepted, UDP "connection"
is now in progress, the socket will be
sending all further outgoing datagrams
to 192.168.100.40:1000.

192.168.100.44:1001 sends UDP
datagram to the port 3000 of our
device

Datagram ignored- it came from a
different IP. The socket will still be
sending its outgoing datagrams to
192.168.100.40:1000.

192.168.100.40:1100 sends UDP
datagram to the port 3000 of our
device

Reconnection accepted, the socket will
be sending all further outgoing
datagrams to 192.168.100.40:1100.

Example: PL_SOCK_RECONMODE_3

Setup:

432 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

sock.protocol= PL_SOCK_PROTOCOL_UDP 'we are dealing with UDP
sock.inconmode= PL_SOCK_INCONMODE_ANY_IPPORT
sock.reconmode= PL_SOCK_RECONMODE_3 'reconnects accepted from any IP/port,
port switchover on
sock.localportlist= "3000"
sock.targetport= "900"

Now, two hosts are sending us datagrams and here is how the socket will react:

Incoming datagram Socket reaction

192.168.100.40:1000 sends UDP
datagram to the port 3000 of our
device

Datagram accepted, UDP "connection"
is now in progress, the socket will be
sending all further outgoing datagrams
to 192.168.100.40:1000.

192.168.100.44:1001 sends UDP
datagram to the port 3000 of our
device

Reconnection accepted, the socket will
be sending all further outgoing
datagrams to 192.168.100.44:1001.

Incoming Connections on Multiple Sockets

So far, we have been talking about all kinds of incoming connections applied to a
single socket. The fact is, the sock object supports up to 16 sockets which all can
have a different setup. Just because an incoming connection is rejected or ignored
on one socket does not mean that it won't be connected on another!

When the network packet is received by the sock object the latter attempts to find
a socket for which this newly arrived packet is acceptable.

First, the sock object checks if the packet can be considered a part of any existing
connection or a reconnection attempt for an existing connection. All sockets that
are currently engaged in a connection are checked, starting from socket 0, then
sock 1, 2, and up to sock.numofsock -1.

If it turns out that some socket can accept the packet as a part of current
connection or an acceptable reconnection attempt then the search is over and the
packet is "pronounced" to belong to this socket.

If it turns out that no socket currently engaged in a connection can accept the
packet then the socket object checks all currently idle sockets to see if any of
these sockets can accept this packet as a new incoming connection. Again, all idle

488

433Platforms

©2000-2011 Tibbo Technology Inc.

sockets are checked, starting from socket 0, and up to sock.numofsock-1.

For TCP, a packet that can start such a new connection is a special "SYN" packet.
For UDP, any incoming datagram that can be accepted by the socket (which
depends on the socket setup) can start the new connection.

If the packet cannot be construed as a part of any existing connection, re-
connect, or new incoming connection then this packet is discarded.

Example

Supposing, we have the following setup:

sock.num= 0
sock.protocol= PL_SOCK_PROTOCOL_TCP
sock.inconmode= PL_SOCK_INCONMODE_SPECIFIC_IP_ANY_PORT
sock.targetip="192.168.100.40"
sock.reconmode= PL_SOCK_RECONMODE_2
sock.localportlist= "1001"

sock.num=1
sock.protocol= PL_SOCK_PROTOCOL_TCP
sock.inconmode= PL_SOCK_INCONMODE_ANY_IPPORT
sock.localportlist= "1001"

sock.num=2
sock.protocol= PL_SOCK_PROTOCOL_UDP
sock.inconmode= PL_SOCK_INCONMODE_ANY_IPPORT
sock.localportlist= "2000"

Here is a sample sequence of incoming connections and how the setup above would
handle them:

Incoming datagram Socket reaction

Incoming TCP connection to port 1001
from host 192.168.100.40:29600

Connection will be accepted on socket
0 since this socket lists 1001 as one of
the listening ports and this incoming
connection request is from "correct"
host.

Incoming TCP connection to port 1001
from host 192.168.100.40:29601

This will be taken as a reconnect on
socket 0: this incoming connection is
from the same host as the previous
one and it targets the same port 1001.

Incoming TCP connection to port 1001
from host 192.168.100.41:900

Connection will be accepted on socket
1, because socket 0 is already
engaged in a connection and this new
connection request cannot be
intepreted as a reconnect (different
host).

Incoming UDP datagram to port 2000
from host 192.168.100.40:320

This datagram will be accepted on
socket 2 and "connection" will be
opened.

434 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Establishing Outgoing Connections

Performing active opens

Now that we know how to setup the sockets to accept incoming TCP connections
and UDP "connections" we move on to learning about establishing connections of
our own, or, as is often said, performing "active opens".

Establishing an outgoing connection is always an explicit action- you use the
sock.connect method to attempt to do this. Once you do this the socket will try
to perform an active open to the IP and port specified by the sock.targetip and
sock.targetport properties. There is also a sock.targetinterface property --
this one defines which network interface the new connection will be passing
through.

As you can see, the sock.targetip and sock.targetport properties perform
a double-duty: for incoming connections they define (if required by the
sock.inconmode) who will be able to connect to the socket. For
outgoing connections this pair defines IP and host to which the socket will
attempt to connect.

Notice, that your sock.connect invocation will only work if you do this while the
socket is in the "closed" state (see Checking Connection Status).

Active opens for TCP

Once you tell a "TCP" socket to connect, the socket will do the following:

Resolve the IP address of the target using the ARP protocol.

Attempt to engage the target in a standard TCP connection sequence (SYN-SYN-
ACK).

Connection will be either established, or this will fail. Your program has a way to
monitor this- see Checking Connection Status .

If what we've just said doesn't ring any bell for you, don't worry. These,
indeed, are very technical things and you don't have to understand them
fully to be able to use the sock object.

"Active opens" for UDP

When you tell an "UDP" socket to connect, the latter will just resolve the IP address
of the target and consider "connection" established.

Do not forget: connection handling is fully asynchronous!

Keep in mind that the sock object handles communications asynchronously. When
the VM executes the sock.connect method it does not mean that the
connection is established by the time the VM gets to the next program statement.
Executing sock.connect merely instructs the master process to start establishing
the connection (more on master process and the VM in the System Components
topic). Connection establishment can take some time and your application doesn't
have to wait for that to complete. Checking Connection Status topic explains
how to find out actual connection status at any time (see sock.state and

477

506

507 506

485

439

439

477

7

439

502

435Platforms

©2000-2011 Tibbo Technology Inc.

sock.statesimple R/O properties).

Asynchronous nature of the sock object has some interesting implications.
More On the Socket's Asynchronous Nature topic contains important
information on the subject, so make sure you read it!

Sending UDP broadcasts

How to send UDP broadcasts

UDP datagrams can be sent as broadcasts. Broadcast, instead of specifying a
particular network host as a destination, targets a group of hosts on the network.

The sock object supports link-level broadcasts. Such broadcast packets
have their destination MAC address set to 255.255.255.255.255.255. Link-
level broadcasts are received by all network hosts connected to the
current network segment. Link-level broadcasts cannot penetrate routers,
bridges, etc.

To make the socket send its outgoing UDP datagrams as broadcasts, set the
sock.targetbcast property to 1- YES:

...
sock.targetbcast= YES
sock.setdata("ABC") 'this is explained in 'Working With Buffers' section
sock.send 'this is explained in 'Working With Buffers' section
sock.connect 'broadcast UDP datagram with string 'ABC' will be sent out at
this point
...

There is one difference to grasp regarding the socket that is sending its outgoing
packets as broadcasts: no incoming UDP packet that would have normally be
interpreted as a re-connect will cause the socket to "switchover" to the source IP-
address of the packet.

Let's evaluate two examples.

Example 1: regular UDP communications

Here is a sample setup for the UDP socket:

sock.protocol= PL_SOCK_PROTOCOL_UDP
sock.inconmode= PL_SOCK_INCONMODE_ANY_IP_ANY_PORT
sock.reconmode= PL_SOCK_RECONMODE_3
sock.targetip= "192.168.100.40"
sock.targetport= 1000
sock.localportlist= "2000"
sock.setdata("ABC")
sock.send

505

441

505

436 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

sock.connect

And here is a hypothetical sequence of events:

Incoming/outgoing datagram Comment

Datagram with contents "ABC" sent to
192.168.100.40:1000 as soon as
sock.connect method is invoked

We now have the UDP "connection"
with 192.168.100.40:1000

Incoming UDP datagram from
192.168.100.41:20.

This will be taken as a reconnect- the
socket is now engaged in a connection
with 192.168.100.41:20.

Socket sends out another datagram-
this time to 192.168.100.41:20!

Complete switchover happened- the
socket is now transmitting data to the
IP and port of the sender of the
previous incoming datagram

Example 2: regular UDP communications

Here is another setup for the UDP socket:

sock.protocol= PL_SOCK_PROTOCOL_UDP
sock.inconmode= PL_SOCK_INCONMODE_ANY_IP_ANY_PORT
sock.reconmode= PL_SOCK_RECONMODE_3
sock.targetbcast= YES
sock.targetport=1000
sock.localportlist= "2000"
sock.setdata("ABC")
sock.send
sock.connect

Sequence of events:

Incoming/outgoing datagram Comment

Datagram with contents "ABC" sent
as broadcast to all stations on the
network segment

We now have the UDP "connection"
with... err... everybody on the segment

Incoming UDP datagram from
192.168.100.41:20.

This is still a reconnect, but the socket
won't switch over to the IP-address of
the sender. Only port switchover will
take place!

Socket sends out another datagram-
still as a broadcast but this time to
port 20.

Port switchover happened because it is
allowed by the sock.reconmode .492

437Platforms

©2000-2011 Tibbo Technology Inc.

Closing Connections

Passive TCP connection termination

When your socket is engaged in a TCP connection with another host on the
network, this host may choose to terminate the connection. This can be done
through a "graceful disconnect" sequence ("FIN-ACK-FIN-ACK") or through a reset
("RST" packet).

In both cases the socket will handle connection closing automatically, without any
help from your Tibbo BASIC program or the VM. In fact, the socket will accept
connection termination even when the VM is stopped (for example, it was paused
on your breakpoint). All communications are handled by the master process , so
the socket does not need the VM to terminate the connection.

There is one intricate detail in the connection termination process that you will
have to understand clearly. When the VM is not running, the socket can accept an
incoming connection (active open) and can accept an active close. However,
the socket won't be able to accept another (next) incoming connection until the
VM has had a chance to run and execute the on_sock_event event handler (see
Checking Connection Status).

Here is why. In many cases there is a need to perform certain actions (like, maybe,
clear some buffers, initialize variables, etc.) after the previous connection ends and
before the new one begins. Not letting the socket accept next connection before
your program has a chance to respond to connection termination is a way to
achieve this!

Actively closing TCP connections

A TCP connection can be closed, reset (aborted), or discarded using three different
methods- sock.close , sock.reset , and sock.discard .

The recommended (and polite!) way of closing a TCP connection is through the
sock.close method. This will initiate a proper closing sequence ("FIN-ACK-FIN-
ACK"), known as a "graceful disconnect".

Connection reset is slightly more "rude"- your socket will simply tell the other end
that "it is all over" (by sending the "RST" packet).

Finally, the sock.discard method simply makes your socket forget about the
connection- the other side is not notified at all.

Just like with connection establishment, you can monitor the progress of connection
termination- see Checking Connection Status .

Notice, that depending on the socket state at the moment of sock.close
method invocation, the socket may need to resort to a simple connection
closing option- reset or discard. Similarly, when you use the sock.reset, it
may sometimes result in discard. For more information read the sock.close

, sock.reset , and sock.discard topics.

Actively closing UDP connections

For UDP, no matter what method you use to close the "connection", result will still
be as if the sock.discard was invoked. This is because in reality there is no such
thing as a proper UDP connection termination so simply "forgetting" about the
connection is the only option the socket has.

7

426

490

439

475 495 478

439

475 495 478

438 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Do not forget: connection handling is fully asynchronous!

Keep in mind that the sock object handles communications asynchronously. When
the VM executes the sock.close (sock.reset , sock.discard) method it does
not mean that the connection is done with by the time the VM gets to the next
program statement. Executing these methods merely instructs the master process
to terminate the connection. Connection termination can take some time and your
application doesn't have to wait for that to complete. Checking Connection Status

 topic explains how to find out actual connection status at any time (see
sock.state and sock.statesimple read-only properties).

Asynchronous nature of the sock object has some interesting implications.
More On the Socket's Asynchronous Nature topic contains important
information on the subject, so make sure you read it!

Socket re-use after connection closing

When the socket connection terminates, the socket is ready to accept another
incoming connection or establish a new outgoing connection (if so configured) --
with one little caveat! There is a special built-in mechanism that ensures that your
application has a chance to react after the previous connection terminates and
before the next one is established.

For example, you might need to clean some buffers before each new incoming TCP
connection. Naturally, you want this to happen before the new connection is
actually accepted.

Typically, your program achieves this by executing code placed in the
on_sock_event event handler (this event is explained in Checking Connection
Status topic). The socket will not be able to engage in the new connection until
the on_sock_event has a chance to execute. There is an interesting example on
this in the More On the Socket's Asynchronous Nature topic.

Connection timeouts

The sock.connectiontout provides a way to automatically terminate a
connection across which no data was exchanged for a predefined period of time.
For TCP, reset (abort) is used, while UDP "connections" are simply discarded.
Connection timeout is a useful way to exit "hanged" connections (this happens a lot
with TCP on large networks).

The sock.toutcounter R/O property informs your application of the time passed
since the data was last exchanged across the connection. Each time there is some
data sent or received the sock.toutcounter is reset to zero. The property
increments at 0.5 second intervals while no data is moving through this socket.

If the sock.connectiontout is not at 0, the sock.toutcounter increments until it
reaches the value of the sock.connectiontout and the connection is terminated.
The sock.toutcounter then stays at the value of sock.connectiontout.

If the sock.connectiontout is at 0, the maximum value that the sock.toutcounter
can reach is 1. That is, the sock.toutcounter will be at 0 after the data exchange,
and at 1 if at least 0.5 seconds have passed since the last data exchange.

Normally, HTTP connections close automatically

There is one case where your socket will perform an active graceful disconnect
without you using the sock.close method. This is the case when the socket is
running in the TCP-HTTP mode.

475 495 478

439

502 505

441

490

439

441

477

507

439Platforms

©2000-2011 Tibbo Technology Inc.

In Accepting Incoming Connections we have already explained that the socket
automatically switches into the HTTP mode if a TCP connection is accepted on one
of the ports from the sock.httpportlist list. The socket can also be switched into
the HTTP mode programmatically, through the sock.httpmode property.

Default HTTP functionality requires that the TCP connection is closed once the
HTTP server has finished sending out its "response" (i.e. HTML page or another file
that has been requested). In this situation the socket won't need the sock.close
from your program- the connection will be terminated automatically. In fact, when
the socket is in the HTTP mode, your sock.close , sock.reset , and
sock.discard will simply be ignored. There is a sock.httpnoclose property
alters the standard socket behavior in the HTTP mode. Set this property to 1- YES
and the connection will be kept opened even after the socket has sent all of the
HTTP reply out.

Just like in all other cases, a new connection on the socket won't be accepted until
your program has had a chance to respond- this was explained above.

Checking Connection Status

Simplified and detailed socket states

The sock object features several properties that provide complete information on
what the socket is doing, which IP and port it is engaged in the connection with,
etc.

The most important of all this data is the socket state. Two state groups are
supported- "simplified" and "detailed". Simplified state tells you, generally, what
condition the socket is in. Detailed state additionally tells you how this condition
came to be.

For example, the "simplified" PL_SSTS_CLOSED state means that connection is
closed (socket is idle). It doesn't tell you, however, why it is closed. "Detailed"
state PL_SST_CL_ARESET_CMD tells you that connection is closed because there
was an active close as a result of the sock.close method invocation from your
program!

On_sock_event and sock.event, sock.eventsimple read-only properties

Each time the socket state changes an on_sock_event event is generated.
Unlike many other events, this one can be generated again and again before the
on_sock_event handler is invoked, so event queue can contain multiple such
events. A separate event is generated for each new state the socket enters.

The on_sock_event "brings" two arguments with it -- one is called "newstate",
another one -- "newstatesimple". These arguments contains the state of the
socket at the moment when the on_sock_event was generated.

Newstate and newstatesimple arguments have been introduced in Tibbo Basic V2.0.
Before, their role was played by two read-only properties -- sock.event and
sock.eventsimple . These properties are no longer available.

Here is one example of how on_sock_event can be used. Supposing, when
connection is established we need to open the serial port and when it is no longer
established close the serial port and clear the data from its TX and RX buffers:

sub on_sock_event(newstate as pl_sock_state,newstatesimple as
pl_sock_state_simple)
 if newstatesimple= PL_SSTS_EST then
 ser.enabled= YES 'connection has been established- open port

426

483

481

475 495

478 482

475

490

480

480

440 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

 else
 if ser.enabled= YES then 'connection is NOT established? Close and
clear the port if it is opened!
 ser.enabled= N0
 ser.txclear
 ser.rxclear
 end if
 end if
end sub

Sock.state and sock.statesimple read-only properties

There is also a pair of read-only properties- sock.state and sock.statesimple -
that allows you to check current socket state (as opposed to the state that was
at the moment of on_sock_event generation).

Here is an example of how you can use this. Supposing, you want to "play" an LED
pattern that depends on the current state of the socket. Here is how you do this:

sub on_pat
'this event is generated each time a pattern finishes playing

select case sock.statesimple
case PL_SSTS_EST: 'connection is established- Green LED on

pat.set("GGGGGGGGGGGGGGGG",NO)
case PL_SSTS_ARP: 'ARP in progress- Green LED blinks

pat.set("G-G-G-G-G-G-G-G-",NO)
case PL_SSTS_PO: 'connection is being established- green LED goes

'blink-blink-blink'
pat.set("----------G-G-G-",NO)

case PL_SSTS_AO: 'connection is being established- green LED goes
'blink-blink-blink'

pat.set("----------G-G-G-",NO)
case else: 'connection is closed or being closed- green LED is 'blink-

blink'
pat.set("------------G-G-",NO)

end select
end sub

Understanding who you are talking to

Whenever the socket is engaged in the connection you can check the parameters
of the other side through three read-only properties- sock.remotemac ,
sock.remoteip , and sock.remoteport . For UDP, you can also check if the
datagram you have received was sent to your device exclusively or it was a
broadcast- the sock.bcast will tell you that. For TCP, you can additionally check
if the socket is in the "regular data" or HTTP mode- just check the sock.httpmode

 property.

There is an intricate detail to understand about the sock.remotemac,
sock.remoteip, sock.remoteport, and sock.bcast properties when you are using the
UDP protocol.

With UDP, your socket may be accepting datagrams from several different hosts. As
will be explained in Receiving Data in UDP Mode , the most common way to handle
the incoming data is through the on_sock_data_arrival event. You will get one
such event for each UDP datagram that the socket will receive. If you check the
sock.remotemac, sock.remoteip, sock.remoteport, or sock.bcast from within the

502 505

495

494 495

475

481

450

489

441Platforms

©2000-2011 Tibbo Technology Inc.

on_sock_data_arrival event handler you will get the sender's data for the UDP
datagram currently being processed.

On the contrary, using sock.remotemac, sock.remoteip, sock.remoteport, or
sock.bcast property outside of the on_sock_data_arrival event handler will give you
the data for the most recent UDP datagram received into the RX buffer of the
socket. This is not the same as the next UDP datagram to be extracted from the RX
buffer and processed by your application!

Checking current interface

Starting from V1.2, the sock object provides an additional property,
sock.currentinterface , which tells you which network interface the network
connection is going through.

More On the Socket's Asynchronous Nature

In Establishing Outgoing Connections and Closing Connections topics we have
already touched on the subject of the sock object's asynchronous nature. This
topic offers further details on what that means for your application.

Executing sock.connect , sock.close , sock.reset , or sock.discard method
does not mean that your connection gets established or terminated by the time
your program reaches the next statement. Executing these statements merely
instructs the Master Process what to do with the connection (more on the Master
Process in the System Components topic). Connection establishment/termination
can take some time and your application doesn't have to wait for that to complete.
Checking Connection Status topic explained how to find out actual connection
status at any time (see sock.state and sock.statesimple read-only properties)
.

There are certain situations when your program has to take the above into
account. Here is one example. Supposing, we want to know the MAC address of a
remote device to which we are establishing an outgoing connection. Naturally, we
can do it this way:

'Correct code -- on startup we order the connection to be established and in
the on_sock_event event handler we record the MAC address of the 'other
side'

Sub On_sys_init
 ...
 sock.targetip="192.168.100.40" 'we prepare for the connection
 sock.targetport=2000
 sock.connect 'and now we connect
End Sub

'---

Sub On_sock_event(newstate As pl_sock_state,newstatesimple As
pl_sock_state_simple)
 Dim s As String
 If newstatesimple=PL_SSTS_EST Then

478

434 437

477 475 495 478

7

439

502 505

442 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

 'OK, so connection is established, let's get this MAC!
 s=sock.remotemac
 End If
End Sub

The above is a good example of event-driven programming. Sometimes, however,
you need to establish a connection and "follow-up" on it in the same event handler.
So, how do we do this? Here is a simple, and WRONG code:

'!!! BAD EXAMPLE !!!

Dim s As String
...
...

sock.targetip="192.168.100.40" 'we prepare for the connection
sock.targetport=2000
sock.connect 'and now we connect
s=sock.remotemac 'and now we try to check the MAC. WRONG! Connection
may not be established yet!

...

And here is the correct way to handle this. For clarity, this example assumes that
connection will definitely be established.

'Correct, but simplified example (we do not handle possible connection
failure).

Dim s As String
...
...

sock.targetip="192.168.100.40" 'we prepare for the connection
sock.targetport=2000
sock.connect 'and now we connect
While sock.statesimple<>PL_SSTS_EST 'we wait here until the connection is
actually established
Wend
s=sock.remotemac 'Get the MAC!

...

Here is even more interesting example. Supposing, you want to close and
reestablish a TCP connection right within the same event handler. Here is a wrong
way of doing this:

'!!! BAD EXAMPLE !!! -- this just won't work!
...
...

sock.close
sock.connect

443Platforms

©2000-2011 Tibbo Technology Inc.

...

You see, executing sock.close doesn't really close the connection -- it only issues
the instruction (to the Master Process) to close the connection. So, by the time
program execution gets to the sock.connect method your previous connection is
still on!

Correct way is to wait for the connection to actually be closed before executing
sock.connect. Here is another example -- not quite correct either -- but closer to
the truth.

'!!! 'BETTER' CODING !!! -- still not totally OK!
...
...

sock.close
 While sock.statesimple<>PL_SSTS_CLOSED 'here we wait for the connection
to be closed
 Wend
sock.connect
...

OK, this is better. One final correction and the code is complete. In the Closing
Connections topic ("Socket re-use after connection closing" section) we have
already explained that the OS makes sure that the on_sock_event has a chance to
execute after the old connection is closed and before the new one is established.
In the above example both sock.close and sock.connect are in the same event
handler -- the on_sock_event won't squeeze in between them unless you use the
doevents statement! Here is the correct code:

'100% CORRECT!
...
...

sock.close
 While sock.statesimple<>PL_SSTS_CLOSED 'here we wait for the connection
to be closed
 Wend
 doevents ' Absolutely essential for this particular case!
sock.connect
...

Notice how doevents is placed after the while-wend loop. It is absolutely essential
that you do it this way! Of course, now that you have at least one doevents in the
event handler you might as well add doevents in all "places of waiting" -- just to let
other events execute sooner.

'Even better code!
...
...

sock.close
 While sock.statesimple<>PL_SSTS_CLOSED 'here we wait for the connection

437

73

444 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

to be closed
 doevents 'Not necessary but useful -- lets other events execute
 Wend
 doevents ' Absolutely essential for this particular case!
sock.connect
...

You have to place doevents after the while-wend loop and you have to do
this even if you don't actually have a handler for the on_sock_event event
in your application!

Sending and Receiving data

Once a network connection has been established the socket is ready to send and
receive the data. This is done through two buffers- the TX buffer and the RX
buffer. Read on and you will know how to allocate memory for buffers, use them,
handle overruns, and perform other tasks related to sending and receiving of data.

Allocating Memory for Buffers

Each buffer has a certain size, i.e, a memory capacity. This capacity is allocated
upon request from your program. When the device initially boots, no memory is
allocated to buffers at all.

Memory for buffers is allocated in pages. A page is 256 bytes of memory. Allocating
memory for a buffer is a two-step process: first you have to request for a specific
allocation (a number of pages) and then you have to perform the actual allocation.

For the socket object to be able to send and receive the data, you have to give its
TX and RX buffers some memory. This is done through the sock.txbuffrq and
sock.rxbuffrq methods.

The allocation method (sys.buffalloc) applies to all buffers previously specified, in
one fell swoop.

 Hence:

dim in, out as byte
out = sock.txbuffrq(10) ' Requesting 10 pages for the TX buffer. Out will
then contain how many can actually be allocated.

in = sock.rxbuffrq(7) ' Requesting 7 pages for the RX buffer. Will return
number of pages which can actually be allocated.

' ... Allocation requests for other buffers...

sys.buffalloc ' Performs actual memory allocation, as per previous requests.

Actual memory allocation takes up to 100ms, so it is usually done just once, on
boot, for all required buffers. If you do not require some buffer, you may choose not
to allocate any memory to it. In effect, it will be disabled.

You may not always get the full amount of memory you have requested. Memory is
not an infinite resource, and if you have already requested (and received)
allocations for 95% of the memory for your platform, your next request will get up
to 5% of memory, even if you requested for 10%.

There is a small overhead for each buffer. Meaning, not 100% of the memory

490

509

497

530

445Platforms

©2000-2011 Tibbo Technology Inc.

allocated to a buffer is actually available for use. 16 bytes of each buffer are
reserved for variables needed to administer this buffer, such as various pointers
etc.

Thus, if we requested (and received) a buffer with 2 pages (256 * 2 = 512), we
actually have 496 bytes in which to store data (512 - 16).

If you are changing the size of any buffer for a socket using sys.buffalloc,
and this socket is not closed (sock.statesimple is not PL_SSTS_CLOSED),
the socket will be automatically closed. Whatever connection you had in
progress will be discarded. The socket will not be closed if its buffer sizes
remain unchanged.

Using Buffers in TCP Mode

Once you have allocated memory for the TX and RX buffers you can start sending
and receiving data through them. Since TCP is a stream-oriented protocol this is
what buffers store- a stream of data being sent and received, without any
separation into individual packets. Even for the outgoing data, you have no control
over how it will be split into packets for transmission over the network.

Sending Data

Sending data a two-step process. First, you put the data in the TX buffer using
the sock.setdata method, and then you perform the actual sending (commit the
data) using the sock.send method. For example:

sock.setdata ("Foo") ' Placed our data in the TX buffer - not being sent out
yet.
' ... more code...
sock.setdata ("Bar") ' Added even more data to the TX buffer, waiting to be
sent.
sock.send ' Now data will actually start going out. Data sent will be
'FooBar'.

Since this is a two-step process, you may gradually fill the buffer to capacity, and
only then send its contents.

TiOS features non-blocking operation. This means that on sock.send, for
example, the program does not halt and wait until the data is completely
sent. In fact, execution resumes immediately, even before the first byte
goes out. Your program will not freeze just because you ordered it to send
a large chunk of data.

The data can be stored in the TX buffer at any time but it will only be sent out if
and when the network connection is established. Storing the data in the TX
buffer won't cause the socket to establish any connection automatically.

Receiving Data

Receiving data is a one-step process. To extract the data from the RX buffer, use
the sock.getdata method. Data may only be extracted once from the buffer.
Once extracted, it is no longer in the buffer. For example:

505

500

500

424

480

446 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

dim whatigot as string
whatigot = sock.getdata(255)

The string whatigot now contains up to 255 bytes of data which came from the RX
buffer of the socket.

Discussion of TCP data RXing continues in Receiving Data in TCP mode .

Using Buffers in UDP Mode

UDP is a packet-based protocol (as opposed to TCP, which is stream-based). In
UDP you usually care what data belongs to what datagram (packet). The sockets
object gives you complete control over the individual datagrams you receive and
transmit.

Sending and receiving UDP data is still effected through the TX and RX buffers. The
difference is that the subdivision into datagrams is preserved within the buffers.

Each datagram in the buffer has its own header:

For the TX buffer, headers contain datagram length as well as the destination
MAC, IP, port, and broadcast flag (indicating whether to send the datagram as a
broadcast).

For the RX buffer, headers contain datagram length plus the sender's MAC, IP,
port, and broadcast flag (indicating whether the datagram is a broadcast).

Sending Data

Just like with TCP, sending data through the TX buffer in UDP mode is a two-step
process; first you put the data in the buffer using the sock.setdata method, and
then you close a datagram and perform the actual sending (commit the data) using
the sock.send method.

The datagrams will never be mixed with one another. Once you invoke sock.send,
the datagram is closed and sent (as soon as possible). Any new data added to the
TX buffer will belong to a new datagram. For example:

sock.setdata ("Foo") ' Placed our data in the tx buffer - not being sent out
yet.

' ... more code...

sock.setdata ("Bar") ' Added even more data to the same datagram, waiting to
be sent.
sock.send ' A datagram containing 'FooBar' will now be closed and committed
for sending.
sock.setdata ("Baf") ' This new data will go into a new datagram.
sock.send ' Closes the datagram with only 'Baf' in it and commits it for
sending.
sock.send ' sends an empty UDP datagram!

Notice that in the example above we were able to send out an empty datagram by
using sock.send without sock.setdata!

Keep in mind that there is a limitation for the maximum length of data in the UDP

448

500

500

447Platforms

©2000-2011 Tibbo Technology Inc.

datagram- 1536 bytes.

Receiving Data

Receiving data in UDP mode requires you to be within an event handler for incoming
socket data, or to explicitly move to the next UDP datagram in the buffer.

To extract the data from a buffer, use the sock.getdata method. This method
only accesses a single datagram on the buffer, unless you use the sock.nextpacket

 method. If you have several incoming datagrams waiting, you will have to
process them one by one, moving from one to the next. This is good because this
way you know where one datagram ends and another one begins.

Here is an example:

sub on_sock_data_arrival
dim whatigot as string
whatigot = sock.getdata(255) 'will only extract the contents of a

single datagram. Reenter the on_sock_data_arrival to get the next datagram
end sub

Data may only be extracted once from a buffer. Once extracted, it is no longer in
the buffer. Discussion of UDP data RXing continues in Receiving Data in UDP mode

.

TX and RX Buffer Memory Status

You cannot effectively use a buffer without knowing what is its status. Is it
overflowing? Can you add more data? etc. Thus, each of the socket buffers has
certain properties which allow you to monitor it:

The RX buffer

You can check the total capacity of the buffer with the sock.rxbuffsize property.
You can also find out how much data the RX buffer currently contains with the
sock.rxlen property. From these two data, you can easily deduce how much free
space you have in the RX buffer -- even though this isn't such a useful datum
(that's one of the reasons there is no explicit property for it).

Note that sock.rxlen returns the gross current size of data in the RX buffer. In TCP
mode, this is equivalent to the actual amount of data in the buffer. However, in
UDP mode, this value includes the headers preceding each datagram within the RX
buffer -- the amount of actual data in the buffer is smaller than that. A separate
property -- sock.rxpacketlen returns the length of actual data in the UDP
datagram you are currently processing.

Sometimes you need to clear the RX buffer without actually extracting the data. In
such cases the sock.rxclear comes in handy.

The TX buffer

Similarly to the RX buffer, the TX buffer also has a sock.txbuffsize property
which lets you discover its capacity.

The TX buffer has two "data length" properties: sock.txlen and sock.newtxlen
. The txlen property returns the amount of committed data waiting to be sent from
the buffer (you commit the data by using the sock.send method). The newtxlen
property returns the amount of data which has entered the buffer, but has not yet

480

487

450

498

499

499

498

509

510 486

500

448 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

been committed for sending. For UDP, this is basically the length of UDP datagram
being created.

The TX buffer also has a sock.txfree property, which directly tells you how much
space is left in it. This does not take into account uncommitted data in the buffer
-- actual free space is sock.txfree-sock.newtxlen!

ser.txlen + ser.txfree = ser.txbuffsize.

When you want to clear the TX buffer without sending anything, use the
sock.txclear method. Notice, however, that this will only work when the network
connection is closed (sock.statesimple = PL_SSTS_CLOSED).

An example illustrating the difference between sock.txlen and sock.newtxlen:

sub on_sys_init

dim x,y as word ' declare variables

sock.rxbuffrq(1) ' Request one page for the RX buffer.
sock.txbuffrq(5) ' Request 5 pages for the TX buffer (which we will use).
sys.buffalloc ' Actually allocate the buffers.

sock.setdata("foofoo") ' Set some data to send.
sock.setdata("bar") ' Some more data to send.
sock.send ' Start sending the data (commit).
sock.setdata("baz") ' Some more data to send.
x = sock.txlen ' Check total amount of data in the TX buffer.
y = sock.newtxlen ' Check length of data not yet committed.

end sub 'Set up a breakpoint HERE.

Don't step through the code. The sending is fast -- by the time you reach x and y
by stepping one line at a time, the buffer will be empty and x and y will be 0. Set a
breakpoint at the end of the code, and then check the values for the variables (by
using the watch).

Receiving Data in TCP Mode

We have already explained that RX and TX buffers operate differently in the TCP
and UDP mode. This section explains how to receive data when the TCP protocol
is used by the socket.

In a typical system, there is a constant need to handle an inflow of data. A simple
approach is to use polling. You just poll the buffer in a loop and see if it contains
any fresh data, and when fresh data is available, you do something with it. This
would look like this:

sub on_sys_init

while sock.rxlen = 0
wend ' basically keeps executing again and again as long as sock.rxlen = 0
s = sock.getdata(255) ' once loop is exited, it means data has arrived. We
extract it.

end sub

510

510

505

33

445

446

449Platforms

©2000-2011 Tibbo Technology Inc.

This approach will work, but it will forever keep you in a specific event handler
(such as on_sys_init) and other events will never get a chance to execute. This
is an example of blocking code which could cause a system to freeze. Of course,
you can use the doevents statement, but generally we recommend you to avoid
this blocking approach.

Since our platform is event-driven, you should use events to tell you when new
data is available. There is an on_sock_data_arrival event which is generated
whenever there is data in the RX buffer:

sub on_sock_data_arrival

dim s as string
s = sock.getdata(255) ' Extract the data -- but in a non-blocking way.
' code to process data
end sub

The on_sock_data_arrival event is generated whenever there is data in the RX
buffer, but only once. There are never two on_sock_data_arrival events (for the
same socket) waiting in the queue. The next event is only generated after the
previous one has completed processing, if and when there is any data available in
the RX buffer.

This means that when handling this event, you don't have to get all the data in the
RX buffer. You can simply handle a chunk of data and once you leave the event
handler, a new event of the same type will be generated.

Here is a correct example of handling arriving socket data through the
on_sock_data_arrival event. This example implements a data loopback -- whatever
is received by the socket is immediately sent back out.

dim rx_tcp_packet_len as word 'to keep the size of the next incoming TCP
packet

sub on_sys_init
end sub

We want to handle this loopback as efficiently as possible, but we must not overrun
the TX buffer. Therefore, we cannot simply copy all arriving data from the RX buffer
into the TX buffer. We need to check how much free space is available in the TX
buffer. The first line of this code implements just that: sock.getdata takes as much
data from the RX buffer as possible, but not more than sock.txfree (the available
room in the TX buffer). The second line just sends the data.

Actually, this call will handle no more than 255 bytes in one pass. Even
though we seemingly copy the data directly from the RX buffer to the TX
buffer, this is done via a temporary string variable automatically created
for this purpose. In this platform, string variables cannot exceed 255
bytes.

533

87

489

450 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Receiving Data in UDP Mode

In the previous section we have already explained how to handle data reception
when the socket is in the TCP mode. This section provides explanation for receiving
data with UDP.

Using on_sock_data_arrival event

With UDP, you still (typically) process incoming data basing on the
on_sock_data_arrival event. Two differences apply:

Each time the on_sock_data_arrival event handler is entered you only get to
process a single UDP datagram waiting in the RX buffer. Unless you use a special
method (see below), you won't be able to get the data from the next datagram,
even if this datagram is already available in the RX buffer.

If, while within the on_sock_data_arrival event handler, you don't read out entire
contents of the "current" datagram and exit the event handler, then the unread
portion of the datagram is discarded.

Here is an example: supposing, two datagrams are waiting in the RX buffer and their
contents are "ABC" and "123". The following code will then execute twice:

sub on_sock_data_arrival
dim s as string(2)
s = sock.getdata(255) ' will get 2 bytes as this is the capacity of s
end sub

Since s has a maximum capacity of 2 the first time s=sock.getdata(255) executes
you will get "AB". When the event handler is exited the rest of the first UDP
datagram will be discarded, so next time you will get "12"!

Using sock.nextpacket method

Using on_sock_data_arrival event is a preferred method of handling an incoming
data stream. Still, in selected cases you may need to process RX data in a loop,
without leaving the event handler.

The sock.nextpacket method exists for just such a case. The result of this
method execution is equivalent to exiting/(re)entering the on_sock_data_arrival
event handler: the unread portion of the previous UDP datagram is discarded and
we move to the next UDP datagram (if any).

Here is a code example where we handle all incoming UDP data without exiting
event handler:

dim s as string

...

l1:
while sock.rxlen = 0

doevents 'good practice: let other events execute while we are waiting
wend

sock.nextpacket 'Now we know that we do have data, 'move to' the next UDP
datagram. This is like entering the on_sock_data_arrival.

448

489

487

451Platforms

©2000-2011 Tibbo Technology Inc.

s = sock.getdata(255) 'get data
goto l1

...

Sending TCP and UDP Data

In the previous sections, we have explained how to handle an incoming stream of
data. You could say it was incoming-data driven. Sometimes you need just the
opposite -- you need to perform operations based on the sending of data.

Sending data with on_sock_data_sent event

Supposing that in a certain system, you need to send out a long string of data
when a button is pressed. A simple code for this would look like this:

sub on_button_pressed
sock.setdata("This is a long string waiting to be sent. Send me

already!")
sock.send

end sub

The code above would work, but only if at the moment of code execution the
necessary amount of free space was available in the TX buffer (otherwise the data
would get truncated). So, obviously, you need to make sure that the TX buffer has
the necessary amount of free space before sending. A simple polling solution would
look like this:

sub on_button_pressed
dim s as string
s = "This is a long string waiting to be sent. Send me already!"
while sock.txfree < len(s)
wend
sock.setdata(s)
sock.send

end sub

Again, this is not so good, as it would block other event handlers. So, instead of
doing that, we would employ a code that uses on_sock_data_sent :

dim s as string
s = "This is a long string waiting to be sent. Send me already!"

sub on_button_pressed
sock.notifysent(sock.txbuffsize-len(s)) ' causes the on_sock_data_sent

event to fire when the TX buffer has space for our string
end sub

sub on_sock_data_sent
sock.setdata(s) ' put data in TX buffer
sock.send ' start sending it.

489

452 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

end sub

When we press the button, on_button_pressed event is generated, so now the
system knows we have a string to send. Using sock.notifysent we make the
system fire the on_ser_data_sent event when the necessary amount of free space
becomes available. This event will only be fired once -- and will be fired immediately
if there is already enough available space.

Within the event handler for this event, we put the data in the TX buffer and start
sending it.

Amount of data that will trigger on_sock_data_sent does not include
uncommitted data in the TX buffer.

UDP datagrams are generated as you create them

In Using Buffers in TCP Mode we have already explained that for UDP you have a
complete control over how the data you are sending is divided into the UDP
datagrams. Each time you use the sock.send method you draw the boundary
between the datagrams- the previous one is "closed" and the new one "begins".
You can even send out an empty UDP datagram by executing sock.send without
using the sock.setdata first.

Correctly responding to the sender of each UDP datagram

With UDP, your socket may be receiving UDP datagrams from several different
hosts. When the on_sock_data_arrival event handler is entered (see Receiving Data
in UDP mode) the following properties automatically reflect the source of the
current datagram- sock.remotemac , sock.remoteip , and sock.remoteport .
Additionally, the sock.bcast property will tell you whether the datagram was a
regular or a broadcast one (this material has already been covered in Checking
Connection Status).

Additionally, any datagram that was generated and sent from within the
on_sock_data_arrival event handler will be send to the sender of the datagram for
processing of which the on_sock_data_arrival event handler was entered.

The point is that if you are sending out a datagram from within the
on_sock_data_arrival event handler you are automatically replying to the sender of
the datagram being processed. The following example sends back "GOT DATAGRAM
FROM xxx.xxx.xxx.xxx" string in response to any datagram received by the socket:

sub on_sock_data_arrival
sock.setdata("GOT DATAGRAM FROM " + sock.remoteip)
sock.send

end sub

For the above example, even if several hosts send the datagrams to the socket at
the same time each one of these hosts will get a correct reply back!

Now consider this example: each time the button is pressed the same message is
generated:

234

487

446

500

500

450

495 494 495

475

439

453Platforms

©2000-2011 Tibbo Technology Inc.

sub on_button_pressed
sock.setdata("GOT DATAGRAM FROM " + sock.remoteip)
sock.send

end sub

The difference is that when you press the button the datagram will be sent to the
destination, from which the most recent incoming UDP datagram was received (and
accepted) by the socket!

"Split Packet" Mode of TCP Data Processing

Though our customer's feedback we have learned that sometimes it may be
necessary to know the size of individual TCP packets. For example, as it turns out,
some data encryption methods work on a packet level. Erase the border between
TCP packets -- and you can't decrypt the data.

Introduced in Tibbo Basic V2.0, new sock.splittcppackets property and
on_sock_tcp_packet_arrival event allow you to process incoming TCP data
packet by packet. To achieve this, set the sock.splittcppacket= 1- YES. After that,
the on_sock_tcp_packet_arrival will be generated for each incoming TCP packet
carrying any new data (i.e., not a retransmission data). Here is an example of use:

dim rx_tcp_packet_len as word 'to keep the size of the next incoming TCP
packet

sub on_sys_init
 ...
 rx_tcp_packet_len=0
 sock.splittcppackets=YES
end sub

sub on_sock_tcp_packet_arrival(len as word)
 rx_tcp_packet_len=len 'we get the size of the next packet we are going to
process
end sub

sub on_sock_data_arrival
 dim s as string
 'take exactly the contents of one packet (we assume that it can fit in
the string!)
 s=sock.getdata(rx_tcp_packet_len)
 rx_tcp_packet_len=0 'very important!
end sub

Naturally, you may also need to control the size of outgoing TCP packets. This is
done in a different way. With sock.splittcppackets = 1- YES, when you put some
data into the TX buffer and execute sock.send , the socket won't send this data
out unless entire contents of the TX buffer can be sent out in a single TCP packet.
Here is an example of how you can use that:

sock.splittcppackets=YES
...
...
sock.setdata("ABCDEFGH1234567890")
sock.send

501

491

501

500

454 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

while sock.txlen>0
 doevents
wend

Notice that this method has its disadvantage -- your data throughput is diminished
because your program is seeking an acknowledgement for each TCP packet being
sent. On the other hand, this is a bulletproof way of making sure that the outgoing
TCP packet contains exactly the data you intended.

Be careful not to try to send more data than the RX buffer size on the other end.
Since in this mode the socket won't send that data unless it can send all of it, your
TCP connection will get stuck!

Also, attempting to send the packet with size exceeding the "maximum segment
size" (MSS) as specified by the other end will lead to data fragmentation! The
socket will never send any TCP packet with the amount of data exceeding MSS.

Handling Buffer Overruns

Handling RX buffer overruns

The on_sock_overrun event is generated when an RX buffer overrun has
occurred. It means the data has been arriving to the RX buffer faster than you
were handling it and that some data got lost.

This event is generated just once, no matter how much data is lost. A new event
will be generated only after exiting the handler for the previous one.

Normally, data overruns will not occur when the TCP transport protocol is used.
This is because the TCP is intelligent enough to regulate the flow of data between
the sender and the receiver and, hence, avoid overruns. The UDP protocol does not
have a "flow control" mechanism and RX buffer overruns can and will happen.

Typically, the user of your system wants to know when an overrun has occurred.
For example, you could blink a red LED when this happens.

sub on_ser_overrun
pat.play("R-R-R-R")

end sub

Are TX buffer overruns possible?

TX buffer overruns are not possible. The socket won't let you overload its TX
buffer. If you try to add more data to the TX buffer than the free space in the
buffer allows to store then the data you are adding will be truncated.

See Sending Data for explanation on how to TX data correctly.

Redirecting Buffers
The following example appeared under Receiving Data in TCP Mode :

sub on_sock_data_arrival
sock.setdata(sock.getdata(sock.txfree))
sock.send

end sub

491

451

448

455Platforms

©2000-2011 Tibbo Technology Inc.

This example shows how to send all data incoming to the RX buffer out from the TX
buffer, in just two lines of code. However fast, this technique still passes all data
through your BASIC code, even though you are not processing (altering, sampling)
it in any way.

A much more efficient and advanced way to do this would be using a technique
called buffer redirection (buffer shorting). With buffer shorting, instead of receiving
the data into the RX buffer of your socket, you are receiving it directly into the TX
buffer of another object which is supposed to send out this data. This can be a
socket (same or different one), a serial port object, etc.

To use buffer shorting, you invoke the sock.redir method and specify the buffer
to which the data is to be redirected. Once this is done, the on_sock_data_arrival
event won't be generated at all, because the data will be going directly to the TX
buffer that you have specified. As soon as the data enters this buffer, it will be
automatically committed for sending. Here is an example:

sub on_sys_init
sock.num=0
sock.redir(PL_REDIR_SOCK0) ' This is a loopback for socket 0.

end sub

The performance advantage here is enormous, due to two factors: first, you are
not handling the data programmatically, so the VM isn't involved at all. And second,
the data being received is received directly into the TX buffer from which it is
transmitted, so there is less copying in memory.

Of course you cannot do anything at all with this data -- you are just pumping it
through. However, very often this is precisely what is needed! Additionally, you can
still process inband commands/replies (messages).

To stop redirection, you can use sock.redir(0), which means "receive data into the
RX buffer of the socket in a normal fashion".

Redirection and UDP

Using Buffers in UDP Mode explained that the sock object preserves buffer
boundaries when storing UDP datagrams in RX and TX buffer. To achieve this, the
sock object uses special datagram headers that are also stored in these buffers.
This means that the buffers contain not only data, but also an additional "service"
information.

When an RX buffer of a "UDP socket" (i.e. a socket running in the UDP mode) is
redirected to a TX buffer of another UDP socket, datagram boundaries are
preserved. The receiving socket will still send out the data subdivided into the
original datagrams.

When an RX buffer of a UDP socket is redirected to a TX buffer of a TCP socket or
serial port, the service information is removed and datagram boundaries are
dissolved. To the receiving TCP socket or serial port, the data appears to be a
stream.

493

456

446

456 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Sinking Data

Sometimes it is desirable to ignore all incoming data while still maintaining the
connection opened. The sock.sinkdata property allows you to do just that.

Set the sock.sinkdata to 1- YES, and all incoming data will be automatically
discarded. This means that the on_sock_data_arrival event will not be
generated, reading sock.rxlen will always be returning zero, and so on. No data
will be reaching its destination even in case of buffer redirection . Inband
commands , however, will still be extracted from the incoming data stream and
processed. Sock.connectiontout and sock.toutcounter will work correctly as
well.

Working With Inband Commands

Inband commands (replies) are messages embedded within the TCP data stream.
Each inband message has a specific formatting that allows the socket to recognize
it in the data stream being received.

Inband messages have many uses. For example, in a network-to-serial converter,
you typically pass all serial data through a single TCP connection. At the same time,
you often need to send some control commands to the device, i.e. for setup, etc.
This can be done in two ways: through a separate network connection ("out-of-
band" respective to the main data connection) or by embedding those commands
inside the serial data stream ("inband" way). The second method is sometimes
better, since very often you want to avoid or cannot have another network
connection to your device.

Of course, you could just write a BASIC code that would be separating inband
commands from the data but this would affect the performance (data throughput)
of your device considerably. The sock object natively supports inband commands to
avoid this performance penalty. In fact, inband commands will work even when the
buffer redirection is enabled!

Inband messages are only possible with TCP transport protocol. You
cannot use inband messages with UDP!

Inband Message Format

Inband message passing is enabled through the sock.inbandcommands property.

Each inband message has to start with a special escape character whose ASCII
code is specified by the sock.escchar property. The next character after the
escape character can have any ASCII code except for the code of the escape
character itself.

Following that is the body of the inband message. The last character in the
message is a so-called end character, specified by the sock.endchar property. It
signals the end of the inband message and return to the "regular" data.

There are no specific limitations on how long the inband message can be. The
length is only limited by how much space you allocate for the CMD and RPL buffers

 that store incoming and outgoing inband messages.

And what if the data stream itself contains a character(s) with the ASCII code of
the escape character you have set? Wouldn't this confuse the socket into thinking
that this is the beginning of inband command? To avoid this situation, the data
character with code of escape character is transmitted as two identical characters
with the same ASCII code.

Example: supposing you have the following setup:

501

489

499

454

456

477 507

454

484

479

479

457

457Platforms

©2000-2011 Tibbo Technology Inc.

...
sock.inbandcommands= YES
sock.escchar=`$`
sock.endchar=`%`
...

Now, you have the following data stream coming into the socket:

ABCD$#inband commqand%EFG$$123

The socket will interpret this stream as including one inband command: "$#inband
command%". Regular data, placed into the RX buffer of the socket will be
"ABCDEFG$123". The first '$' character is interpreted as the beginning of the inband
message because this character is followed by some other character ('#'). The
second occurrence of the '$' character is interpreted as data, since this character
is followed by another 'S' character. Resulting data stream contains only a single '$'
character- the socket takes care of removing the second one automatically.

When sending data from the TX buffer, the socket also automatically doubles all
data characters with the ASCII code of the escape character. So, if you want to
send this string: "Outbound$!" what will actually be sent is:

Outbound$$!

Inband messages are not our invention. Many programs, such as the
HyperTerminal, treat the character with code 255 as an escape character.

Inband-related Buffers (CMD, RPL, and TX2)

Three buffers are required for inband message processing. On startup, these buffers
are not allocated any memory, so you have to do it if you are planning to send and
receive inband messages.

The CMD buffer- used to store incoming inband messages (we call them "inband
commands"). Use the sock.cmdbuffrq method to allocate memory for this
buffer. Usually, inband commands are not very long so allocating a minimum space
of 1 page is typically sufficient.

The RPL buffer- used to store outgoing inband messages (we call them "inband
replies"). Use the sock.rplbuffrq method to allocate memory for this buffer.
again, inband commands are usually not very long so allocating a minimum space
of 1 page will probably be sufficient.

The TX2 buffer- used internally by the socket when inband commands are
enabled. You don't have to do anything with this buffer other than allocate
memory for it. We recommend allocating as much space as you did for the TX
buffer. Allocation is requested through the sock.tx2buffrq method.

Actual memory allocation is done through the sys.buffalloc method which applies
to all buffers previously specified. Here is an example:

476

496

508

530

458 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

dim b1, b2, b3, b4, b5 as byte

...
'setup for other objects, sockets, etc.

b1= sock.txbuffrq(5) 'you need this buffer to send regular data
b2= sock.rxbuffrq(5) 'you need this buffer to receive regular data
b3= sock.cmdbuffrq(1) 'buffer for incoming inband commands
b4= sock.rplbuffrq(1) 'buffer for outgoing inband replies
b5= sock.tx2buffrq(5) 'same buffer size as for the TX buffer

....

sys.buffalloc ' Performs actual memory allocation, as per previous requests

Actual memory allocation takes up to 100ms, so it is usually done just once, on
boot, for all required buffers.

You may not always get the full amount of memory you have requested. Memory is
not an infinite resource, and if you have already requested (and received)
allocations for 95% of the memory for your platform, your next request will get up
to 5% of memory, even if you requested for 10%.

There is a small overhead for each buffer. Meaning, not 100% of the memory
allocated to a buffer is actually available for use. 16 bytes of each buffer are
reserved for variables needed to administer this buffer, such as various pointers
etc.

Thus, if we requested (and received) a buffer with 2 pages (256 * 2 = 512), we
actually have 496 bytes in which to store data (512 - 16).

If you are changing the size of any buffer for a socket using sys.buffalloc,
and this socket is not closed (sock.statesimple is not PL_SSTS_CLOSED),
the socket will be automatically closed. Whatever connection you had in
progress will be discarded. The socket will not be closed if its buffer sizes
remain unchanged.

Processing Inband Commands

What goes into the CMD buffer

All incoming inband commands are stored into the CMD buffer. At any given time the
buffer may contain more than one command. Each inband message in the buffer
already has its escape character and the character after the escape character
removed. The end character, however, is not removed and can be used by your
program to separate inband messages from each other.

Here is an example. Supposing, you have the following setup:

...
sock.inbandcommands= YES
sock.escchar=`@`
sock.endchar=`&`
...

505

459Platforms

©2000-2011 Tibbo Technology Inc.

Here is a sample data stream:

Data@command1&Moredata@!command2&Evenmoredata

This incoming data stream will have the following effect:

The RX buffer will receive this data: "DataMoredataEvenmoredata".

The CMD buffer will receive: "ommand1&command2&"

Notice, that the first inband command is missing the first character- this is because
when the inband command is being processed both its escape character and the
character following the escape character are removed. End characters of both
inband commands are preserved so you can tell where each one ends.

Extracting the data from the CMD buffer

Extracting data from the CMD buffer is similar to extracting data from the RX buffer.
A dedicated method- sock.getinband - does the job. This method is just like the
sock.getdata , minus the maxinplen argument. Total amount of data in the CMD
buffer can be checked through the sock.cmdlen property.

Once extracted, the data is no longer in the buffer. You can use the sock.cmdlen
 property to check how much data is waiting in the CMD buffer. There is no

dedicated property to tell you the buffer capacity- just remember what the
sock.cmdbuffrq method returned if you have to know this!

The on_sock_inband event is generated whenever there is some data in the CMD
buffer, but only once. There are never two on_sock_inband events waiting in the
queue. The next event is only generated after the previous one has completed
processing, if and when there is any data available in the CMD buffer.

Inband commands only appear in the CMD buffer in their entirety. That is, if the
buffer was previously empty and you get the on_sock_inband event then you are
guaranteed that the buffer will contain a full command (or several full commands).

Here is an example:

sub on_sock_inband
dim s as string 'we will keep the data from the CMD buffer here
dim s2 as string 'this will keep individual inband commands
dim x as byte

s=sock.getinband 'we get entire CMD buffer contents into the s
x=instr(1,s,chr(sock.endchar))
while x<>0

s2=left(s,x-1) 's2 now contains a single inband command
s=right(s,len(s)-x) 'cut out this command

'process inband command in the s2 as needed
...
...

'any more inband commands to process now?
x=instr(1,s,chr(sock.endchar))

wend
end sub

481

480

477

477

476

490

460 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

For the above example to work well, the size of the CMD buffer must not
exceed the capacity of string variable s. This way whatever is extracted from
the CMD buffer will always fit in s. A slightly more complex processing is
needed if the buffer is larger than the capacity of s.

Are CMD buffer overruns possible?

CMD buffer overruns are not possible. If the socket receives an inband command
that cannot be saved into the CMD buffer in its entirety, then the socket will
discard the whole command (your program won't be notified of this in any way).
Therefore, you are guaranteed to always receive complete inband commands, or
nothing at all.

Incomplete inband commads

Take a look at this datastream:

Data@!comma@!command2&Moredata

What we have here is an inband command that is incomplete- a new inband
command starts before the previous one ends. Such incomplete commands are
discarded and not recorded into the CMD buffer.

Sending Inband Replies

How to generate inband reply correctly

Inband replies are sent from the RPL buffer. Unlike the process of sending "regular"
TX data that requires you to use sock.setdata and sock.send methods, the
process of sending an inband reply only takes one step. You set and send (commit)
the data with a single method- sock.setsendinband .

The sock.setsendinband method puts the data into the RPL buffer and immediately
commits it for sending. The socket does not add necessary incapsulation
automatically: it is the responsibility of your application to add the escape
character, some other character after the escape, and the end character.

Your inband reply will only be stored into the RPL buffer if the latter has enough
space to store your entire message. If there is not enough free space then nothing
will be stored. This is different from the TX buffer, for which whatever can fit is
stored. You can check the free space in the RPL buffer by using the sock.rplfree
property. Amount of unsent data in the RPL buffer can be checked through the
sock.rpllen property.

You must not split your inband reply- it must be placed in the RPL buffer with a
single invocation of sock.setsendinband. In the example below we reply back "OK"
to each inband command we receive:

sub on_sock_inband
dim s as string 'we will keep the data from the CMD buffer here
dim s2 as string 'this will keep individual inband commands
dim x as byte

500 500

500

497

497

461Platforms

©2000-2011 Tibbo Technology Inc.

s=sock.getinband 'we get entire CMD buffer contents into the s
x=instr(1,s,chr(sock.endchar))
while x<>0

s2=left(s,x-1) 's2 now contains a single inband command
s=right(s,len(s)-x) 'cut out this command

'reply back with OK
sock.setsendinband(chr(sock.escchar)+" OK"+chr(sock.endchar))

'any more inband commands to process now?
x=instr(1,s,chr(sock.endchar))

wend
end sub

And this would be an incorrect way- do not split inband replies!

...
sock.setsendinband(chr(sock.escchar)) 'WRONG!
sock.setsendinband(" OK") 'WRONG!
sock.setsendinband(chr(sock.endchar)) 'WRONG!
...

For the above example to work well, the size of the CMD buffer must not
exceed the capacity of string variable s. This way whatever is extracted from
the CMD buffer will always fit in s. A slightly more complex processing is
needed if the buffer is larger than the capacity of s.

Notice how we have created a character after the escape character- by
adding a space in front of our "OK" reply, like this: " OK". This will work fine as
long as our escape character is not space!

Using HTTP

The sock object can function as a HTTP server. This means that when certain
conditions are met, individual sockets will switch into the HTTP mode and output
the data in a style, consistent with the HTTP server functionality.

Certain BASIC information about the HTTP server has already been provided in
Working with HTML and Embedding Code Within an HTML File .

When the socket is in the HTTP mode your program has no control over the
received data (HTTP requests) and only sometimes has control over the
transmitted data (HTTP reply).

In the simplest case the file returned to the web browser is static- a "fixed" HTML
page, a graphic, or some other file. Processing of such a static file requires no
intervention from your program whatsoever. Just setup the socket(s) to be able to
accept HTTP requests and the sock object will take care of the rest.

More often than not, however, you have to create a dynamic HTML page. Dynamic
pages include fragments of BASIC code. When the sock object encounters such a
fragment in the file being sent to the browser, it executes the code. This code, in
turn, performs some action, for example, generates and sends some dynamic data
to the browser or jumps to the other place in the HTML file.

The HTTP server built into the sock object understands two request types- GET
and POST. Both can carry "HTTP variables" that the server will extract and pass to
the BASIC code.

79 80

462 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

At the moment, the following file types are explicitly supported:

HTML- can be static or include BASIC code.

TXT- plain text, no BASIC code can be included.

JPG and GIF- graphic files.

SWF flash files.

All files other than HTML files are static and are sent to the browser "as is". There
is, however, a method of programmatic generation of such files -- see URL
Substitution .

All other file types are handled as binary files.

Currently, the socket object can only access first 65534 bytes of each file,
even if the actual file is larger! Make sure that all HTML files (and other files
that will be returned by the built in server of your device) are not larger than
65534 bytes. This is not to be confused with the size of HTTP output
generated by HTTP file. A very large output can be generated by a small
HTML file (due to dynamic data generation)- and that is OK.

65534 is actually the size limitation for the compiled HTML file. When
compiling your project, the TIDE will separate the static portion of the file
from the Tibbo Basic code fragments. Only the compiled file size matters.

HTTP-related Buffers

For the HTTP to work, you need to allocate some memory to the following buffers:

RX buffer. This buffer will be receiving HTTP requests from the client (browser).
Buffer allocation request is done through the sock.rxbuffrq method. It is
possible to avoid spending memory on the RX buffer by redirecting this buffer
to the TX buffer of the same socket. This will work because the web server
operation is strictly sequential -- receive a request, then generate a reply.
Requests and replies do not have to be stored concurrently, so one buffer is
sufficient and you will save some memory!

TX buffer. This buffer will be handling web server replies. If you enable redirection
it will also receive HTTP requests. Buffer allocation request is done through the
sock.txbuffrq method. Practical experience shows that allocating just one page
for this buffer makes HTTP request handling somewhat slow. At three or four
pages, there is a significant performance improvement. Additional buffer pages do
not lead to any dramatic improvements in performance.

VAR buffer. Dynamic HTML pages include snippets of BASIC code and this code
may need to know variable passed to the HTTP server using GET or POST
methods. The VAR buffer stores those variables. Do the allocation with the
sock.varbuffrq method. Buffer size of one page is usually OK. If the application
is to handle large amounts of variable data, such as in the case of file uploads,
you can improve the performance by allocating more pages.

Actual memory allocation is done through the sys.buffalloc method which applies
to all buffers previously specified. Here is an example:

Dim f As Byte

468

497

454

509

511

530

463Platforms

©2000-2011 Tibbo Technology Inc.

...
'setup for other objects, sockets, etc.

'setup buffers of sockets 8-15 (will be used for HTTP)
For f=8 To 15
 sock.num=f
 sock.txbuffrq(1) 'you need this buffer for HTTP requests and replies
 sock.varbuffrq(1) 'you need this buffer to get HTTP variables
 sock.redir(PL_REDIR_SOCK0 + sock.num) 'this will allow us to avoid
wasting memory on the RX buffer
Next f

....

sys.buffalloc ' Performs actual memory allocation, as per previous requests.

Memory allocation takes up to 100ms, so it is usually done just once, on boot, for
all required buffers.

You may not always get the full amount of memory you have requested. Memory is
not an infinite resource, and if you have already requested (and received)
allocations for 95% of the memory for your platform, your next request will get up
to 5% of memory, even if you requested for 10%.

There is a small overhead for each buffer. Meaning, not 100% of the memory
allocated to a buffer is actually available for use. 16 bytes of each buffer are
reserved for variables needed to administer this buffer, such as various pointers
etc.

Thus, if we requested (and received) a buffer with 2 pages (256 * 2 = 512), we
actually have 496 bytes in which to store data (512 - 16).

If you are changing the size of any buffer for a socket using sys.buffalloc,
and this socket is not closed (sock.statesimple is not PL_SSTS_CLOSED),
the socket will be automatically closed. Whatever connection you had in
progress will be discarded. The socket will not be closed if its buffer sizes
remain unchanged.

Notice, that in most cases you will need to reserve more than one socket for
HTTP. The HTTP server may need to service multiple requests from different
computers at the same time. Even for a single computer and a single HTML
page, more than one socket may be needed. For example, if your HTML page
contains a picture, the browser will establish two parallel connections to the
sock object- one to get the HTML page itself, another one- to get the
picture. We recommend that you reserve 4-8 sockets for the HTTP. It is
better to have less buffer memory for each HTTP sockets than to have fewer
HTTP sockets!

Setting the Socket for HTTP

How to set the socket for HTTP

Apart from assigning some memory to the TX, RX, and VAR buffers, the following
needs to be done to make the socket work in HTTP mode:

The protocol must be TCP (sock.protocol = 1- PL_SOCK_PROTOCOL_TCP).

The socket must be open for incoming connections (typically, from anybody:
sock.inconmode = 3- PL_SOCK_INCONMODE_ANY_IP_ANY_PORT).

505

492

485

464 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Reconnects should not be enabled- this is counter-productive for HTTP
(sock.reconmode = 0- PL_SOCK_RECONMODE_0). Reconnects are disabled by
default so just leave it this way.

Correct listening HTTP port must be set. Default HTTP port on all servers is 80
(sock.httpportlist ="80").

In the previous topic, we have already explained that your system should reserve
several HTTP sockets. Here is a possible initialization example:

dim f as byte

...
'setup for other sockets, etc.

'setup sockets 8-15 for HTTP
for f=8 to 15

sock.num=f
sock.protocol= PL_SOCK_PROTOCOL_TCP
sock.inconmode= PL_SOCK_INCONMODE_ANY_IP_ANY_PORT
sock.httpportlist="80"

next f
....

To make sure that the HTTP is working you can create and add to the project a
simple static HTTP file. Call this file <index.html>- this is a default file that will be
called if no specific file is requested by GET or POST. Here is a static file example:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD W3 HTML//EN">
<HTML>
<BODY>

HELLO WORLD!

</BODY>
</HTML>

Launch the browser, type the IP-address of your device, for example:
"http://192.168.1.95" and you will get the output "HELLO WORLD!".

Don't forget to give your device an IP address. For example, if you are
working through a regular wired Ethernet, you should assign an IP address
through the net.ip property.

Double-duty: non-HTTP and HTTP processing on the same socket

Your HTTP sockets don't have to be exclusively HTTP. You can have them behave
differently depending on which listening port the TCP connection is being made to.
Here is an example: supposing the setup of your device needs to be effected in two
ways- via TELNET or via HTTP. Standard TELNET port is 23, standard HTTP port is
80. Setup your socket like this:

sock.num=f

492

483

360

465Platforms

©2000-2011 Tibbo Technology Inc.

sock.protocol= PL_SOCK_PROTOCOL_TCP
sock.inconmode= PL_SOCK_INCONMODE_ANY_IP_ANY_PORT
sock.localportlist="23"
sock.httpportlist="80"
....

The socket will now be accepting connections both on port 23 and port 80. When
connection is made to port 23, the socket will work as a regular data socket, as
was described in previous sections. When connection is made to port 80, the
socket will automatically switch into the HTTP mode!

There is a property- sock.httpmode - that tells you which mode the socket is in-
regular data mode or HTTP. You can even "forcefully" switch any TCP connection
into the HTTP mode by setting sock.httpmode= 1- YES. You cannot, however,
switch this connection back to the data mode, it will remain in the HTTP mode until
termination.

Socket Behavior in the HTTP Mode

When in the HTTP mode, the socket is behaving differently compared to the normal
data mode.

Incoming connection rejection

As was explained in Accepting Incoming Connections , if your device "decides" to
reject an incoming TCP connection, it will send out a reset TCP packet. This way,
the other host is instantly notified of the rejection. Rules are different for HTTP
sockets:

If there is an incoming TCP connection to the web server of the device (incoming
HTTP connection request), and if your application has one or more sockets that
are configured to accept this connection, and if all such sockets are already
occupied, then the system will not reply to the requesting host at all.

If there is an incoming HTTP connection request, and if your application has no
HTTP sockets configured to accept this connection, then the system will still
respond with a reset.

This behavior allows your application to get away with fewer HTTP sockets. Here is
why. If all HTTP sockets are busy and your application sends out a reset, the
browser will show a "connection reset" message. If, however, your device does not
reply at all, the browser will wait, and resend its request later. Browsers are
"patient" -- they will typically try several times before giving up. If any HTTP
sockets are freed-up during this wait, the repeat request will be accepted and the
browser will get its page. Therefore, very few HTTP sockets can handle a large
number of page requests in a sequential manner and with few rejections.

Other differences

All incoming data is still stored in the TX buffer (yes, TX buffer). This data,
however, is not passed to your program but, instead, is interpreted as HTTP
request. This HTTP request must be properly formatted. The sock object supports
GET and POST commands.

The RX buffer is not used at all and does not have be allocated any memory.

GET and POST commands can optionally contain "request variables". These are
stored into the VAR buffer from which your program can read them out later.

No on_sock_data_arrival event is generated when the HTTP request string is

481

426

462

489

466 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

received into the RX buffer.

Once entire request has been received the socket prepares and starts to output
the reply. Your program has no control over this output until a BASIC code
fragment is encountered in the HTTP file. The on_sock_data_sent event
cannot be used as well.

When code fragment is encountered in the HTTP file control is passed to it and
then your program can perform desired action, i.e. generate some dynamic HTML
content, etc. When this fragment is entered, the sock.num is automatically set
to the correct socket number.

Once HTTP reply has been sent to the client the socket will automatically close
the connection, as is a normal socket behavior for HTTP. A special property-
sock.httpnoclose - allows you to change this default behavior and leave the
connection opened.

Including BASIC Code in HTTP Files

To create dynamic HTML pages, you include BASIC statements directly into the
HTML file. A fragment of BASIC code is included within "<? ?>" encapsulation, as
shown in the example below (for more info see Working with HTML):

<!DOCTYPE HTML public "-//W3C//DTD W3 HTML//EN">
<HTML>
<BODY>

HELLO HTML WORLD!

<?

'This is a BASIC code snippet. We can, for instance, send
something to the serial port

ser.num=0
ser.setdata("HELLO SERIAL WORLD TOO!")
ser.send

?>
</BODY>
</HTML>

Each time this HTML page will be requested by the browser, the "HELLO SERIAL
WORLD TOO!" string will be sent out of the serial port.

Generating Dynamic HTML Pages

How to "print" dynamic HTML data

In most cases the BASIC code included into the HTML page is used to generate
dynamic HTML content, i.e. to send some dynamically generated data to the
browser. This is done in a way, similar to sending out data in a regular data mode:
you first set the data you want to send with the sock.setdata method, then
commit this data for sending using sock.send method.

Here is an example HTML page that checks the state of one of the inputs of the I/O
object and reports this state on the HTML page:

489

488

482

79

500

500

467Platforms

©2000-2011 Tibbo Technology Inc.

<!DOCTYPE HTML public "-//W3C//DTD W3 HTML//EN">
<HTML>
<BODY>

The state of line 0 is:!

<?

'This is a BASIC code fragment. Get the state of the line.
io.num=0
if io.state= LOW then

sock.setdata("LOW")
else

sock.setdata("HIGH")
end if
sock.send

?>
</BODY>
</HTML>

Notice how we did not have to use sock.num - it is set automatically when
control is passed to BASIC!

Be careful not to get your data truncated!

The above example is seemingly correct and in this particular case will work fine-
because there is not much static data preceding the point where we generate
dynamic content and not much dynamic content is generated as well. Generally
speaking, you cannot expect that the TX buffer will have enough space when you
need to put some data into it! If you are not careful the dynamic data you want to
generate may get truncated!

To avoid this situation always check if the necessary amount of free space is
available before attempting to put it into the TX buffer. This statement is true for
the normal data mode as well, not just for the HTTP processing- we have already
touched on this subject in Sending Data . What is different for HTTP is that you
cannot use the on_sock_data_sent event to "call you back" when the TX buffer
frees up!

The only solution in case of HTTP is to wait, in a loop, for the desired amount of
space to become available. Naturally, we don't want to be blocking the whole
device, so "polite" waiting shall include a doevents statement:

<?
dim s as string(4)

?>

<!DOCTYPE HTML public "-//W3C//DTD W3 HTML//EN">
<HTML>
<BODY>

The state of line 0 is:!

<?

'This is a BASIC code snippet. Get the state of the line.
io.num=0
if io.state= LOW then

s="LOW"
else

s=HIGH
end if

488

451

489

87

468 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

'and now we wait till the TX buffer has enough free space
while sock.txfree<len(s)

doevents
wend

'OK, so necessary space is now available!
sock.setdata(s)
sock.send

?>
</BODY>
</HTML>

Now we have a bullet-proof dynamic content generation and non-blocking
operation! As you get more experience with HTML, you will see that the doevents
statement has to be used quite often.

Special case: doevents and concurrent request of the same file

With HTTP it is entirely possible that two computers (browsers) will request the
same HTML file. If you have allocated more than one socket for HTTP it is also
possible that both of those requests will be processed at the same time. Of course,
the BASIC VM is a single-process system, so when it comes to processing dynamic
part of the files, one of the requests will be first.

It is also entirely possible, that when executing the BASIC procedure from the first
"instance" of the file, execution arrives at doevents and the second instance of the
same file will start to process. After all, doevents allows other events to execute,
so this can include activity in other sockets.

Now, if the same BASIC procedure was allowed to execute again this would cause
recursion: an attempt to execute a portion of code while it is already executing!
Recursion is not allowed , so the VM will not re-enter the code immediately.
Instead, the second instance of HTML page will be "on hold" until the first instance
finishes running the procedure in question. After that, the same procedure will be
executed for the second instance. This behavior has been introduced in V1.2 of
TiOS. In the previous release, procedure execution for the second instance of the
HTML page was simply skipped and not executed at all, which is wrong!

Once again, for this to occur the following conditions must be met: the HTML
procedure in question must use doevents statement, and the same file (HTML page)
must be requested simultaneously from several browsers.

Avoiding illegal characters

HTTP restricts the use of some characters- you cannot freely send any code from
the ASCII table. When you use the sock.setdata and sock.send, you are "printing"
data directly to the browser. It is your program's responsibility to avoid illegal
characters and use "%xx" instead.

URL Substitution

HTML files can include BASIC code and thus be dynamic . Actual HTML
contents received by the browser may partially be generated by your Tibbo BASIC
application. Files of other types -- plain text, graphics, etc. -- cannot include
executable code and are static in nature. These files are sent to the browser "as
is".

66

466 466

469Platforms

©2000-2011 Tibbo Technology Inc.

So, what if you need to generate such a non-HTTP file dynamically? For example,
what if you want to generate a BMP file? The answer is in using "URL substitution".
The sock.urlsubstitutes property allows you to do this.

The property stored a list of comma-separated file names (with extensions). When
the web server receives a request for a non-HTML file from the browser (say,
"pix.bmp"), it first tries to find this file among the HTML and resource files of your
project. Failing this, the web server looks at defined substitutions. If the requested
file is not on the list, the web server returns the "404 error".

If the file is on the list of defined substitutions, the browser looks for the file with
the same name but ".html" extension ("pix.html"). If there is no such file, the "404
error" is, again, the answer. If this HTML file exists the server outputs this file, but
makes it look like it was a file of the original type (server processes "pix.html",
brower gets "pix.bmp").

Since the actual behind-the-scenes output is done for the HTML file you can put
your own code into that file and generate content dynamically. The following
example shows how we generate the file "pix.bmp" dynamically. For this to work, we
need to set sock.urlsubstitutes="pix.bmp" somewhere in the initialization section of
the project. Here is what we have in "pix.html" file:

<?
 Dim x As Byte
 Dim s As String

 romfile.open("source.bmp")
 Do
 x=sock.txfree
 s=romfile.getdata(x)
 sock.setdata(s)
 sock.send
 Loop While Len(s)=x
?>

In this example we simply read and output the contents of another bmp file called
"source.bmp". No value is added -- we could just access that graphical file directly.
Your code, however, is free to do anything and substitution opens up the way to
create your picture on the fly, or dynamically generate the content for other
"static" files.

Working with HTTP Variables

HTML pages often pass "variables" to each other. For example, if you have an HTML
form to fill on page "form.html" you may want to have the data input by the user on
page "result.html".

The explanation of HTTP variables is divided into three sections:

Simple case -- the amount of HTTP variable data does not exceed 255 bytes;

Complex case -- the amount of HTTP variable data exceeds 255 bytes (can
easily happen, especially with file uploads);

Details on how the variable data actually looks to your application depending
on the method used (HTTP GET or POST).

511

470

471

473

470 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

In most cases the client will send a fairly small amount of variable data, so it all will
fit in 255 bytes. Use the sock.httprqstring R/O property, as shown in the
following example. Say, you have a login to perform. The user enters his/her name
and password on page "index.html". Actual login is processed on page "login.html".
The data is passed between these two pages "invisibly", using the HTTP POST
method.

Here is the file "index.html":

<html> <body>
<form action="form_get.html" method="post" enctype="multipart/form-

data">
username: <Input Type="text" name="user">

password: <Input Type="password" name="pwd">

<Input Type="submit" value="send">

</form>
</body> </html>

And here is "login.html":

<html><body>
<?

dim s as string
s=sock.httprqstring
'actual processing here, s now contains the variable string

?>
</body></html>

Details on Variable Data explains what exactly you get from the sock.httprqstring
 property.

The advantage of using the sock.httprqstring is that the variable data is always
there, no matter how many times you read it. Be forewarned, though...

If you are using the sock.httprqstring, and if the client sends more data than
can fit in the VAR buffer, the execution of the HTTP request processing will
be stalled indefinitely. See Complex Case (Large Amount of Variable Data)
for a method of handling this correctly.

Let's talk a bit about why the socket may get stuck. The following diagram details
the flow of HTTP request and response processing:

483

473

483

471

471Platforms

©2000-2011 Tibbo Technology Inc.

As you can see from the diagram, the socket will automatically extract the variable
data and store it into the VAR buffer. The code example above will access the
buffer during the reply phase -- from within the "login.html" page. Problem is,
processing may never get that far. If the VAR buffer becomes full in the request
processing phase, the socket will simply keep waiting, and the reply phase will
never start! This is true no matter what HTTP method you use -- GET or POST.
Read on and we will tell you how to avoid this.

To avoid a problem situation described in the previous topic use a more complex,
but very reliable way of handling large HTTP variable data.

The on_sock_postdata event is generated when there is data in the VAR buffer.
In this regard, the event is similar in nature to the on_sock_data_arrival event
which is generated when the RX buffer of the socket has data. Unlike the
on_sock_data_arrival event, the on_sock_postdata will first be generated only after
the VAR buffer becomes full. That is, you won't be bothered by this event unless
the HTTP request processing simply can't continue without it.

OK, so now you have a chance to access and process the HTTP variable data as it
arrives and before the reply phase even starts. The sock.gethttprqstring
method, unlike the sock.httprqstring R/O property, actually removes the data
from the VAR buffer, thus freeing up the buffer space. Diagram below illustrates the
process:

471

470

491

489

480

483

472 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Here is a modified login example:

In the event handler for the on_sock_postdata event we extract available HTTP
variable data and process it. The event will be called as many times as necessary.
For example, we may save the data into a file:

Sub On_sock_postdata()
 fd.setdata(sock.gethttprqstring(255)) 'very simplified, but illustrates
the point
End Sub

Then, in the HTML file. It is necessary to remember that a portion of the HTTP
variable data may still be unhandled by the time you get here:

<html><body>
 <?
 While sock.httprqstring<>"" 'extract the remaining part of the
variable data
 fd.setdata(sock.gethttprqstring(255))
 Wend
 ?>
</body></html>

It is unlikely that user login will require such careful handling. User name and

473Platforms

©2000-2011 Tibbo Technology Inc.

password will comfortably fit in 255 bytes, unless you users are paranoid and have
humongous passwords. Still, there are many situation when you need to send large
variable data. For example, HTTP POST methods are routinely used to upload files
to the web server and your device will be able to handle this, too.

So far we haven't touched on the subject of actual data that you will read using
sock.httprqstring and sock.gethttprqstring . In other words, we haven't
discussed the contents of the VAR buffer. It is time to clear this.

We have already explained that the above R/O property and method will return the
same data, with the only difference that the sock.httprqstring will not actually
remove the data from the VAR buffer and will not be able to access past the first
255 bytes of such data.

Data format in the VAR buffer depends on the method used.

VAR buffer contents -- HTTP GET method

Supposing the client has sent the following request:

GET /form_get.html?user=CHUCKY&pwd=THEEVILDOLL HTTP/1.1
Host: 127.0.0.1:1000
User-Agent: Mozilla/5.0 (and so on)

The VAR buffer will get everything past the URL and until the first CR/LF. The part
is highlighted in blue. There are two variables -- user and pwd. They are equal to
"CHUCKY" and "THEEVILDOLL". Your application can just ignore the "HTTP/1.1" part.

VAR buffer contents -- HTTP POST method

Here is a sample client request:

POST /form_get.html HTTP/1.1
Host: 127.0.0.1:1000
User-Agent: Mozilla/5.0
(lots of stuff skipped)
Content-Type: multipart/form-data; boundary=---------------------------
21724139663430
Content-Length: 257

-----------------------------21724139663430
Content-Disposition: form-data; name="user"

CHUCKY
-----------------------------21724139663430
Content-Disposition: form-data; name="pwd"

THEEVILDOLL

483 480

474 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

-----------------------------21724139663430--

You will get everything shown in blue.

8.3.14.2Properties, Methods, and Events

This section provides an alphabetical list of all properties, methods, and events of
the sock object.

.Acceptbcast Property

Function: For the currently selected socket (selection is made
through sock.num) specifies whether the socket will
accept incoming broadcast UDP datagrams.

Type: Enum (yes_no, byte)

Value Range: 0- NO (default): will not accept broadcasts.

1- YES: will accept broadcasts.

See Also: ---

Details

This property is irrelevant for TCP communications (sock.protocol
=PL_SOCK_PROTOCOL_TCP).

.Allowedinterfaces Property

Function: For the currently selected socket (selection is made
through sock.num) defines the list of network
interfaces on which this socket will accept incoming
connections.

Type: String

Value Range: Platform-specific. Refer to your device's platform
documentation (for example, EM1000's is here).

See Also: Accepting Incoming Connections

Details

Interfaces that can be on the list are: "NET" (Ethernet), "WLN" (Wi-Fi), "PPP", and
"PPPoE". The list of allowed interfaces is comma-delimited, i.e, "WLN,NET".

Note that reading back the value of this property will return the same list, but not
necessarily in the same order. For example, the application may write "WLN,NET"
into this property, yet read "NET,WLN" back. Unsupported interface names will be
dropped from the list automatically.

The list of interfaces supported by your platform can be checked through
sock.availableinterfaces . Only interfaces from this list can be specified as
"allowed". Trying to allow an unsupported interface will not work.

488

492

488

143

426

475

475Platforms

©2000-2011 Tibbo Technology Inc.

The socket will not accept a connection on the interface which is not on the
sock.allowedinterfaces list, even if all other connection parameters such as
protocol, port, etc. are correct.

.Availableinterfaces R/O Property

Function: Returns a comma-delimited list of network interfaces
available on this platform.

Type: String

Value Range: Platform-specific. Refer to your device's platform
documentation (for example, EM1000's is here).

See Also: sock.targetinterface , sock.currentinterface ,
sock.allowedinterfaces

Details

.Bcast R/O Property

Function: For the currently selected socket (selection is made
through sock.num) reports whether the current or most
recently received UDP datagram was a broadcast one.

Type: Enum (no_yes, byte)

Value Range: 0- NO (default): the UDP datagram is not a broadcast
one.

1- YES: the UDP datagram is a broadcast one.

See Also: sock.remotemac , sock.remoteip , sock.remoteport

Details

When the on_sock_data_arrival event handler is entered, the sock.bcast will
contain the broadcast status for the current datagram being processed. Outside of
the on_sock_data_arrival event handler, the property will return the broadcast
status of the most recent datagram received by the socket.

.Close Method

Function: For the selected socket (selection is made through
sock.num) causes the socket to close the connection
with the other host.

Syntax: sock.close

Returns: ---

143

506 478

474

488

495 494 495

489

488

476 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

See Also:

Details

For established TCP connections this will be a "graceful disconnect", if the TCP
connection was in the "connection opening" or "connection closing" state this will
be a reset (just like when the sock.reset method is used). If connection was in
the ARP phase or the transport protocol was UDP (sock.protocol = 0- 0-
PL_SOCK_PROTOCOL_UDP) the connection will be discarded (just like when the
sock.discard method is used). Method invocation will have NO effect if
connection was closed at the time when the method was called (sock.state in
one of PL_SST_CLOSED states).

This method will be ignored when called from within an HTML page. HTML sockets
are handled automatically and your application is not at freedom to close HTML
sockets arbitrarily.

.Cmdbuffrq Method

Function: For the selected socket (selection is made through
sock.num) pre-requests "numpages" number of buffer
pages (1 page= 256 bytes) for the CMD buffer of the
socket.

Syntax: sock.cmdbuffrq(numpages as byte) as byte

Returns: Actual number of pages that can be allocated (byte)

See Also: sock.rplbuffrq

Part Description

numpages Requested numbers of buffer pages to allocate.

Details

The CMD buffer is the buffer that accumulates incoming inband commands
(messages). This method returns actual number of pages that can be allocated.
Actual allocation happens when the sys.buffalloc method is used. The socket is
unable to receive inband commands if its CMD buffer has 0 capacity. Unlike for TX
or RX buffers there is no property to read out actual CMD buffer capacity in bytes.
This capacity can be calculated as num_pages*256-16 (or =0 when num_pages=0),
where "num_pages" is the number of buffer pages that was GRANTED through the
sock.cmdbuffrq method. "-16" is because 16 bytes are needed for internal buffer
variables.

Buffer allocation will not work if the socket port to which this buffer belongs is not
idle (sock.statesimple is not at 0- PL_SSTS_CLOSED) at the time when
sys.buffalloc executes. You can only change buffer sizes of sockets that are idle.

The CMD buffer is only required when inband commands are enabled
(sock.inbandcommands = 1-YES).

495

492

478

502

488

496

476

505

484

477Platforms

©2000-2011 Tibbo Technology Inc.

.Cmdlen R/O Property

Function: For the selected socket (selection is made through
sock.num) returns the length of data (in bytes) waiting
to be processed in the CMD buffer.

Type: Word

Value Range: Default= 0 (0 bytes)

See Also: sock.rpllen , sock.inbandcommands

Details

The CMD buffer accumulates incoming inband commands (messages) and may
contain more than one such command. Use sock.getinband method to extract
the data from the CMD buffer.

.Connect Method

Function: For the selected socket (selection is made through
sock.num) causes the socket to attempt to connect to
the target host.

Syntax: sock.connect

Returns: ---

See Also:

Details

The target is specified by the sock.targetport and sock.targetip (unless, for
UDP, the socket is to broadcast the data- see the sock.targetbcast property).
Outgoing connection will be attempted through the network interface defined by
the sock.targetinterface property.

Method invocation will have effect only if connection was closed at the time when
the method was called (sock.state in one of PL_SST_CLOSED states).

.Connectiontout Property

Function: For the currently selected socket (selection is made
through sock.num) sets/returns connection timeout
threshold for the socket in half-second increments.

Type: Word

Value Range: 0-65535 (0-32767.5 seconds, 0 means "no timeout"),
default= 0 (no timeout)

See Also: Closing Connections

488

497 484

481

488

507 506

505

506

502

488

437

478 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Details

When no data is exchanged across the connection for sock.connectiontout/2
number of seconds this connection is aborted (in the same way as if the sock.reset

 method was used). Connection timeout of 0 means "no timeout".

Actual time elapsed since the last data exchange across the socket can be
obtained through the sock.toutcounter R/O property.

.Currentinterface R/O Property

Function: For the currently selected socket (selection is made
through sock.num) returns the network interface this
socket is currently communicating through.

Type: Enum (pl_sock_interfaces, byte)

Value Range: Platform-specific. See the list of pl_sock_interfaces
constants in the platform specifications (for example,
EM1000's is here).

See Also: Checking Connection Status

Details

The value of this property is only valid when the socket is not idle, i.e.
sock.statesimple<> 0- PL_SSTS_CLOSED.

.Discard Method

Function: For the selected socket (selection is made through
sock.num) causes the socket to discard the connection
with the other host.

Syntax: sock.discard

Returns: ---

See Also: sock.close , sock.reset

Details

Discarding the connection means simply forgetting about it without notifying the
other side of the connection in any way.

This method will be ignored when called from within an HTML page. HTML sockets
are handled automatically and your application is not at freedom to discard HTML
sockets arbitrarily.

495

507

488

143

439

488

475 495

479Platforms

©2000-2011 Tibbo Technology Inc.

.Endchar Property

Function: For the currently selected socket (selection is made
through sock.num) specifies the ASCII code of the
character that will end inband command (message).

Type: Byte

Value Range: 0-255, default= 13 (CR)

See Also: sock.escchar

Details

Each inband message has to end with the end character, which will mark a return
to the "regular" data stream of the TCP connection.

This property is irrelevant when inband commands are disabled
(sock.inbandcommands = 0- NO). The program won't be able to change the value
of this property when the socket is not idle (sock.statesimple <> 0-
PL_SSTS_CLOSED).

.Escchar Property

Function: For the currently selected socket (selection is made
through sock.num) specifies the ASCII code of the
character that will be used as an escape character for
inband commands (messages).

Type: Byte

Value Range: 0-255, default= 255

See Also: sock.endchar

Details

Each inband message starts with "EC OC", where "EC" is the escape character
defined by the sock.escchar property and "OC" is any character other than "EC".
With inband commands enabled, data characters with code matching that of the
escape character is transmitted as "EC EC" (that is, two identical characters are
needed to transmit a single data character with code matching that of escape
character).

This property is irrelevant when inband commands are disabled
(sock.inbandcommands = 0- NO). The program won't be able to change the value
of this property when the socket is not idle (sock.statesimple <> 0-
PL_SSTS_CLOSED).

488

479

484

505

488

479

484

505

480 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

.Event R/O Property (Obsolete)

This property is no longer available. Instead, the on_sock_event property has a
newstate argument that carries the state of the socket at the time of event
generation.

.Eventsimple R/O Property (Obsolete)

This property is no longer available. Instead, the on_sock_event property has a
newstatesimple argument that carries the simplified state of the socket at the time
of event generation.

.Getdata Method

Function: For the selected socket (selection is made through
sock.num) returns the string that contains the data
extracted from the RX buffer.

Syntax: ser.getdata(maxinplen as word) as string

Returns: String containing data extracted from the RX buffer

See Also:

Part Description

maxinplen Maximum amount of data to return (word).

Details

Extracted data is permanently deleted from the buffer. Length of extracted data is
limited by one of the three factors (whichever is smaller): amount of data in the RX
buffer itself, capacity of the "receiving" string variable, and the limit set by the
maxinplen argument.

Additionally, if this socket uses UDP transport protocol (sock.protocol = 1-
PL_SOCK_PROTOCOL_TCP) the length of data that will be extracted is limited to the
UDP datagram being processed. Additional conditions apply to UDP datagram
processing; see on_sock_data_arrival event and sock.nextpacket method.

.Gethttprqstring Method

Function: For the selected socket (selection is made through
sock.num) extracts up to 255 bytes of the HTTP
request string from theVAR buffer.

Syntax: ser.gethttprqstring(maxinplen as word) as string

Returns: String containing data extracted from the VAR buffer.

See Also: Working with HTTP Variables , Sock.httprqstring

490

490

488

492

489 487

488

469 483

481Platforms

©2000-2011 Tibbo Technology Inc.

Part Description

maxinplen Maximum amount of data to return (word).

Details

Extracted data is permanently deleted from the VAR buffer. VAR buffer contents are
explained in Details on Variable Data .

Length of extracted data is limited by one of the three factors (whichever is
smaller): amount of data in the buffer itself, capacity of the "receiving" string
variable, and the limit set by the maxinplen argument.

This method is only relevant when the socket is in the HTTP mode (sock.httpmode
= 1- YES). Use it from within an HTML page or on_sock_postdata event

handler.

.Getinband Method

Function: For the selected socket (selection is made through
sock.num) returns the string that contains the data
extracted from the CMD buffer.

Syntax: sock.getinband as string

Returns: String containing data from the CMD buffer

See Also:

Part Description

Details

The CMD buffer is the buffer that accumulates inband commands. Extracted data is
permanently deleted from the CMD buffer. Length of extracted data is limited by
one of the two factors (whichever is smaller): amount of data in the CMD buffer
itself, and the capacity of the "receiving" buffer variable. Several inband commands
may be waiting in the CMD buffer. Each command will always be complete, i.e.
there will be no situation when you will extract a portion of the command because
the end of this command hasn't arrived yet. Inband commands stored in the CMD
buffer will have escape character (see sock.escchar property) and the character
after the escape character already cut off, but the end character (see
sock.endchar property) will still be present. Therefore, your application can
separate inband command from each other by finding the end characters.

.Httpmode Property

Function: For the currently selected socket (selection is made
through sock.num) specifies whether this socket is in
the HTTP mode.

473

481 491

488

479

479

488

482 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Type: Enum (no_yes, byte)

Value Range: 0- NO (default): "regular" TCP connection.

1- YES: - HTTP connection.

See Also: ---

Details

This property is irrelavant when the sock.protocol = PL_SOCK_PROTOCOL_UDP
(UDP). If you do not set this property directly, it's value will be:

0- NO: for all outgoing connections (active opens) of the socket.

0- NO: for incoming connections received on one of the ports from the
sock.localportlist list.

1- YES: for incoming connections received on one of the ports from the
sock.httpportlist list.

You can manually switch any TCP connection at any time after it has been
established from "regular" to HTTP by setting sock.httpmode= 1. However, this
operation is "sticky"- once you have converted the TCP connection into the HTTP
mode you cannot convert it back into the regular mode- trying to set
sock.httpmode=0 won't have any effect- the TCP connection will remain in the
HTTP mode until this connection is closed.

.Httpnoclose Property

Function: For the currently selected socket (selection is made
through sock.num) sets/returns whether TCP HTTP
connection will be kept opened after the HTTP request
has been processed and the HTML page has been sent out

Type: Enum (no_yes, byte)

Value Range: 0- NO (default): connection will be closed (standard
HTML server behavior)

1- YES: will be kept opened, special string will be used as
a separator.

See Also: ---

Details

Normally, the end of HTML output is indicated by closing the TCP connection. When
this property is set to 1- YES, connection is not closed at the end of HTML output.
As a substitute, the end of HTML page output is marked by the following string:
"<tibbo_linkserver_http_proxy_end_of_output>".

492

486

483

488

483Platforms

©2000-2011 Tibbo Technology Inc.

.Httpportlist Property

Function: For the currently selected socket (selection is made
through sock.num) sets/returns the list of listening
ports on any of which this socket will accept an incoming
HTTP connection.

Type: String

Value Range: 0-32 characters, default= ""

See Also: sock.localport , sock.httpmode

Details

 This property is only relevant when incoming connections are allowed by the
sock.inconmode property and the the sock.protocol = 1-
PL_SOCK_PROTOCOL_TCP (HTML output cannot be done through the UDP).

This property is of string type and the list of ports is a comma-separated string, i.e.
"80,81" (to accept HTTP connections on either port 80 or 81). Max string length for
this property is 32 bytes.

Notice, that there is also the sock.localportlist property that defines a list of
listening ports for UDP and non-HTTP TCP connections. When a particular port is
listed both under the sock.localportlist and the sock.httpportlist, and the protocol
for this socket is TCP then sock.httpportlist has precedence (incoming TCP
connection on the port in question will be interpreted as HTTP).

For example, if the sock.httpportlist= "80,81", the sock.localportlist="3000,80", the
sock.protocol= 1- PL_SOCK_PROTOCOL_TCP, and there is an incoming TCP
connection request on port 80 then this connection will be interpreted as HTTP
one.

.Httprqstring R/O Property

Function: For the selected socket (selection is made through
sock.num) returns up to 255 bytes of the HTTP request
string stored in the VAR buffer.

Type: String

Value Range: Default= ""

See Also: Sock.varbuffrq

Details

The sock.httprqstring is a property; it can be invoked several times and will return
the same data (when this property is used the data is not deleted from the VAR
buffer). VAR buffer contents are explained in Details on Variable Data .

This property is only relevant when the socket is in the HTTP mode (sock.httpmode
= 1- YES). Use it from within an HTML page or on_sock_postdata event

handler. Maximum length of data that can be obtained through this property is 255

488

485 481

485 492

486

488

511

473

481 491

484 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

bytes, since this is the maximum possible capacity of a string variable that will
accept the value of the sock.httprqstring.

HTTP requests can be much longer than 255 bytes and can even include entire files
being uploaded from the client to your device. Rely on the on_sock_postdata event
and the sock.gethttprqstring method to handle large amounts of HTTP variable
data correctly.

If you are using the sock.httprqstring, and if the client sends more data than
can fit in the VAR buffer, the execution of the HTTP request will be stalled
indefinitely. To avoid this, reply on the on_sock_postdata event and the
sock.gethttprqstring method, as explained in Complex Case (Large Amount of
Variable Data) .

.Inbandcommands Property

Function: For the currently selected socket (selection is made
through sock.num) specifies whether inband command
passing is allowed.

Type: Enum (no_yes, byte)

Value Range: 0- NO (default): inband commands are not allowed.

1- YES: inband commands are allowed.

See Also: ---

Details

Inband commands are messages passed within the TCP data stream. Each message
has to be formatted in a specific way- see the sock.escchar and sock.endchar

 properties.

Inband commands are not possible for UDP communications so this setting is
irrelevant when the sock.protocol = 1- PL_SOCK_PROTOCOL_UDP. Inband
messaging will work even when redirection (buffer shorting) is enabled for the
socket (see the sock.redir method). The program won't be able to change the
value of this property when the socket is not idle (sock.statesimple <> 0-
PL_SSTS_CLOSED).

.Inconenabledmaster Property

Function: A master switch that globally disables incoming connection
acceptance on all sockets, irregardless of each socket's
individual setup.

Type: Enum (no_yes, byte)

Value Range: 0- NO: No socket will be allowed to accept an incoming
connection.

1- YES (default): Incoming connections are globally
enabled. Individual socket's behavior and whether it will
accept or reject a particular incoming connection depends

480

471

488

479

479

492

493

505

485Platforms

©2000-2011 Tibbo Technology Inc.

on the setup of this socket.

See Also: sock.inconmode , sock.localportlist , sock.httpportlist

Details

This property can be used to temporarily disable incoming connection acceptance
on all sockets without changing individual setup of each socket.

.Inconmode Property

Function: For the currently selected socket (selection is made
through sock.num) specifies whether incoming
connections (passive opens) will be accepted and, if yes,
from which sources.

Type: Enum (pl_sock_inconmode, byte)

Value Range: 0- PL_SOCK_INCONMODE_NONE (default): The socket
does not accept any incoming connections.

1- PL_SOCK_INCONMODE_SPECIFIC_IPPORT: The socket
will only accept an incoming connection from specific IP
(matching sock.targetip) and specific port (matching
sock.targetport)

2- PL_SOCK_INCONMODE_SPECIFIC_IP_ANY_PORT: The
socket will only accept an incoming connection from
specific IP (matching sock.targetip), but any port.

3- PL_SOCK_INCONMODE_ANY_IP_ANY_PORT: The socket
will accept an incoming connection from any IP and any
port.

See Also: sock.reconmode , sock.localportlist , sock.httpportlist

Details

.Localport R/O Property

Function: For the currently selected socket (selection is made
through sock.num) returns current local port of the
socket.

Type: Word

Value Range: 0-65535, default= 0

See Also: ---

485 486

483

488

506

507

492 486

483

488

486 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Details

Your application cannot set the local port directly. Instead, a list of ports on which
the socket is allowed to accept an incoming connection (passive open) is supplied
via the sock.localportlist and sock.httpportlist properties.

An incoming connection is accepted on any port from those two lists. The
sock.localport property reflects current or the most recent local port on which
connection was accepted.

.Localportlist Property

Function: For the currently selected socket (selection is made
through sock.num) sets/returns the list of listening
ports on any of which this socket will accept an incoming
UDP or TCP connection.

Type: String

Value Range: 0-32 characters, default= ""

See Also: sock.localport

Details

The socket will only accept an incoming connection when such connections are
allowed by the sock.inconmode property. Whether the socket will accept UDP or
TCP connections is defined by the sock.protocol property. Additionally, the
sock.allowedinterfaces property defines network interfaces on which the socket
will accept an incoming connection.

This property is of string type and the list of ports is a comma-separated string, i.e.
"1001,3000" (to accept connections on either port 1001 or 3000). Max string length
for this property is 32 bytes. Notice, that there is also a sock.httpportlist
property that defines a list of listening ports for HTTP TCP connections.

.Newtxlen R/O Property

Function: For the selected socket (selection is made through
sock.num) returns the amount of uncommitted TX data
in bytes.

Type: Word

Value Range: 0-65535, default= 0 (0 bytes)

See Also: ---

Details

Uncommitted data is the one that was added to the TX buffer with the

486 483

488

485

485

492

474

483

488

487Platforms

©2000-2011 Tibbo Technology Inc.

sock.setdata method but not yet committed using the sock.send method.

.Nextpacket Method

Function: For the selected socket (selection is made through
sock.num) in the UDP mode (sock.protocol = 0-
PL_SOCK_PROTOCOL_UDP) closes processing of current
UDP datagram and moves to the next datagram.

Syntax: sock.nextpacket

Returns: ---

See Also: ---

Details

For UDP, the sock.getdata method only extracts the data from a single UDP
datagram even if several datagrams are stored in the RX buffer. When incoming UDP
datagram processing is based on the on_sock_data_arrival event the use of the
sock.nextpacket method is not required since each invocation of the
on_sock_data_arrival event handler "moves" processing to the next UDP datagram.

The method is useful when it is necessary to move to the next datagram without
re-entering on_sock_data_arrival event handler. Therefore, sock.nextpacket is only
necessary when the application needs to process several incoming UDP packets at
once and within a single event handler.

.Notifysent Method

Function: Using this method for the selected socket (selection is
made through sock.num) will cause the
on_sock_data_sent event to be generated when the
amount of committed data in the TX buffer is found to be
below "threshold" number of bytes.

Syntax: notifysent(threshold as word)

Returns: ---

See Also:

Part Description

threshold Amount of bytes in the TX buffer below which the event it
so be generated.

Details

Only one on_sock_data_sent event will be generated each time after the
sock.notifysent is invoked. This method, together with the on_sock_data_sent
event provides a way to handle data sending asynchronously.

Just like with sock.txfree , the trigger you set won't take into account any

500 500

488 492

480

489

489

510

488 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

uncommitted data in the TX buffer.

.Num Property

Function: Sets/returns the number of currently selected socket.

Type: Byte

Value Range: The value of this property won't exceed sock.numofsock
-1 (even if you attempt to set higher value). Default=

0 (socket #0 selected).

See Also: ---

Details

Sockets are enumerated from 0. Most other properties and methods of this object
relate to the socket selected through this property. Note that socket-related
events such as on_sock_data_arrival change currently selected socket!

.Numofsock R/O Property

Function: Returns total number of sockets available on the current
platform.

Type: Byte

Value Range: platform-dependent

See Also: sock.num

Details

.Outport Property

Function: For the currently selected socket (selection is made
through sock.num) sets/returns the number of the port
that will be used by the socket to establish outgoing
connections.

Type: Word

Value Range: 0-65535, default= 0

See Also: ---

488

489

488

488

489Platforms

©2000-2011 Tibbo Technology Inc.

Details

If this property is set to 0 then the socket will use "automatic" port numbers: for
the first connection since the powerup the port number will be selected randomly,
for all subsequent outgoing connections the port number will increase by one.
Actual local port of a connection can be queried through the sock.localport
read-only property.

If this property is not at zero then the port it specifies will be used for all outgoing
connections from this socket.

On_sock_data_arrival Event

Function: Generated when at least one data byte is present in the
RX buffer of the socket (i.e. for this socket the sock.rxlen

>0).

Declaration: on_sock_data_arrival

See Also: sock.nextudpdatagram

Details

When the event handler for this event is entered the sock.num property is
automatically switched to the socket for which this event was generated. Another
on_sock_data_arrival event on a particular socket is never generated until the
previous one is processed.

Use the sock.getdata method to extract the data from the RX buffer.

For TCP protocol (sock.protocol = 1- PL_SOCK_PROTOCOL_TCP), there is no
separation into individual packets and you get all arriving data as a "stream". You
don't have to process all data in the RX buffer at once. If you exit the
on_sock_data_arrival event handler while there is still some unprocessed data in the
RX buffer another on_sock_data_arrival event will be generated immediately.

For UDP protocol (sock.protocol= 0- PL_SOCK_PROTOCOL_UDP), the RX buffer
preserves datagram boundaries. Each time you enter the on_sock_data_arrival
event handler you get to process next UDP datagram. If you do not process entire
datagram contents the unread portion of the datagram is discarded once you exit
the event handler.

This event is not generated for a particular socket when buffer redirection is set for
this socket through the sock.redir method.

On_sock_data_sent Event

Function: Generated after the total amount of committed data in
the TX buffer of the socket (sock.txlen) is found to be
less than the threshold that was preset through the
sock.notifysent method.

Declaration: on_sock_data_sent

See Also: ---

485

499

487

488

489

480

492

493

487

490 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Details

To cause generation of the on_sock_data_sent event, the application needs to use
sock.notifysent each time. When the event handler is entered the sock.num is
automatically switched to the socket on which this event was generated.

Please, remember that uncommitted data in the TX buffer is not taken into account
for on_sock_data_sent event generation.

On_sock_event Event

Function: Notifies your program that the socket state has changed.

Declaration: on_sock_event(newstate as pl_sock_state,
newstatesimple as pl_sock_state_simple)

See Also: ---

Part Description

newstate "Detailed" state of the socket at the time of event
generation.

newstatesimple "Simplified" state of the socket at the time of event
generation.

Details

The newstate and newstatesimple arguments carry the state as it was at the
moment of event generation. This is different from sock.state and
sock.statesimple R/O properties that return current socket state). The newstate
argument uses the same set of constants as the sock.state. The newstatesimple
argument uses the same set of constants as the sock.statesimple. See sock.state

 and sock.statesimple for detailed description of reported socket states.

Newstate and Newstatesimple arguments of the on_sock_event have been
introduced in the Tibbo Basic release 2.0. They replace sock.event and
sock.eventsimple R/O properties which are no longer available.

On_sock_inband Event

Function: At least one data byte is present in the CMD buffer
(sock.cmdlen >0).

Declaration: on_sock_inband

See Also: ---

Details

Use the sock.getinband method to extract the data from the CMD buffer.
Another on_inband_command event on a particular socket is never generated until

488

502

505

502 505

480

480

477

481

491Platforms

©2000-2011 Tibbo Technology Inc.

the previous one is processed. When the event handler is entered the sock.num is
automatically switched to the socket on which this event was generated.

On_sock_overrun Event

Function: Data overrun has occurred in the RX buffer of the socket.

Declaration: on_sock_overrun

See Also: ---

Details

Normally, overruns can only happen for UDP communications as UDP has no "data
flow control" and, hence, data overruns are normal. Another on_sock_overrun event
on a particular socket is never generated until the previous one is processed. When
the event handler for this event is entered the sock.num is automatically
switched to the socket on which this event was generated.

On_sock_postdata

Function: Generated when at least one data byte is present in the
VAR buffer of the socket, but only after the VAR buffer
has become full at least once in the cause of the current
HTTP request processing.

Declaration: on_sock_postdata

See Also: Sock.varbuffrq

Details

HTTP requests can contain large amount of HTTP variable data, which is stored into
the VAR buffer. The amount of such data can exceed the VAR buffer capacity. If
this is not handled properly, the HTTP request execution may stall indefinitely --
see Working with HTTP Variables .

After the socket accepts an HTTP connection, this event is not generated (for this
particular connection) until the VAR buffer becomes full. Once this happened, the
event is generated even if there is a single byte waiting to be processed in the
buffer. Two same-socket on_sock_postdata events never wait in the queue -- the
next event can only be generated after the previous one is processed.

When the event handler for this event is entered the sock.num property is
automatically switched to the socket for which this event was generated.

Use the sock.gethttprqstring method or sock.httprqstring property to work
with the VAR buffer's data.

On_sock_tcp_packet_arrival Event

Function: Notifies your program that the TCP packet of a certain
size has arrived.

488

511

469

488

480 483

492 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Syntax: on_sock_tcp_packet_arrival(len as word)

See Also: "Split Packet" Mode of TCP Data Processing

Part Description

len Length of the new data in the RXed TCP packet.

Details

This event is only generated when sock.splittcppackets = 1- YES and
sock.inbandcommands = 0- DISABLED. Notice that only new data, never
transmitted before, is counted. If the packet is a retransmission then this event
won't be generated. Also, if some part of packet's data is a retransmission and
some part is new then only the length of the new data will be reported. This way
your program can maintain correct relationship between data lengths reported by
this event and actual data in the RX buffer.

The on_sock_tcp_packet_arrival event is always generated before the
on_sock_data_arrival for any incoming TCP data (packet).

.Protocol Property

Function: For the currently selected socket (selection is made
through sock.num) selects the transport protocol.

Type: Enum (pl_sock_protocol, byte)

Value Range: 0- PL_SOCK_PROTOCOL_UDP (default): UDP transport
protocol.

1- PL_SOCK_PROTOCOL_TCP: TCP transport protocol.

See Also: ---

Details

Notice, that there is no "HTTP" selection, as HTTP is not a transport protocol (TCP
is the transport protocol required by the HTTP). You make the socket accept HTTP
connections by specifying the list of HTTP listening ports using the sock.httpportlist

 property or using the sock.httpmode property.

The program won't be able to change the value of this property when the socket is
not idle (sock.statesimple <> 0- PL_SSTS_CLOSED).

.Reconmode Property

Function: For the currently selected socket (selection is made
through sock.num) whether the socket accepts
reconnects, and, if yes, from which sources.

Type: Enum (pl_sock_reconmode, byte)

Value Range: 0- PL_SOCK_RECONMODE_0 (default): For UDP:
Reconnects accepted only from the same IP as the one

453

501

484

489

488

483 481

505

488

493Platforms

©2000-2011 Tibbo Technology Inc.

already engaged in the current connection with this
socket, but any port; port switchover will not happen.
TCP: reconnects are not accepted at all.

1- PL_SOCK_RECONMODE_1: For UDP: Reconnects
accepted from any IP, any port; port switchover will not
happen. TCP: reconnects accepted only from the same IP
and port as the ones already engaged in the current
connection with this socket.

2- PL_SOCK_RECONMODE_2: For UDP: Reconnects
accepted only from the same IP as the one already
engaged in the current connection with this socket, but
any port; port switchover will happen. TCP: reconnects
accepted only from the same IP as the one already
engaged in the current connection with this socket, but
any port.

3- PL_SOCK_RECONMODE_3: For UDP: Reconnects
accepted from any IP, any port; port switchover will
happen. TCP: reconnects accepted from any IP, any port.

See Also: ---

Details

Reconnect situation is when a passive open and resulting connection replace, for
the same socket, the connection that was already in progress. For UDP, this
property additionally defines whether a "port switchover" will occur as a result of an
incoming connection (passive open) or a reconnect. Port switchover is when the
socket starts sending its outgoing UDP datagrams to the port from which the most
recent UDP datagram was received, rather than the port specified by the
sock.targetport property.

DO NOT enable reconnects on sockets that are used to handle HTML requests. This
will interfere with HTML operation, as explained in the Understanding TCP
Reconnects topic.

.Redir Method

Function: For the selected socket (selection is made through
sock.num) redirects the data being RXed to the TX
buffer of the same socket, different socket, or another
object that supports compatible buffers.

Syntax: sock.redir(redir as pl_redir) as pl_redir

Returns: Returns 0- PL_REDIR_NONE if redirection failed or the same
value as was passed in the redir argument.

See Also:

Part Description

507

428

488

494 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

redir Platform-specific. See the list of pl_redir constants in the
platform specifications.

Details

Data redirection (sometimes referred to as "buffer shorting") allows to arrange
efficient data exchange between ports, sockets, etc. in cases where no data
alteration or parsing is necessary, while achieving maximum possible throughput is
important.

The redir argument, as well as the value returned by this method are of "enum
pl_redir" type. The pl_redir defines a set of platform inter-object constants that
include all possible redirections for this platform. Specifying redir value of 0-
PL_REDIR_NONE cancels redirection. When the redirection is enabled for a particular
socket, the on_sock_data_arrival event is not generated for this port.

Once the RX buffer is redirected certain properties and methods related to the RX
buffer will actually return the data for the TX buffer to which this RX buffer was
redirected:

sock.rxbuffsize will actually be returning the size of the TX buffer.

sock.rxclear method will actually be clearing the TX buffer.

sock.rxlen method will be showing the amount of data in the TX buffer.

.Remoteip R/O Property

Function: For the currently selected socket (selection is made
through sock.num) returns the IP address of the host
with which this socket had the most recent or currently
has a connection.

Type: String

Value Range: Default= "0.0.0.0"

See Also: sock.remotemac , sock.remoteport , sock.bcast

Details

The application cannot directly change this property, it can only specify the target
IP address for active opens through the sock.targetip property.

For UDP connections, when the on_sock_data_arrival event handler is entered,
the sock.remoteip will contain the IP address of the sender of the current datagram
being processed. Outside of the on_sock_data_arrival event handler, the property
will return the source IP address of the most recent datagram received by the
socket.

489

498

498

499

488

495 495 475

506

489

495Platforms

©2000-2011 Tibbo Technology Inc.

.Remotemac R/O Property

Function: For the currently selected socket (selection is made
through sock.num) returns the MAC address of the host
with which this socket had the most recent or currently
has a connection.

Type: String

Value Range: Default= "0.0.0.0.0.0"

See Also: sock.remoteip , sock.remoteport , sock.bcast

Details

For UDP connections, when the on_sock_data_arrival event handler is entered,
the sock.remotemac will contain the MAC address of the sender of the current UDP
datagram being processed. Outside of the on_sock_data_arrival event handler, the
property will return the source MAC address of the most recent datagram received
by the socket.

.Remoteport R/O Property

Function: For the currently selected socket (selection is made
through sock.num) returns the port number of the host
with which this socket had the most recent or currently
has a connection.

Type: Word

Value Range: 0-65535, default= 0

See Also: sock.remotemac , sock.remoteip , sock.bcast

Details

The application cannot directly change this property, it can only specify the target
port for active opens through the sock.targetport property.

For UDP connections, when the on_sock_data_arrival event handler is entered,
the sock.remoteport will contain the port number of the sender of the current
datagram being processed. Outside of the on_sock_data_arrival event handler, the
property will return the source port of the most recent datagram received by the
socket.

.Reset Method

Function: For the selected socket (selection is made through
sock.num) causes the socket to abort the connection
with the other host.

488

494 495 475

489

488

495 494 475

507

489

488

496 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Syntax: sock.reset

Returns: ---

See Also: sock.close

Details

For TCP connections that were established, being opened, or being closed this will
be a reset (RST will be sent to the other end of the connection). If connection was
in the ARP phase or the transport protocol was UDP (sock.protocol = 0-
PL_SOCK_PROTOCOL_UDP) the connection will be discarded (just like when the
sock.discard method is used).

Method invocation will have NO effect if connection was closed at the time when
the method was called (sock.state in one of PL_SST_CLOSED states).

This method will be ignored when called from within an HTML page. HTML sockets
are handled automatically and your application is not at freedom to reset HTML
sockets arbitrarily.

.Rplbuffrq Method

Function: For the selected socket (selection is made through
sock.num) pre-requests "numpages" number of buffer
pages (1 page= 256 bytes) for the RPL buffer of the
socket.

Syntax: sock.cmdbuffrq(numpages as byte) as byte

Returns: Actual number of pages that can be allocated (Byte).

See Also: sock.cmdbuffrq

Part Description

numpages Requested numbers of buffer pages to allocate.

Details

The RPL buffer is the the buffer that stores outgoing inband replies (messages).
Actual allocation happens when the sys.buffalloc method is used. The socket is
unable to send inband replies if its RPL buffer has 0 capacity.

Unlike for TX or RX buffers there is no property to read out actual RPL buffer
capacity in bytes. This capacity can be calculated as num_pages*256-16 (or =0
when num_pages=0), where "num_pages" is the number of buffer pages that was
GRANTED through the sock.rplbuffrq. "-16" is because 16 bytes are needed for
internal buffer variables.

Buffer allocation will not work if the socket port to which this buffer belongs is not
idle (sock.statesimple is not at 0- PL_SSTS_CLOSED) at the time when
sys.buffalloc executes. You can only change buffer sizes of sockets that are idle.

The RPL buffer is only required when inband commands are enabled
(sock.inbandcommands = 1- YES).

475

492

478

502

488

476

530

505

484

497Platforms

©2000-2011 Tibbo Technology Inc.

.Rplfree R/O Property

Function: For the selected socket (selection is made through
sock.num) returns the free space (in bytes) available in
the RPL buffer

Type: Word

Value Range: 0-65535, default= 0 (0 bytes)

See Also: sock.cmdlen , sock.rpllen , sock.inbandcommands

Details

The RPL buffer is the buffer that keeps outgoing inband replies (messages). Your
application adds inband replies to the RPL buffer with the sock.setsendinband
method. Several inband replies may be waiting in the RPL buffer.

.Rpllen R/O Property

Function: For the selected socket (selection is made through
sock.num) returns the length of data (in bytes) waiting
to be send out from the RPL buffer.

Type: Word

Value Range:

See Also: sock.cmdlen , sock.rplfree , sock.inbandcommands

Details

Your application adds inband replies to the RPL buffer with the sock.setsendinband
 method. Several inband replies may be waiting in the RPL buffer.

.Rxbuffrq Method

Function: For the selected socket (selection is made through
sock.num) pre-requests "numpages" number of buffer
pages (1 page= 256 bytes) for the RX buffer of the
socket.

Syntax: sock.rxbuffrq(numpages as byte) as byte

Returns: Actual number of pages that can be allocated (Byte).

See Also: sock.txbuffrq

488

477 497 484

500

488

477 497 484

500

509

498 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Part Description

numpages Requested numbers of buffer pages to allocate.

Details

Returns actual number of pages that can be allocated. Actual allocation happens
when the sys.buffalloc method is used. The socket is unable to RX data if its RX
buffer has 0 capacity. Actual current buffer capacity can be checked through the
sock.rxbuffsize which returns buffer capacity in bytes.

Relationship between the two is as follows: sock.rxbuffsize=num_pages*256-16 (or
=0 when num_pages=0), where "num_pages" is the number of buffer pages that
was GRANTED through the sock.rxbuffrq. "-16" is because 16 bytes are needed for
internal buffer variables.

Buffer allocation will not work if the socket port to which this buffer belongs is not
idle (sock.statesimple is not at 0- PL_SSTS_CLOSED) at the time when
sys.buffalloc executes. You can only change buffer sizes of sockets that are idle.

.Rxbuffsize R/O Property

Function: For the currently selected socket (selection is made
through sock.num) returns current RX buffer capacity
in bytes.

Type: Word

Value Range: 0-65535

See Also: ---

Details

Buffer capacity can be changed through the sock.rxbuffrq . The sock.rxbuffrq
requests buffer size in 256-byte pages whereas this property returns buffer size in
bytes.

Relationship between the two is as follows: sock.rxbuffsize=num_pages*256-16 (or
=0 when num_pages=0), where "num_pages" is the number of buffer pages that
was GRANTED through the sock.rxbuffrq. "-16" is because 16 bytes are needed for
internal buffer variables. The socket cannot RX data when the RX buffer has zero
capacity.

.Rxclear Method

Function: For the selected socket (selection is made through
sock.num) clears (deletes all data from) the RX buffer.

Syntax: sock.rxclear

Returns: ---

530

498

505

488

497

488

499Platforms

©2000-2011 Tibbo Technology Inc.

See Also: ---

Details

Invoking this method will have no effect when the socket is in the HTTP mode
(sock.httpmode = 1- YES).

.Rxpacketlen R/O Property

Function: For the selected socket (selection is made through
sock.num) returns the length (in bytes) of the UDP
datagram being extracted from the RX buffer.

Type: Word

Value Range: 0-1536, default= 0

See Also: sock.rxlen

Details

This property is only relevant when the sock.protocol = 1-
PL_SOCK_PROTOCOL_TCP. Correct way of using this property is within the
on_sock_data_arrival event or in conjunction with the sock.nextpacket
method.

.Rxlen R/O Property

Function: For the selected socket (selection is made through
sock.num) returns total number of bytes currently
waiting in the RX buffer to be extracted and processed by
your application.

Type: Word

Value Range: 0-65535, default= 0

See Also: ---

Details

The on_sock_data_arrival event is generated once the RX buffer is not empty,
i.e. there is data to process. There may be only one on_ser_data_arrival event for
each socket waiting to be processed in the event queue. Another
on_sock_data_arrival event for the same socket may be generated only after the
previous one is handled.

If, during the on_sock_data_arrival event handler execution, not all data is
extracted from the RX buffer, another on_sock_data_arrival event is generated
immediately after the on_sock_data_arrival event handler is exited.

481

488

499

492

489 487

488

489

500 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

.Send Method

Function: For the selected socket (selection is made through
sock.num) commits (allows sending) the data that was
previously saved into the TX buffer using the sock.setdata

 method.

Syntax: sock.rxbuffrq

Returns: ---

See Also: ---

Details

You can monitor the sending progress by checking the sock.txlen property or
using the sock.notifysent method and the on_sock_data_sent event.

.Setdata Method

Function: For the selected socket (selection is made through
sock.num) adds the data passed in the txdata
argument to the contents of the TX buffer.

Syntax: ser.setdata(byref txdata as string)

Returns: ---

See Also: ---

Part Description

txdata The data to send; this data will be added to the contents of
the TX buffer.

Details

If the buffer doesn't have enough space to accommodate the data being added
then this data will be truncated. Newly saved data is not sent out immediately. This
only happens after the sock.send method is used to commit the data. This
allows your application to prepare large amounts of data before sending it out.

Total amount of newly added (uncommitted) data in the buffer can be checked
through the sock.newtxlen setting.

.Setsendinband Method

Function: For the selected socket (selection is made through
sock.num) puts the data into the RPL buffer. This
method also commits the data.

Syntax: sock.setsendinband(byref data as string)

488

500

510

487 489

488

500

486

488

501Platforms

©2000-2011 Tibbo Technology Inc.

Returns: ---

See Also: ---

Part Description

data The data to send (String).

Details

This method is different from the TX buffer for which two separate methods-
sock.setdata and sock.send - are used to store and commit the data. For the
RPL buffer you store and commit the data with a single sock.setsendinband method.

It is the responsibility of your application to properly encapsulate outgoing
messages with escape sequence ("EC OC", see the sock.escchar property) and
the end character (see the sock.endchar property). When adding the data to
the RPL buffer make sure you are adding entire inband message at once- you are
not allowed to do this "in portions"!

Sinkdata Property

Function: For the currently selected socket (selection is made
through sock.num) specifies whether the incoming data
should be discarded.

Type: Enum (yes_no, byte)

Value Range: 0- NO (default): normal data processing.

1- YES: discard incoming data.

See Also: Sinking Data

Details

Setting this property to 1- YES causes the socket to automatically discard all
incoming data without passing it to your application. The on_sock_data_arrival
event will not be generated, reading sock.rxlen will always return zero, and so
on. No data will be reaching its destination even in case of buffer redirection .
Inband commands , however, will still be extracted from the incoming data stream
and processed. Sock.connectiontout and sock.toutcounter will work correctly
as well.

.Splittcppackets Property

Function: For the currently selected socket (selection is made
through sock.num) specifies whether the program will
have additional control over the size of TCP packets being
received and transmitted.

Type: Enum (no_yes, byte)

500 500

479

479

488

456

489

499

454

456

477 507

488

502 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Value Range: 0- NO (default): regular processing of TCP data in which
your program does not care about the size of individual
TCP data packets being transmitted and received.

1- YES: Additional features are enabled that allow your
program to know the size of each incoming TCP packet
and also control the size of each outgoing TCP packet.

See Also: "Split Packet" Mode of TCP Data Processing

Details

When this property is set to 1- YES your program gets an additional degree of
control over TCP. For incoming TCP data, the program can know the size of
individual incoming packets (this will be reported by the on_sock_tcp_packet_arrival

 event).

For outgoing TCP data, no packet will be sent out at all unless entire contents of
the TX buffer can be sent. Therefore, by executing sock.send and waiting for
sock.txlen =0 your program can make sure that the packet sent will have exactly
the size you needed.

The property is only relevant when the sock.inbandcommands = 0- NO. With
inband commands enabled, the socket will always behave as if the
sock.splittcppackets= 0- NO. The program won't be able to change the value of
this property when the socket is not idle (sock.statesimple <> 0-
PL_SSTS_CLOSED).

Notice, that sending out TCP data and waiting for the sock.txlen =0 significantly
diminishes your TX data throughput. This is because each send will be waiting for
the other end to confirm the reception of data.

Also, with sock.splittcppackets= 1= YES make sure that you are not sending more
data than the size of the RX buffer on the other end. If this happens, no data will
ever get through because your side will be waiting for the chance to send out all
TX data at once, and the other end won't be able to receive this much data in one
piece.

Also, attempting to send the packet with size exceeding the "maximum segment
size" (MSS) as specified by the other end will lead to data fragmentation! The
socket will never send any TCP packet with the amount of data exceeding MSS.

.State R/O Property

Function: For the currently selected socket (selection is made
through sock.num) returns "detailed" current socket
state.

Type: Enum (pl_sock_state, byte)

Value Range: 0- PL_SST_CLOSED (default): Connection is closed (and
haven't been opened yet, it is a post-powerup state).
Applied both to UDP and TCP.

1- PL_SST_CL_PCLOSED: Connection is closed (it was a
passive close). Applies only to TCP.

2- PL_SST_CL_ACLOSED: Connection is closed (it was an
active close by the application). Applies only to TCP.

453

491

500

510

484

505

510

488

503Platforms

©2000-2011 Tibbo Technology Inc.

3- PL_SST_CL_PRESET_POPENING: Connection is closed
(it was a passive reset during a passive open). Applies
only to TCP.

4- PL_SST_CL_PRESET_AOPENING: Connection is closed
(it was a passive reset during an active open). Applies
only to TCP.

5- PL_SST_CL_PRESET_EST: Connection is closed (it was
a passive reset while in "connection established" state).
Applies only to TCP.

6- PL_SST_CL_PRESET_PCLOSING: Connection is closed
(it was a passive reset while performing a passive close).
Applies only to TCP.

7- PL_SST_CL_PRESET_ACLOSING: Connection is closed
(it was a passive reset while performing an active close).
Applies only to TCP.

8- PL_SST_CL_PRESET_STRANGE:Connection is closed (it
was a passive reset, no further details available). Applies
only to TCP.

9- PL_SST_CL_ARESET_CMD: Connection is closed (it was
an active reset issued by the application). Applies only to
TCP.

10- PL_SST_CL_ARESET_RE_PO: Connection is closed (it
was an active reset issued because of excessive
retransmission attempts during a passive open). Applies
only to TCP.

11- PL_SST_CL_ARESET_RE_AO: Connection is closed (it
was an active reset issued because of excessive
retransmission attempts during an active open). Applies
only to TCP.

12- PL_SST_CL_ARESET_RE_EST: Connection is closed (it
was an active reset issued because of excessive
retransmission attempts while in "connection established"
state). Applies only to TCP.

13- PL_SST_CL_ARESET_RE_PCL: Connection is closed (it
was an active reset issued because of excessive
retransmission attempts during a passive close). Applies
only to TCP.

14- PL_SST_CL_ARESET_RE_AC: Connection is closed (it
was an active reset issued because of excessive
retransmission attempts during a passive open). Applies
only to TCP.

15- PL_SST_CL_ARESET_TOUT: Connection is closed (it
was an active reset caused by connection timeout, i.e. no
data was exchanged for sock.connectiontout number of
seconds). Applies only to TCP.

16- PL_SST_CL_ARESET_DERR: Connection is closed (it
was an active reset caused by a data exchange error).
Applies only to TCP.

17- PL_SST_CL_DISCARDED_CMD:Connection is closed (it
was discarded by the application). Applies both to UDP
and TCP.

504 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

18- PL_SST_CL_DISCARDED_PO_WCS: Connection is
closed (it was discarded because an error in connection
sequence was detected during a passive open). Applies
only to TCP.

19- PL_SST_CL_DISCARDED_AO_WCS: Connection is
closed (it was discarded because an error in connection
sequence was detected during an active open). Applies
only to TCP.

20- PL_SST_CL_DISCARDED_ARPFL: Connection is closed
(it was discarded because the device has failed to resolve
the IP address of the destination during an active open,
i.e. there was no reply to ARP requests). Applies both to
UDP and TCP.

21- PL_SST_CL_DISCARDED_TOUT: Connection is closed
(it was discarded because connection has timed out, i.e.
no data was exchanged for sock.connectiontout number
of seconds). Applies only to UDP.

32- PL_SST_ARP: ARP resolution is an progress (it is an
active open). Applied both to UDP and TCP.

64- PL_SST_PO: Connection is being established (it is a
passive open). Applies only to TCP.

96- PL_SST_AO: Connection is being established (it is an
active open). Applies only to TCP.

128- PL_SST_EST: Connection is established (generic,
includes both passive and active open). Applies both to
UDP and TCP.

128- PL_SST_EST_POPENED: Connection is established (it
was a passive open). Applies both to UDP and TCP.

129- PL_SST_EST_AOPENED: Connection is established (it
was an active open). Applies both to UDP and TCP.

160- PL_SST_PC: Connection is being closed (it is a
passive close). Applies only to TCP.

192- PL_SST_AC: Connection is being closed (it is an
active close). Applies only to TCP.

See Also: ---

Details

This property tells the "detailed" current state of the socket, as opposed to the
sock.event property that returns the "detailed" state at the moment of the
on_sock_event event generation.

Another set of read-only properties- sock.eventsimple and sock.statesimple -
return "simplified" socket states.

480

490

480 505

505Platforms

©2000-2011 Tibbo Technology Inc.

.Statesimple R/O Property

Function: For the currently selected socket (selection is made
through sock.num) returns "simplified" current socket
state.

Type: Enum (pl_sock_state_simple, byte)

Value Range: 0- PL_SSTS_CLOSED (default): Connection is closed.
Applies both to UDP and TCP.

1- PL_SSTS_ARP: ARP resolution is an progress (it is an
active open). Applies both to UDP and TCP.

2- PL_SSTS_PO: Connection is being established (it is a
passive open). Applies only to TCP.

3- PL_SSTS_AO: Connection is being established (it is an
active open). Applies only to TCP.

4- PL_SSTS_EST: Connection is established. Applies both
to UDP and TCP.

5- PL_SSTS_PC: Connection is being closed (it is a
passive close). Applies only to TCP.

6- PL_SSTS_AC: Connection is being closed (it is an
active close). Applies only to TCP.

See Also: ---

Details

This property tells the current "simplified" state of the socket, as opposed to the
sock.eventsimple property that returns the "simplified" state at the moment of
the on_sock_event event generation.

Another set of read-only properties- sock.event and sock.state - return
"detailed" socket states.

.Targetbcast Property

Function: For the currently selected socket (selection is made
through sock.num) specifies whether this port will be
sending its outgoing UDP datagrams as link-level
broadcasts.

Type: Enum (no_yes, byte)

Value Range: 0- NO: UDP datagrams will be sent as "normal" packets

1- YES: UDP datagrams will be sent out as link-level
broadcast packets

See Also: ---

Details

This property is only relevant for UDP communications (sock.protocol =
PL_SOCK_PROTOCOL_UDP). When this property is set to 1- YES the socket will be

488

480

490

480 502

488

492

506 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

sending out all UDP datagrams as broadcasts and incoming datagrams won't cause
port switchover, even if the latter is enabled through the sock.reconmode
property.

.Targetinterface Property

Function: For the currently selected socket (selection is made
through sock.num) selects the network interface
through which an outgoing network connection will be
established.

Type: Enum (pl_sock_interfaces, byte)

Value Range: Platform-specific. See the list of pl_sock_interfaces
constants in the platform specifications (for example,
EM1000's is here).

See Also: Establishing Outgoing Connections

Details

--

.Targetip Property

Function: For active opens on the currently selected socket
(selection is made through sock.num) specifies the
target IP to which the socket will attempt to connect to.
For passive opens specifies, in certain cases, the only IP
address from which an incoming connection will be
accepted.

Type: String.

Value Range: Any valid IP address, i.e. "192.168.100.40". Default=
"0.0.0.0"

See Also: sock.targetport , sock.remoteport

Details

For active opens, this property is only relevant at the moment of connection
establishment.

For incoming connections, whether this property will matter or not is defined by
the sock.inconmode property. When the sock.inconmode= 1-
PL_SOCK_INCONMODE_SPECIFIC_IPPORT or 2-
PL_SOCK_INCONMODE_SPECIFIC_IP_ANY_PORT only the host with IP matching the
one set in the sock.targetip property will be able to connect to the socket.

Current IP on the "other side" of the connection can always be checked through
the sock.remoteip read-only property.

492

488

143

434

488

507 495

485

494

507Platforms

©2000-2011 Tibbo Technology Inc.

.Targetport Property

Function: For active opens on the currently selected socket
(selection is made through sock.num) specifies the
target port to which the socket will attempt to connect
to. For passive opens specifies, in certain cases, the only
port from which an incoming connection will be accepted.

Type: Word

Value Range: 0-65535, default= 0

See Also: sock.targetip , sock.remoteip

Details

For active opens, this property is only relevant at the moment of connection
establishment.

For incoming connections, whether this property will matter or not is defined by
the sock.inconmode property. When the sock.inconmode= 1-
PL_SOCK_INCONMODE_SPECIFIC_IPPORT an incoming connection will only be
accepted from the port matching the one set in the sock.targetport property.

Current port on the "other side" of the connection can always be checked through
the sock.remoteport read-only property.

.Toutcounter R/O property

Function: For the currently selected socket (selection is made
through sock.num) returns the time, in 0.5 second
intervals, elapsed since the data was last send or received
on this socket.

Type: Word

Value Range: 0-65535, default= 0

See Also: Closing Connections

Details

This property is reset to 0 each time there is some data exchanged across the
socket connection. The property increments at 0.5 second intervals while no data
is moving through this socket.

If the sock.connectiontout is not at 0, this property increments until it reaches
the value of the sock.connectiontout and the connection is terminated. The
sock.toutcounter then stays at the value of sock.connectiontout.

If the sock.connectiontout is at 0, the maximum value that the sock.toutcounter
can reach is 1. That is, the sock.toutcounter will be at 0 after the data exchange,
and at 1 if at least 0.5 seconds have passed since the last data exchange.

488

506 494

485

495

488

437

477

508 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

.Tx2buffrq Method

Function: For the selected socket (selection is made through
sock.num) pre-requests "numpages" number of buffer
pages (1 page= 256 bytes) for the TX2 buffer of the
socket.

Syntax: sock.tx2buffrq(numpages as byte) as byte

Returns: Actual number of pages that can be allocated (Byte).

See Also: sock.txbuffrq

Part Description

numpages Requested numbers of buffer pages to allocate.

Details

The TX2 buffer is required when inband commands are enabled
(sock.inbandcommands = 1- YES), without it the socket won't be able to TX
data. Returns actual number of pages that can be allocated. Actual allocation
happens when the sys.buffalloc method is used. Unlike for TX or RX buffers there
is no property to read out actual TX2 buffer capacity in bytes. This capacity can
be calculated as num_pages*256-16 (or =0 when num_pages=0), where
"num_pages" is the number of buffer pages that was GRANTED through the
sock.tx2buffrq. "-16" is because 16 bytes are needed for internal buffer variables.

Buffer allocation will not work if the socket port to which this buffer belongs is not
idle (sock.statesimple is not at 0- PL_SSTS_CLOSED) at the time when
sys.buffalloc executes. You can only change buffer sizes of sockets that are idle.

.Tx2len R/O Property

Function: For the selected socket (selection is made through
sock.num) returns the amount of data waiting to be
sent out in the TX2 buffer.

Type: Word

Value Range: 0-65535, default= 0 (0 bytes)

See Also: sock.txlen

Details

The TX2 buffer is needed to transmit outgoing TCP data when inband commands
(messages) are enabled (sock.inbandcommands = 1- YES). If your application
needs to make sure that all data is actually sent out from the socket then it must
verify that both TX and TX2 buffers are empty.

488

509

484

530

505

488

510

484

509Platforms

©2000-2011 Tibbo Technology Inc.

.Txbuffrq Method

Function: For the selected socket (selection is made through
sock.num) pre-requests "numpages" number of buffer
pages (1 page= 256 bytes) for the TX buffer of the
socket.

Syntax: sock.txbuffrq(numpages as byte) as byte

Returns: Actual number of pages that can be allocated (Byte).

See Also: sock.tx2buffrq

Part Description

numpages Requested numbers of buffer pages to allocate.

Details

Actual allocation happens when the sys.buffalloc method is used. The socket is
unable to TX data if its TX buffer has 0 capacity. Actual current buffer capacity
can be checked through the sock.txbuffsize which returns buffer capacity in
bytes. Relationship between the two is as follows:
sock.txbuffsize=num_pages*256-16 (or =0 when num_pages=0), where
"num_pages" is the number of buffer pages that was GRANTED through the
sock.txbuffrq. "-16" is because 16 bytes are needed for internal buffer variables.

Buffer allocation will not work if the socket port to which this buffer belongs is not
idle (sock.statesimple is not at 0- PL_SSTS_CLOSED) at the time when
sys.buffalloc executes. You can only change buffer sizes of sockets that are idle.

.Txbuffsize R/O Property

Function: For the currently selected socket (selection is made
through sock.num) returns current TX buffer capacity
in bytes.

Type: Word

Value Range: 0-65535, default= 0 (0 bytes).

See Also: ---

Details

Buffer capacity can be changed through the sock.txbuffrq method followed by
the sys.buffalloc method.

The sock.txbuffrq requests buffer size in 256-byte pages whereas this property
returns buffer size in bytes. Relationship between the two is as follows:
sock.txbuffsize=num_pages*256-16 (or =0 when num_pages=0), where
"num_pages" is the number of buffer pages that was GRANTED through the
sock.txbuffrq. "-16" is because 16 bytes are needed for internal buffer variables.

488

508

530

509

505

488

509

530

510 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

The socket cannot TX data when the TX buffer has zero capacity.

.Txclear Method

Function: For the selected socket (selection is made through
sock.num) clears (deletes all data from) the TX buffer.

Syntax: sock.rxclear

Returns: ---

See Also: ---

Details

Invoking this method will have no effect when the socket is not closed
(sock.statesimple <> 0- PL_SSTS_CLOSED).

.Txfree R/O Property

Function: For the selected socket (selection is made through
sock.num) returns the amount of free space in the TX
buffer in bytes.

Type: Word

Value Range: 0-65535, default= 0 (0 bytes).

See Also: ---

Details

Notice, that the amount of free space returned by this property does not take into
account any uncommitted data that might reside in the buffer (this can be checked
via sock.newtxlen). Therefore, actual free space in the buffer is sock.txfree-
sock.newtxlen. Your application will not be able to store more data than this
amount.

To achieve asynchronous data processing, use the sock.notifysent method to
get on_sock_data_sent event once the TX buffer gains required amount of free
space.

.Txlen R/O Property

Function: For the selected socket (selection is made through
sock.num) returns total number of committed bytes
currently found in the TX buffer.

Type: Word

Value Range: 0-65535, default= 0 (0 bytes).

See Also: ---

488

505

488

486

487

489

488

511Platforms

©2000-2011 Tibbo Technology Inc.

Details

The data in the TX buffer does not become committed until you use the sock.send
 method.

Your application may use the sock.notifysent method to get on_sock_data_sent
 event once the total number of committed bytes in the TX buffer drops below

the level defined by the sock.notifysent method.

.Urlsubstitutes

Function: A comma-separated list of filenames whose extensions will
be automatically substituted for ".html" by the internal
webserver of your device.

Type: String

Value Range: 0-40 characters, default= ""

See Also: URL Substitution

Details

The substitution will be used only if the resource file with the requested file name is
not included in the project directly.

For example, setting this property to "pix1.bmp" will force the webserver to actually
process "pix1.html", but only if the file "pix1.bmp" is not found. Data output by the
webserver to the browser will still look like a ".bmp" file. For this to work, the
"pix1.html" must exist in the project.

This property allows programmatic generation of non-HTML files. In the above
example it is possible to generate the BMP file through a BASIC code. There is no
other way to do this, since only HTML files are parsed for BASIC code inclusions.

.Varbuffrq Method

Function: For the selected socket (selection is made through
sock.num) pre-requests "numpages" number of buffer
pages (1 page= 256 bytes) for the VAR buffer of the
socket.

Syntax: sock.varbuffrq(numpages as byte) as byte

Returns: Actual number of pages that can be allocated (Byte).

See Also: ---

Part Description

numpages Requested numbers of buffer pages to allocate.

500

487

489

468

488

512 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Details

The VAR buffer is the buffer that stores the HTTP request string. The socket is
unable to process HTTP requests if its VAR buffer has 0 capacity.

Actual allocation happens when the sys.buffalloc method is used. Unlike for TX
or RX buffers there is no property to read out actual VAR buffer capacity in bytes.
This capacity can be calculated as num_pages*256-16 (or =0 when num_pages=0),
where "num_pages" is the number of buffer pages that was GRANTED through the
sock.varbuffrq. "-16" is because 16 bytes are needed for internal buffer variables.

Buffer allocation will not work if the socket port to which this buffer belongs is not
idle (sock.statesimple is not at 0- PL_SSTS_CLOSED) at the time when
sys.buffalloc executes. You can only change buffer sizes of sockets that are idle.

The VAR buffer is only required when you plan to use this socket in the HTTP mode-
see sock.httpmode property, also sock.httpportlist .

Ssi Object

The ssi. object implements up to four serial synchronous interface (SSI) channels
on the general-purpose I/O lines of your BASIC-programmable device. Examples of
such interfaces are:

I2C (http://en.wikipedia.org/wiki/I2C), and YES, ssi. object can handle the
acknowledgement bit automatically.

SPI (http://en.wikipedia.org/wiki/Serial_peripheral_interface).

Clock/data (example: goto http://www.maxim-ic.com and search for MAX7219
display driver IC);

Numerous variations on the above.

You can typically get all the necessary data from the IC you want to interface to.
Note that some interface designs may not be free to use (i.e. they are patented,
etc.).

The common denominator among these interfaces is the presence of the clock line
that "paces" data transmission on the data line(s) -- with each clock cycle on the
clock line, one bit of data can be transmitted over the data line(s). In contrast,
UARTs (managed by the ser. object) are not synchronous -- there is no clock
line to synchronize two devices and this is why there is an "A" ("asynchronous") in
"UART".

SSI interface links have masters and slaves. The master's role is to generate the
clock pulses that slaves will use to synchronize themselves to the master. Only one
device can be the master at any given time. The ssi. object can only work as the
master. That is, it generates the clock for others to use.

Of course, it is possible to communicate with SSI devices by manipulating general-
purpose I/O lines of your device directly. This is known as "bit-banging" or "bit-
blasting". The advantage of the SSI object is in speed -- the same data exchange
will often compete hundreds of times faster compared with bit-banging.

A particular channel to work with is selected through the ssi.channel property.

530

505

481 483

516

378

518

http://en.wikipedia.org/wiki/I2C
http://en.wikipedia.org/wiki/Serial_peripheral_interface
http://www.maxim-ic.com

513Platforms

©2000-2011 Tibbo Technology Inc.

All other properties and methods apply to the currently selected channel.

The ssi.enabled property defines if the channel is disabled or enabled.
Necessary configuration of the communication channel can only be performed
when ssi.enabled= 0- NO. Actual data exchange is possible only when
ssi.enabled= 1- YES.

If you are going to talk to an I2C device, be sure to check out More on I2C
 topic.

8.3.15.1Configuring SSI Channel

In this section:

CLK, DO, and DI lines

Baudrate

SSI modes

Direction

CLK, DO, and DI Lines

Each communication channel comprises a clock line (CLK), data out (DO) line (a.k.a.
"master out, slave in" -- MOSI), and data in (DI) line ("master in, slave out" --
MISO). Ssi.clkmap , ssi.dimap , and ssi.domap properties define which three
general-purpose I/O lines of your device are assigned to serve as the CLK, DI, and
DO of the selected channel.

Some interfaces, notably, I2C , use a single physical line for moving data in both
directions (slave-to-master and master-to-slave). With such interfaces, ssi.dimap
and ssi.domap must point to the same physical I/O line. Furthermore, ssi.zmode
property must be set to 1- PL_SSI_ZMODE_ENABLED_ON_ZERO and there may be a
need for a "pull-up resistor" on the data line (in the I2C world this joint line is called
"SDA" and the pull-up resistor is directly specified by relevant datasheets).

Many interfaces require additional interface lines. For example, there is a chip select
(CS) line in SPI. The ssi. object does not control such lines -- handle them directly
using the io. object.

On devices with unidirectional I/O lines , the I/O lines forming your SSI channels
must be properly configured (see io.enabled): CLK and DO lines must be set as
outputs, and the DI line must be set as input. To find out the type of GPIO lines on
your device, refer to its platform documentation (for example, EM1000's is here).

520

513

515

516

513

514

514

515

518 519 519

516

522

294

194

298

143

514 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Baudrate

The ssi.baudrate property defines the speed at which the CLK line will be
toggled. The term baudrate is a bit of a misnomer because it may lead one to
believe that the baudrate in the ssi. object is something stable and precise. In
reality, SSI baudrate only crudely defines the clock speed. The baudrate is also
device-specific. Here is the formula for T1000-based devices such as the EM1000

:

When the PLL is enabled (sys.currentpll = 1- PL_ON) the clock period can be
calculated as 0.8us + ssi.baudrate * 0.112us.

With the PLL disabled the period will be 8 times longer.

SSI Modes

The ssi.mode property defines one of the four possible modes for the CLK line.
These modes directly correspond to the SPI modes as described here: http://
en.wikipedia.org/wiki/Serial_peripheral_interface.

SSI mode combines two independent parameters -- CPOL (clock polarity), and CPHA
(clock phase):

Mode 0: CPOL=0, CPHA=0;

Mode 1: CPOL=0, CPHA=1;

Mode 2: CPOL=1, CPHA=0;

Mode 3: CPOL=1, CPHA=1.

Here is a brief description of modes -- some "preparedness" is required to
comprehend this:

CPOL=0: clock line is LOW when idle:

- CPHA=0: data bits are captured on the CLK's rising edge (LOW-to-HIGH
transition) and data bits are propagated on the CLK's falling edge (HIGH-to-LOW
transition).

- CPHA=1: data bits are captured on the CLK's falling edge and data bits are
propagated on the CLK's rising edge.

CPOL=1: clock line is HIGH when idle:

517

143

531

520

http://en.wikipedia.org/wiki/Serial_peripheral_interface
http://en.wikipedia.org/wiki/Serial_peripheral_interface

515Platforms

©2000-2011 Tibbo Technology Inc.

- CPHA=0: data bits are captured on the CLK's falling edge and data bits are
propagated on the CLK's rising edge.

- CPHA=1: data bits are captured on the CLK's rising edge and data bits are
propagated on the CLK's falling edge.

Note also that there is an additional difference:

In SSI modes 1 and 3, the first data bit (in either direction) will be present on the
DO (DI) line after the first transition on the CLK line.

In SSI modes 0 and 2, the first data bit (in either direction) will be present on the
DO (DI) line before transitions on the CLK line start.

Direction

The ssi.direction property defines whether the SSI channel will output (input)
the data least significant bit first (ssi.direction= 0- PL_SSI_DIRECTION_RIGHT) or
most signification bit first (ssi.direction= 1- PL_SSI_DIRECTION_LEFT).

8.3.15.2Sending and Receiving Data

Those familiar only with serial ("UART") communications will find this surprising:
there are no separate send and receive operations for the ssi. object. When you
are sending something out you are also receiving something in at the same time
(and vise versa). On the ssi. object's level, these two operations are simultaneous
-- with each clock pulse generated on the CLK line, one data bit will be output onto
the DO line, and one bit will be recorded from the DI line. The same is true when DO
and DI lines are merged.

Of course, on the operational level, interactions with a slave SSI device usually
consist of sending something (command or data) to the slave device first and then
receiving something (data) from it later. Typically, when your device is sending a
command, the slave side won't be sending anything meaningful back at the same
time, but the SSI channel will still record the data on the DI line. It is your
application that should know how to interpret the data received from the slave
device.

In the similar matter, whenever you are receiving from the slave device, you are
also sending something. Normally, when the slave device is sending you data it will
ignore everything you are sending to it.

There are two ways to send and receive data: word-by-word, or as a "string".

For "word-by-word transactions", use ssi.value method. It will simultaneously
clock out and clock in up to 16 bits of data. If you are sending less than 16 bits,
then the specified number of the rightmost bits will be sent and received.

Dim x As word
...
ssi.value(&hCA5A,14) 'When we want to send something out, we can ignore the
"data" we get back

519

378

521

516 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

x=ssi.value(&hFFFF,14) 'When we are expecting to receive data, we send out
'all 1s' (good practice)
x=ssi.value(&hCA5A,14) 'Of course we can do both at the same time

For "string transactions", use ssi.str method. String transactions are more
sophisticated: you can send (and receive) a string consisting of multiple bytes.
These bytes may be handled as "pure" 8-bit words or 9-bit words consisting of
eight data bits plus one acknowledgement bit, as required for I2C communications

 (http://en.wikipedia.org/wiki/I2C). For each byte it outputs, the ssi. object will
check for the slave's acknowledgement. Data output will not continue if there was
no acknowledgement. You can detect this by comparing the length of the returned
string and the length of the string you were trying to send -- if they do not match,
then the data exchange ended prematurely.

Dim Input_String, Output_String As String
...
Output_String="\x40\x12\xFF"
Input_String=ssi.str(Output_String,1) 'output data, with acknowledgements
enabled
If Len(Output_String)<>Len(Input_String) Then

'something went wrong
End If
...

If you are going to talk to an I2C device, be sure to check out More on I2C
 topic.

8.3.15.3More on I2C

This topic a continuation of the discussion started in Sending and Receiving Data
.

I2C (and many existing variations on it) relies on a single data line (called "SDA") for
data transmission in both directions. DO and DI lines of the SSI channel must be
joined together. On devices with unidirectional I/O lines , the ssi.zmode
property must be set to 1- PL_SSI_ZMODE_ENABLED_ON_ZERO (not required on
devices with bidirectional I/O lines). The DO line will then operate in the following
manner:

To set the DO line HIGH, your device will disable the output buffer. The line will
then float HIGH (because of "weak pull-ups" in the device). In this state, the
slave SSI device can safely output its own data onto the SDA.

To set the DO line LOW, your device will enable the output buffer and set the
output to LOW.

It follows then, that if your DO and DI lines are joined together, and you want to
receive data from the slave device, you should keep your own output at "all 1s"
while the slave device is supposed to send data, like this:

...
ssi.str("\x40\x12\xFF",1) 'we anticipate that the slave device will reply

520

515

516

515

194 522

http://en.wikipedia.org/wiki/I2C

517Platforms

©2000-2011 Tibbo Technology Inc.

after we output two bytes of our own data
...

Each I2C transaction requires so-called start and stop sequences -- the ssi. object
won't handle this so you need to implement this in code. Below is a snippet from a
real application. Notice how necessary transitions on the SDA line are performed by
setting the DO line LOW and then enabling/disabling its output buffer.

...
i2c_start()
ssi.str("\x40\x12\xFF",1) 'output data, with acknowledgements enabled
i2c_stop()
...

'--
Sub i2c_start()

io.lineset(SSI_CLK,HIGH)
io.num=SSI_DO 'set SDA to HIGH first so we can have HIGH-

>LOW transition
io.state=LOW 'we are manipulating data line through the

OE register
io.enabled=NO
io.enabled=YES 'this will set the data output to LOW

End Sub

'--
Sub i2c_stop()

io.lineset(SSI_CLK,LOW) 'this will remove the ack bit
io.num=SSI_DO 'set SDA to LOW first so we can have LOW-

>HIGH transition
io.state=LOW 'we are manipulating data line through the

OE register
io.enabled=YES
io.lineset(SSI_CLK,HIGH)
io.enabled=NO 'this will set the data output to HIGH

End Sub

8.3.15.4Properties, Methods

Properties, methods, and events of the ssi object.

.Baudrate Property

Function: For the currently selected SSI channel (see ssi.channel
) sets/returns the clock rate on the CLK line.

Type: Byte

Value Range: 1-255, the fastest rate is achieved at 1, the slowest rate
-- at 255. Default= 1 (the fastest rate possible).

518

518 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

See Also: ssi.direction , ssi.mode , ssi.zmode

Details

Actual clock rate is device-dependent. See Baudrate topic for details.

This property can only be changed when ssi.enabled = 0- NO.

It is actually permissible to set the property to 0 -- this will be like setting it to 256
(slowest possible clock rate).

.Channel Property

Function: Sets/returns the number of the currently selected SSI
channel (channels are enumerated from 0).

Type: Byte

Value Range: 0-3. Default= 0 (channel #0 selected)

See Also: Ssi Object

Details

All other properties and methods of this object relate to the channel selected
through this property.

.Clkmap Property

Function: For the currently selected SSI channel (see ssi.channel
) sets/returns the number of the general-purpose I/O line
to serve as the clock (CLK) line of this channel.

Type: Enum (pl_io_num, byte)

Value Range: Platform-specific. See the list of pl_io_num constants in
the platform specifications. Default= PL_IO_NULL (NULL
line).

See Also: CLK, DO, and DI Lines ,

ssi.dimap , ssi.domap

Details

This property can only be changed when ssi.enabled = 0- NO.

On devices with unidirectional I/O lines, the CLK line must be "manually" configured
as output (see io.enabled = 1- YES).

519 520 522

514

520

512

518

513

519 519

520

298

519Platforms

©2000-2011 Tibbo Technology Inc.

.Dimap Property

Function: For the currently selected SSI channel (see ssi.channel
) sets/returns the number of the general-purpose I/O line
to serve as the data in (DI) line of this channel.

Type: Enum (pl_io_num, byte)

Value Range: Platform-specific. See the list of pl_io_num constants in
the platform specifications. Default= PL_IO_NULL (NULL
line).

See Also: CLK, DO, and DI Lines ,

ssi.clkmap , ssi.domap

Details

This property can only be changed when ssi.enabled = 0- NO.

On devices with unidirectional I/O lines, the DI line must be "manually" configured as
input (see io.enabled = 0- NO).

.Direction Property

Function: For the currently selected SSI channel (see ssi.channel
) sets/returns the direction of data input and output (least
significant bit first or most significant bit first).

Type: Enum (pl_ssi_direction_options , byte)

Value Range: 0- PL_SSI_DIRECTION_RIGHT (default): data input/
output least significant bit first

1- PL_SSI_DIRECTION_LEFT: data input/output most
significant bit first

See Also: Direction

Details

This property can only be changed when ssi.enabled = 0- NO.

.Domap Property

Function: For the currently selected SSI channel (see ssi.channel
) sets/returns the number of the general-purpose I/O line
to serve as the data out (DO) line of this channel.

Type: Enum (pl_io_num, byte)

Value Range: Platform-specific. See the list of pl_io_num constants in
the platform specifications. Default= PL_IO_NULL (NULL
line).

See Also: CLK, DO, and DI Lines ,

ssi.clkmap , ssi.dimap

518

513

518 519

520

298

518

515

520

518

513

518 519

520 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Details

This property can only be changed when ssi.enabled = 0- NO.

On devices with unidirectional I/O lines, the DO line must be "manually" configured
as output (see io.enabled = 1- YES).

.Enabled Property

Function: Enables/disables the currently selected SSI channel (see
ssi.channel).

Type: Enum (no_yes, byte)

Value Range: 0- NO (default): disabled

1- YES: enabled

See Also: Ssi Object

Details

SSI channel's operating parameters (ssi.baudrate , ssi.mode , etc.) can only be
changed when the channel is disabled.

You can only send and receive the data (ssi.value , ssi.str) when the channel
is enabled.

.Mode Property

Function: For the currently selected SSI channel (see ssi.channel
) sets/returns the clock mode.

Type: Enum (pl_ssi_modes , byte)

Value Range: 0- PL_SSI_MODE_0 (default)

1- PL_SSI_MODE_1

2- PL_SSI_MODE_2

3- PL_SSI_MODE_3

See Also: ssi.baudrate , ssi.direction , ssi.zmode

Details

This property can only be changed when ssi.enabled = 0- NO. For detailed
explanation of clock modes see SSI Modes .

.Str Method

Function: For the currently selected SSI channel (see ssi.channel
) outputs a string of byte data to the slave device and
simultaneously inputs the same amount of data from the

520

298

518

512

517 520

521 520

518

517 519 522

520

514

518

521Platforms

©2000-2011 Tibbo Technology Inc.

slave device.

Syntax: ssi.str(byref txdata as string, ack_bit as no_yes) as
string

Returns: A string of the same length as txdata or less if the
transmission ended prematurely due to the
acknowledgement error.

See Also: Sending and Receiving Data ,

ssi.value

Part Description

txdata The string to send to the slave device.

ack_bit 0- NO: transmit/receive byte data as 8-bit words, without
the use of the acknowledgement bit.

1- YES: transmit/receive byte data as 9-bit words
comprising 8 bits of data and the acknowledgement bit.

Details

This method can be invoked only when ssi.enabled = 1- YES.

.Value Method

Function: For the currently selected SSI channel (see ssi.channel
) outputs a data word of up to 16 bits and simultaneously
inputs a data word of the same length.

Syntax: ssi.value(txdata as word, len as byte) as word

Returns: 16-bit value containing the data received from the slave
device, the number of bits received from the slave device
will be equal to the len argument, and these data bits will
be right-aligned within the returned 16-bit word.

See Also: Sending and Receiving Data ,

ssi.str

Part Description

txdata Data to output to the slave device. The number of
rightmost bits equal to the len argument will be sent.

len Number of data bits to send to and receive from the slave
device.

Details

Data input/output direction (least significant bit first or most significant bit first) is
defined by the ssi.direction property.

This method can be invoked only when ssi.enabled = 1- YES.

515

521

520

518

515

520

519

520

522 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

.Zmode Property

Function: For the currently selected SSI channel (see ssi.channel
) sets/returns the mode of the data out (DO) line.

Type: Enum (pl_ssi_zmodes , byte)

Value Range: 0- PL_SSI_ZMODE_ALWAYS_ENABLED (default): the DO
line toggles normally by setting the output buffer to LOW
or HIGH.

1- PL_SSI_ZMODE_ENABLED_ON_ZERO: for HIGH state,
the output buffer of the DO line is turned off, for LOW
state, the output buffer is turned on and the line is set to
LOW.

See Also: ssi.baudrate , ssi.direction , ssi.mode

Details

This property is only useful on devices with unidirectional I/O lines and in case
the DO and DI lines are joined together, as necessary for the I2C and similar
interfaces. See More on I2C for more details.

This property can only be changed when ssi.enabled = 0- NO.

Stor Object

The stor object provides access to the non-volatile (EEPROM) memory in which
your application can store data that must not be lost when the device is switched
off.

The stor.size read-only property tells you the amount of EEPROM memory offered
by the stor object. The stor.set is used to write the data to the EEPROM, while
the stor.get method is used to read the data from the EEPROM.

Here is a simple example how to save the IP address of your device in the EEPROM:

dim s as string
dim x as byte

s=ddval(net.ip) 'this way it will take less space in the EEPROM (only 4
bytes needed)
x= stor.set(s,0) 'write EEPROM

'check result
if x<>len(s) then

'EEPROM write failure- do something about this!
end if

And here is how you read this data back from the EEPROM:

518

517 519 520

194

516

520

525

524

523

523Platforms

©2000-2011 Tibbo Technology Inc.

net.ip=ddstr(stor.get(0,4))

Notice, that with the stor object addresses are counted from 1, not 0. That is, the
first memory location has address 1.

Special configuration area

The EEPROM IC of the device is also used to store certain configuration information
 required by the device. Memory available to your application equals the

capacity of the IC minus the size of the special configuration area.

By default, when you access the first byte of the EEPROM you are actually
accessing the first memory location above the special configuration area. One
property -- stor.base -- returns the size of this offset. On startup, stor.base is
equal to the size of the special configuration area, so your program can only access
the memory above this area.

You can change the stor.base and access configuration area when you need. For
example, you can change the MAC address this way- next time the device boots up
it will start using newly set address.

8.3.16.1.Base Property

Function: Sets/returns the base address of the EEPROM from which
the area available to your application starts.

Type: Word

Value Range: 1-<actual memory capacity>, default= <size of special
configuration area>+1

See Also: Stor Object , stor.size

Details

By default, the value returned by this property is the address of the first EEPROM
location just above the special configuration area . For example, if the size of the
special configuration area on your platform is 28 bytes then stor.base will return 29
by default.

This Default value makes sure that your application won't overwrite MAC or
password. When you are accessing EEPROM memory using stor.set or stor.get
methods, you specify the start address. Actual physical address you access is
start_address+stor.base-1.

If your application needs to change some parameters in the configuration area you
can set the stor.base to 1- this way you will have access to the entire memory.

8.3.16.2.Getdata Method (previously .Get)

Function: Reads data from the EEPROM.

Syntax: stor.getdata(startaddr as word, len as byte) as string

Returns: String contains the data read out from the EEPROM.

197

523

522 525

197

524 523

524 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

See Also: Stor Object , stor.set

Part Description

startaddr The starting address in the EEPROM memory (addresses are
counted from 1, if you set this parameter to 0 it will be
interpreted as 1).

len Maximum number of bytes to read.

Details

The len parameter defines the maximum number of bytes to read from the EEPROM.
Actual amount of extracted data is also limited by the capacity of the receiving
variable and the starting address (in relation to the memory capacity of the
EEPROM). Memory capacity can be checked through the stor.size read-only
property. Notice that when the stor.getdata executes, an offset equal to the value
of stor.base is added to the startaddr. For example, if the stor.base returns 9
and you do stor.getdata(1,3) then you will actually be reading the data starting
from physical EEPROM location 9. If you set the stor.base to 1 you will be able to
access the EEPROM right from the physical address 1.

By default, the stor.base is set in such a way as to allow access to the EEPROM
starting from the address just above the special configuration area of your
device -- for details on what this area actually stores see your device's platform
documentation (for example, EM1000's is here). By setting the stor.base to 1
you are allowing access to the special configuration area.

With Tibbo Basic release V2, this method had to be renamed from .get to
.getdata. This is because the period (".") separating "stor" from "getdata" is
now a "true" part of the language, i.e. it is recognized as a syntax unit, not
just part of identifier. Hence, Tibbo Basic sees "stor" and "get" as separate
entities and "get" is a reserved word that can't be used.

8.3.16.3.Setdata Method (previously .Set)

Function: Writes data into the EEPROM.

Syntax: stor.setdata(byref datatoset as string, startaddr as
word) as byte

Returns: Actual number of bytes written into the EEPROM.

See Also: Stor Object , stor.get , stor.size

Part Description

datatoset Data to write into the EEPROM.

startaddr Starting address in the EEPROM from which the data will be
stored (addresses are counted from 1, if you set this
parameter to 0 it will be interpreted as 1).

522 524

525

523

197

143

522 523 525

525Platforms

©2000-2011 Tibbo Technology Inc.

Details

The operation has completed successfully if the value returned by this method
equaled the length of the datatoset string. If this is not the case then the write
has (partially) failed and there may be two reasons for this: physical EEPROM failure
or invalid startaddr (too close to the end of memory to save the entire string).

Notice that when the stor.setdata executes, an offset equal to the value of
stor.base is added to the startaddr. For example, if the stor.base returns 9 and
you do stor.setdata("ABC",1) then you will actually be reading the data starting
from physical EEPROM location 9. If you set the stor.base to 1 you will be able to
access the EEPROM right from the physical address 1.

By default, the stor.base is set in such a way as to allow access to the EEPROM
starting from the address just above the special configuration area of your
device -- for details on what this area actually stores see your device's platform
documentation (for example, EM1000's is here). By setting the stor.base to 1
you are allowing access to the special configuration area.

With Tibbo Basic release V2, this method had to be renamed from .set to
.setdata. This is because the period (".") separating "stor" from "setdata" is
now a "true" part of the language, i.e. it is recognized as a syntax unit, not
just part of identifier. Hence, Tibbo Basic sees "stor" and "set" as separate
entities and "set" is a reserved word that can't be used.

8.3.16.4.Size R/O Property

Function: Returns total EEPROM memory capacity (in bytes) for the
current device.

Type: Word

Value Range: Platform-dependent

See Also: Stor Object

Details

Certain amount of EEPROM memory is occupied by the special configuration section
 -- for details on what this area actually stores see your device's platform

documentation (for example, EM1000's is here).

By default, special configuration area is not accessible to the application and is
excluded from memory capacity reported by the stor.size. For example, if the
EEPROM IC used by this platform has 2048 bytes of data, and the size of the
special configuration memory is 8 bytes, then the stor.size will return 2040 by
default. At the same time, the default value of stor.base property will be 9,
which means that the EEPROM locations 1-8 are occupied by the special
configuration area.

If you set the stor.base to 1 (for instance, to edit the MAC address), the stor.size
will show the capacity of 2048. In other words, the number this property returns is
actual_EEPROM_capacity-stor.base+1.

523

197

143

522

197

143

523

526 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Sys Object

This is the system object that loosely combines "general system" stuff such as
initialization (boot) event, buffer management, system timer, PLL mode, and some
other miscellaneous properties and methods.

8.3.17.1Overview

Here you will find:

On_sys_init (boot) event

Buffer Management

System Timer

PLL Management

Serial Number

Miscellaneous stuff such as how to halt execution, reboot, check firmware
version.

On_sys_init Event

The sys object provides a very important event- on_sys_init . This event is
guaranteed to be generated first when your device starts running. Therefore, you
should put all your initialization code for sockets, ports, .etc into the event handler
for this event:

sub on_sys_init
net.ip="192.168.1.95"
sock.num=0
sock.targetip= "192.168.1.96"
'...and everything else that you may need!

end sub

Buffer Management

How to allocate buffer memory

Some objects, such as the sock or ser , rely on buffers for storing the data
being sent and received. For example, each serial port of the ser object has two
buffers- RX and TX, while each socket of the sock object has 6 different buffers.

By default, all buffers have no memory allocated for them, which basically means
that they cannot store any data. For related objects to work, these buffers need
to be given memory.

Memory is allocated in pages. Each page equals 256 bytes. There is a small
overhead for each buffer- 16 bytes are used for internal buffer houskeeping
(variables, pointers, etc.). Therefore, if you have allocated 2 pages for a particular
buffer, then this buffer's actual capacity will be 2*256-16= 496 bytes.

Buffer memory allocation is a two-step process. First, you request certain number
of pages for each port, socket, etc. that you plan to use. This is done through

526

526

528

529

530

530

533

421 378

527Platforms

©2000-2011 Tibbo Technology Inc.

methods of corresponding objects. For example, the ser.rxbuffrq method
requests buffer memory for the RX buffer of one of the serial ports. Similar methods
exist for all other buffers of all objects that require buffer memory. Note, that
actual memory allocation does not happen at this stage- only your "requests" are
collected.

After all requests have been made actual memory allocation is performed by using
the sys.buffalloc method. This allocates memory, as per previous requests, for all
buffers of all objects. Here is an example:

'allocate memory for RX and TX buffers of serial port 0 and socket 0

'make requests
ser.num= 0
ser.rxbuffrq= 5
ser.txbuffrq= 5
sock.num=0
sock.rxbuffrq= 4
sock.txbuffrq= 4

'and now actual allocation
sys.buffalloc

Typically, buffer memory allocation is done in the on_sys_init event handler but you
don't have to do it this way. In fact, your application can re-allocate buffer memory
space according to the changes in the operating mode or other conditions.

Sys.buffalloc could take up to several hundred milliseconds to execute, so it makes
sense to use it as little as possible. Hence, request all necessary buffer allocations
first, then use the sys.buffalloc once to finish the job.

Buffer (re)allocation for a specific object will only work if the corresponding object
or part of the object to which this buffer belongs is idle. "Part" refers to a particular
serial port of the ser object, or particular socket of the sock object, etc. to which
the buffer you are trying to change belongs. "Idle" means different things for
different objects: ser.enabled = 0- NO for the serial port, sock.statesimple =
0- PL_SSTS_CLOSED for the socket, etc.

Intelligent memory allocation basing on what's available

Memory is not an infinite resource and you will not always get as much memory as
you have requested. Methods such as the ser.rxbuffrq actually return the
amount of memory that can be allocated:

dim x as byte
x=ser.rxbuffrq(5) 'x could get less than 5, which means that you got less
memory than you have asked for

Two properties of the sock object were implemented to help you allocate memory
intelligently, basing on what is available.

The sys.totalbuffpages read-only property tells you how many buffer pages are
there on your system in total. This is defined by the amount of physical variable
memory (RAM) available minus memory required to store your project's variables

415

530

405 505

415

536

528 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

(so, as your project grows available buffer memory shrinks).

The sys.freebuffpages read-only property tells you the amount of free (not yet
allocated) buffer pages.

Here is an example in which we allocate memory equally between the TX and RX
buffers of four serial ports and four sockets:

dim x,f as byte

x=sys.totalbuffpages/16 'will work correctly if we haven't allocated
anything yet

for f=0 to 3
ser.num= f
ser.rxbuffrq(x)
ser.txbuffrq(x)
sock.num= f
sock.rxbuffrq(x)
sock.txbuffrq(x)

next f

In the above example we do not check what individual buffer requests return
because we have already calculated each buffer's size basing on the total number
of buffer pages available.

System Timer

The system object provides a timer event- on_sys_timer - that is generated
periodically. The period depends on the platform. If the platform doesn't have a
sys.onsystimerperiod property, then this period is fixed at 0.5 seconds. If the
platform supports this property, then 0.5 second is the default period and the
property allows your program to adjust it.

If your software has some periodic tasks you can put the code into the
on_sys_timer event handler. Notice that when generated, this event goes into the
queue and waits in line to be processed, just like all other events. Therefore, you
cannot expect great accuracy in the period at which the on_sys_timer event
handler is entered. You can just expect that on average you will be getting this
event every 0.5 seconds.

There is also a sys.timercount read-only property. Timer counter is a free-
running counter that is initialized to 0 when your device is powered up and
increments every 0.5 seconds. The sys.timercount is useful in determining elapsed
time, for instance, when you are waiting for something.

Here is an example. Supposing, you are supposed to wait for the serial data to
arrive, but you are not willing to wait more than 10 seconds:

dim w as word
...
...

531

533

533

536

529Platforms

©2000-2011 Tibbo Technology Inc.

w=sys.timecount 'memorize time count at the beginning of waiting for serial
data
while ser.rxlen=0

'nope, no data yet, do we still have time?
if sys.timercount-w>20 then goto enough_waiting 'we quit after 10

seconds
doevents 'polite waiting includes this

wend

...

...

The above example does not represent best coding style. Generally
speaking, this is not a great programming but sometimes you just have to
wait in a cycle.

PLL Management

PLL is a module of the device that transforms the clock generated by onboard
crystal into higher frequency (x8 of the base for Tibbo devices). When the PLL is
on, the device runs at 8 times the base frequency, when the PLL is off, the device
runs at a "native" frequency of the crystal. Naturally, the device is 8 times faster
(and consumes almost as much more power) when the PLL is on.

Not all Tibbo devices have PLLs- to find out if yours does, refer to its platform
documentation (for example, EM1000's is here).

When a certain platform supports PLL, it will have a sys.currentpll read-only
property and sys.newpll method to control the PLL. Due to the nature of PLL
operation it is impossible to switch it on and off while the CPU is executing the
firmware. The PLL needs time to "stabilize" its output frequency and it is not safe to
let this happen when the CPU is running. Instead, the PLL is toggled when the CPU
is in the reset state.

To change PLL mode, request new state through the sys.newpll method, then self-
reset the device through the sys.reboot method. After the reboot the device
emerges from reset with new PLL state (and PLL frequency already stabilized).

Here is a code example that makes sure that your device is running with PLL off:

sub on_sys_init
if sys.currentpll=YES then

sys.newpll(OFF)
sys.reboot

end if
end sub

External resets- power-up and RST pin reset (reset button reset)- set the PLL to
default state (typically ON). On some devices there is a hardware jumper that
defines the post-external reset state of the PLL.

Notice that PLL mode affects other objects- for example, baudrates of
serial ports (this is why there is a ser.div9600 property) and
frequency generated by the beep object.

143

531

532

534

378 404

232

530 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Serial Number

Most Tibbo devices feature unique serial numbers. The length and contents of serial
numbers are device-dependent. For more information refer to your device's platform
documentation (for example, EM1000's is here).

Miscellaneous

The sys.version property returns the version of the TiOS (firmware) running on
your device.

The sys.halt method can be used to halt the execution of your program. For
example, you can use this to halt the program when the Ethernet interface failure is
detected:

...
if net.failure= YES then

sys.halt
end if
...

The sys.reboot method causes the device to reboot. This may be needed, for
instance, to change the mode of the PLL .

The sys.runmode read-only property informs whether the device is running in the
release or debug mode. This data can be used by the program to exhibit different
behavior- for example report all errors in the debug mode and try to "manage on its
own" in the release mode (for more info see Two Modes of Target Execution).

The sys.resettype read-only property tells you what caused the most recent
reset experienced by your device.

8.3.17.2Properties, Methods, Events

This section provides an alphabetical list of all properties, methods, and events of
the sys object.

.Buffalloc Method

Function: Allocates buffer memory as previously requested by
"buffrq" methods of individual objects (such as ser.rxbuffrq

).

Syntax: sys.buffalloc

Returns: ---

See Also: sys.totalbuffpages , sys.freebuffpages

Details

Call this method after requesting all buffers you need through methods like

143

536

532

534

529

534

27

535

415

536 531

531Platforms

©2000-2011 Tibbo Technology Inc.

ser.txbuffrq and sock.cmdbuffrq .

This method takes significant amount of time (100s of milliseconds) to execute,
during which time the device cannot receive network packets, serial data, etc. For
certain interfaces like serial ports some incoming data could be lost.

Buffer (re)allocation for a specific object will only work if the corresponding object
or part of the object to which this buffer belongs is idle. "Part" refers to a particular
serial port of the ser object, or particular socket of the sock object, etc. to
which the buffer you are trying to change belongs. "Idle" means different things for
different objects: ser.enabled = 0- NO for the serial port, sock.statesimple =
0- PL_SSTS_CLOSED for the socket, etc.

.Currentpll R/O Property (Selected Platforms Only)

Function: Returns current PLL mode of the device

Type: Enum (no_yes, byte)

Value Range: 0- NO: PLL is off, the device runs at low speed with
reduced power consumption.

1- YES: PLL is on, the device runs at maximum speed, x8
faster than low speed.

See Also: sys.newpll

Details

After the external reset the device typically boots with PLL on. You can switch PLL
off and on programmatically by using the sys.newpll method and then "self-
resetting" the device using the sys.reboot method.

Actual PLL mode change only takes place after you "self-reset" the device using
sys.reboot method or the device self-resets due to some other reason (for
instance, there is a self reset after a new BASIC application upload, or when you hit
"restart" button in TIDE). External resets- power-up and RST pin reset (reset
button reset)- set the PLL to default state (typically ON). On some devices there is
a hardware jumper that defines the post-external reset state of the PLL.

Not all Tibbo devices have PLL- to find out if yours does, refer to its platform
documentation (for example, EM1000's is here).

.Freebuffpages R/O Property

Function: Returns the number of free (not yet allocated) buffer
pages (one page= 256 bytes).

Type: Byte

Value Range: 0-255

See Also: sys.totalbuffpages

419 476

378 421

405 505

532

532

534

534

143

536

532 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Details

Only changes after the sys.buffalloc method is used. "Preparatory" methods like
ser.rxbuffrq do not influence what this property returns.

.Halt Method

Function: Stops your program execution (halts VM).

Syntax: sys.halt

Returns: ---

See Also: sys.reboot

Details

Causes the same result as when you press PAUSE in TIDE during the debug
session. Once this method has been used, there is no way for your device to
resume execution without your help.

.Newpll Method (Selected Platforms Only)

Function: Sets new state of the PLL.

Syntax: sys.newpll(newpllstate as off_on)

Returns: ---

See Also: sys.currentpll

Part Description

newpllstate Specifies what state the PLL will be in after the device
emerges from internal reset:

0- OFF: PLL will be off, the device will emerge from reset at
low speed with reduced power consumption

1- ON: PLL will be on, the device will emerge from reset at
maximum speed, x8 faster than low speed

Details

Actual PLL mode change only takes place after you "self-reset" the device using
sys.reboot method or the device self-resets due to some other reason (for
instance, there is a self reset after a new BASIC application upload, or when you hit
"restart" button in TIDE). External resets- power-up and RST pin reset (reset
button reset)- set the PLL to default state (typically ON). On some devices there is
a hardware jumper that defines the post-external reset state of the PLL.

Not all Tibbo devices have PLL- to find out if yours does, refer to its platform
documentation (for example, EM1000's is here).

530

415

534

15

531

534

143

533Platforms

©2000-2011 Tibbo Technology Inc.

Notice that PLL mode affects other objects- for example, baudrates of
serial ports (this is why there is a ser.div9600 property) and
frequency generated by the beep object.

On_sys_init Event

Function: First event to be generated when your device boots up.

Declaration: on_sys_init

See Also: ---

Details

Typically, initialization code for you application is placed here.

On_sys_timer Event

Function: Periodic event.

Declaration: on_sys_timer

See Also: sys.timercount

Details

Multiple on_sys_timer events may be waiting in the event queue. On_sys_timer
event is not generated when the program execution is PAUSED (in debug mode).

New in V1.2. If the platform does not support the sys.onsystimerperiod
property, then the interval of this event generation is fixed at 0.5 seconds. If the
platform does support this property, then the period is adjustable.

.Onsystimerperiod Property (Selected Platforms Only)

Function: New in V1.2. Sets/returns the period for the on_sys_timer
 event generation expressed in 10ms intervals.

Type: Byte

Value Range: 0-255. Default= 50 (500ms).

See Also: ---

Details

Defines, in 10ms increments, the period at which the on_sys_timer event will be
generated. Platforms that do not support this property have the period fixed at 0.5

378 404

232

536

27

533

533

533

534 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

seconds.

.Reboot Method

Function: Causes your device to reboot.

Syntax: sys.reboot

Returns: ---

See Also: sys.currentpll , sys.runmode , sys.resettype , and
sys.halt

Details

After the device reboots it will behave as after any other reboot: enter PAUSE
mode if your program was compiled for debugging, or start execution if the program
was compiled for release (see Two Modes of Target Execution).

The PLL mode will change after the reboot if you requested the changed through
sys.newpll method.

.Runmode R/O Property

Function: Returns current run (execution) mode.

Type: Enum (pl_sys_mode, byte)

Value Range: 0- PL_SYS_MODE_RELEASE: debugging is not possible,
application execution starts immediately after device
powers up. Severe errors such as "divizion by zero" are
ignored and do not stop execution.

1- PL_SYS_MODE_DEBUG: debug mode in which it is
possible to cross-debug the application (under the control
of TIDE software). Application execution is not started
automatically after the power up. Severe errors such as
"divizion by zero" halt execution.

See Also: sys.currentpll , sys.newpll , sys.resettype , and
sys.halt

Details

For some programs, it may be useful to know if the program is currently executing in
Debug Mode or Release Mode(see Two Modes of Target Execution).

Serialnum R/O Property (Selected Platforms Only)

Function: Returns a string containing the serial number of the
device.

Type: String

531 534 535

532

27

532

15

531 532 535

532

27

535Platforms

©2000-2011 Tibbo Technology Inc.

Value Range: Platform-dependent

See Also: Serial Number

Details

To find out if there is a serial number, refer to your device's platform documentation
(for example, EM1000's is here).

Setserialnum Method (Selected Platforms Only)

Function: Sets the serial number of the device.

Syntax: sys.setserialnum(byref str as string) as ok_ng

Returns: 0- OK: The serial number was set successfully.

1- NG: Serial number programming failed.

See Also: Serial Number

Details

To find out if there is a serial number, refer to your device's platform documentation
(for example, EM1000's is here).

.Resettype R/O Property

Function: Returns the type of the most recent hardware reset.

Type: Enum (pl_sys_reset_type, byte)

Value Range: 0- PL_SYS_RESET_TYPE_INTERNAL: The most recent
reset was generated internally.

1- PL_SYS_RESET_TYPE_EXTERNAL: The most recent
reset was generated externally.

See Also: sys.currentpll , sys.runmode , sys.reboot , and
sys.halt

Details

Internal resets are generated when the device self-reboots. This can be caused by
the execution of sys.reboot in your application, or command from TIDE.

External resets are the ones that are caused by power-cycling (turning the device
off and back on) or applying a reset pulse to the RTS line of the device (pushing
reset button).

530

143

535

143

531 534 534

532

534

536 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

.Timercount R/O Property

Function: Returns the time (in half-second intervals) elapsed since
the device powered up.

Type: Word

Value Range: 0-65535

See Also: on_sys_timer

Details

Once this timer reaches 65535 it rolls over to 0.

.Totalbuffpages R/O Property

Function: Returns the total amount of memory pages available for
buffers (one page= 256 bytes).

Type: Byte

Value Range: 0-255

See Also: sys.buffalloc , sys.freebuffpages

Details

Calculated as total available variable memory (RAM) in pages minus number of pages
required to store variables of the current project.

.Version R/O Property

Function: Returns firmware (TiOS) version string.

Type: String

Value Range: Whatever is set in firmware, for example "<EM202-
1.00.00>"

See Also: ---

Details

Wln Object

The wln. object represents the Wi-Fi interface of your device. It is through this

533

530 531

537Platforms

©2000-2011 Tibbo Technology Inc.

object that you find available Wi-Fi networks and select the one to associate with.
You can also create an ad-hoc network of your own and have other stations
connect to it.

The wln. object is not responsible for actual data communications over the Wi-Fi --
this is the job of the sock. object.

On platforms with Wi-Fi support, you will find Wi-Fi interface listed or available on
the following sock. object's properties:

Sock.availableinterfaces

Sock.allowedinterfaces

Sock.currentinterface

Sock.targetinterface

In the task it performs, the wln. object is similar to the net object, which
controls another interface -- the Ethernet. In comparison, the wln. object is much
more complex.

You can avoid dealing with the complexity of Wi-Fi by using our WLN library
. The library handles the tasks of bringing up the Wi-Fi unterface,

finding the specified access point, and associating with it using selected
security protocol. The library also offers other convenient "services".

The wln object allows you to:

Scan for available networks and obtain their parameters such as name, channel,
mode, etc. "Hidden networks" (those that do not broadcast their SSID) can also
be found.

Set WEP, WPA-PSK, or WPA2-PSK security modes and related keys. Part of
required WPA/WPA2 functionality is implemented in the WLN library . That is,
the wln. object and WLN library work together to achieve WPA-PSK and WPA2-
PSK support.

Associate with one of the networks (at a time) or form your own "ad-hoc"
network on a desired channel.

Monitor received signal strength.

Detect disassociation from the network.

Detect Wi-Fi interface power-down or malfunction.

The wln. object works with dedicated hardware -- the GA1000 add-on module. This
add-on hardware is described in our Programmable Hardware Manual.

8.3.18.1Overview

If you are new to Wi-Fi communications, then we recommend you to read the Wi-Fi
Parlance Primer that will introduce you to some important Wi-Fi lingo.

Wln Tasks topic explains the basics of interaction with the wln. object.

The rest of the manual follows the natural sequence of steps that you usually take
when working with and through the Wi-Fi interface (Wln State Transitions topic
expands on the subject). The steps are as follows:

421

475

474

478

506

358

703

703

538

539

542

538 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Brining up Wi-Fi interface

Scanning for Wi-Fi networks

Setting WEP or WPA security

Associating with selected network (or creating own ad-hoc network)

Communicating via Wi-Fi interface

Disassociating from the network (or terminating own ad-hoc network)

Detecting disassociation or offline state

Wi-Fi Parlance Primer

If you are new to Wi-Fi networking, this section will give you a bit of knowledge on
the highly specialized jargon used in the Wi-Fi world. We also provided useful links
that will lead you to a lot more info on the subject.

Here are the abbreviations and terms that are used in the Wi-Fi world:

BSS stands for Basic Service Set (ah, now it is clear!). In simple words, this is a
wireless network created by a single access point (http://en.wikipedia.org/wiki/
Wireless_access_point), but not always. It all depends on the...

BSS mode. Wi-Fi networks can operate in either the infrastructure mode, or ad-
hoc mode. In the infrastructure mode, a wireless access point is used to create,
control and regulate the network. In the ad-hoc mode, there is no access point
and wireless devices communicate directly with each other. This is called
"IBSS" (Independent Basic Service Set), more on this here: http://
en.wikipedia.org/wiki/Independent_Basic_Service_Set.

SSID stands for Service Set Identifier. In simple words, the SSID is a name of the
wireless network. In case of the infrastructure network, this name is preset on
the access point during its configuration. You can read more on SSIDs here:
http://en.wikipedia.org/wiki/BSSID#Service_set_identifier_.28SSID.29.

BSSID stands for Basic Service Set Identifier. This is the "MAC address of the
wireless network". When your network is built on the access point, this is the
MAC address of this access point. For ad-hoc networks the BSSID is selected
with certain randomness built in. More on this here: http://en.wikipedia.org/wiki/
BSSID#Basic_service_set_identifier.

Channel. Wi-Fi devices operate on one of 14 preset frequencies. Channel refers
to the channel number, not the actual frequency used. Depending on the locale,
you can be restricted to fewer channels: http://en.wikipedia.org/wiki/
List_of_WLAN_channels

RSSI. Stands for Received Signal Strength Indication. This is a measure of the
quality of RF signal received from the wireless network (or peer). More on this
here: http://en.wikipedia.org/wiki/Rssi

WEP stands for Wired Equivalent Privacy, a widely used method of protecting Wi-
Fi networks from eavesdropping and unauthorized access. The name carries a bit
of a wishful thinking, as it has been clearly demonstrated that WEP is rather weak

543

550

552

554 555

555

556 556

556

http://en.wikipedia.org/wiki/Wireless_access_point
http://en.wikipedia.org/wiki/Wireless_access_point
http://en.wikipedia.org/wiki/Independent_Basic_Service_Set
http://en.wikipedia.org/wiki/Independent_Basic_Service_Set
http://en.wikipedia.org/wiki/BSSID#Service_set_identifier_.28SSID.29
http://en.wikipedia.org/wiki/BSSID#Basic_service_set_identifier
http://en.wikipedia.org/wiki/BSSID#Basic_service_set_identifier
http://en.wikipedia.org/wiki/List_of_WLAN_channels
http://en.wikipedia.org/wiki/List_of_WLAN_channels
http://en.wikipedia.org/wiki/Rssi

539Platforms

©2000-2011 Tibbo Technology Inc.

and can be easily defeated. Read on here: http://en.wikipedia.org/wiki/
Wired_Equivalent_Privacy.

WPA means Wi-Fi Protected Access. This is a security protocol that exists in two
versions -- WPA and WPA2. WPA was developed in response to serious
weaknesses discovered in the WEP standard. Tibbo devices support "personal"
WPA protocols WPA-PSK and WPA2-PSK. Read about WPA here: http://
en.wikipedia.org/wiki/Wi-Fi_Protected_Access.

Wln Tasks

True to the non-blocking operation philosophy of the entire system, the wln
object does not stall the entire Tibbo Basic application execution to wait for the
Wi-Fi interface to complete required operation ("task"). You program gives the wln.
object a task to perform, and then it is free to go and do other things.

There are nine wln. tasks:

Setting TX power (initiated by wln.settxpower method). This is an
"immediate" task.

Passively Scanning for Wi-Fi networks (initiated by wln.scan method).

Actively Scanning for Wi-Fi networks (initiated by wln.activescan method).

Setting WEP mode and key (initiated by wln.setwep method). This is an
"immediate" task.

Setting WPA/WPA2 mode and key (initiated by wln.setwpa method). This is
an "immediate" task.

Associating with selected network (initiated wln.associate by method).

Creating own ad-hoc network (initiated by wln.networkstart method).

Disassociating from the network (initiated by wln.disassociate method).

Terminating own ad-hoc network (initiated by wln.networkstop method).

Three tasks on the list -- wln.settxpower , wln.setwep , and wln.setwpa --
are so-called immediate tasks. They complete as soon as they are started. If the
execution advances to the next statement in the program then you know that
these tasks are done with.

All remaining tasks take time to complete, and they complete asynchronously with
respect to the program execution. The following example shows a wrong way of
tasking:

'THIS WON'T WORK!
...
wln.scan("NET1")
wln.associate(wln.scanresultbssid,"NET1",wln.scanresultchannel,
wln.scanresultbssmode) 'this task will be skipped over!

Here is how you should do this: use the wln.task read-only property and wait
until the previous task is completed.

'A BETTER WAY
...
wln.scan("NET1")

4

550 570

550 567

550 556

553 570

553 571

554 557

555 564

556 561

556 564

570 570 571

572

http://en.wikipedia.org/wiki/Wired_Equivalent_Privacy
http://en.wikipedia.org/wiki/Wired_Equivalent_Privacy
http://en.wikipedia.org/wiki/Wi-Fi_Protected_Access
http://en.wikipedia.org/wiki/Wi-Fi_Protected_Access

540 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

while wln.task<>PL_WLN_TASK_IDLE 'waiting for the task to complete...
wend
...
wln.associate(wln.scanresultbssid,"NET1",wln.scanresultchannel,
wln.scanresultbssmode)
while wln.task<>PL_WLN_TASK_IDLE 'waiting for the task to complete...
wend
...

The above approach still needs some refinement. Just making sure that the previous
task has competed will not guarantee that your next task will be accepted. This is
because some tasks can only be accepted under certain conditions. For example,
you can't associate while you are already associated. Try this, and wln.associate

 will return 1- REJECTED.

'GOOD PROGRAMMING MEANS ANTICIPATING PROBLEMS
While wln.task<>PL_WLN_TASK_IDLE 'waiting for the previous task to
complete...
Wend
...
If wln.associate(wln.scanresultbssid,"NET1",wln.scanresultchannel,
wln.scanresultbssmode)<>ACCEPTED Then
 'We already made sure that the previous task was completed.
 'Hence, there is a more 'fundamental' reason for the rejection!
End If

Now, this is still not all. "Task completed" is not equal to "task completed
successfully". In the above example, we were trying to associate with the "NET1"
network. Now, have we actually succeeded? Find out by testing the value of
wln.associationstate ! For every task that may result in failure there is a way to
know if the execution was successful or not.

'MORE CHECKING
While wln.task<>PL_WLN_TASK_IDLE 'waiting for the previous task to
complete...
Wend
...
If wln.associate(wln.scanresultbssid,"NET1",wln.scanresultchannel,
wln.scanresultbssmode)<>ACCEPTED Then
 'Handle this...
End If
While wln.task<>PL_WLN_TASK_IDLE 'waiting for association to complete...
Wend
'did we succeed?
If wln.associationstate<>PL_WLN_ASSOCIATED Then
 'something went wrong...
End If
...

One problem with the code in the above examples is that it is, essentially, blocking.
Your application is not doing anything useful while the Wi-Fi interface is associating.

557

558

541Platforms

©2000-2011 Tibbo Technology Inc.

To take advantage of the event-driven nature of the system, you can base your
execution flow on the on_wln_task_complete event which is generated each
time a task is completed. Completed_task argument of the event handler carries the
code of the event that has been completed. Therefore, you can advance through
steps in this manner:

'THIS CODE TAKES FULL ADVANTAGE OF THE EVENT-DRIVEN NATURE OF THE SYSTEM

'---
Sub On_sys_init
 ...
 wln.scan("CISCO1") 'start the task and don't wait
End Sub

'---
Sub On_wln_task_complete(completed_task As pl_wln_tasks)
 Select Case completed_task

 Case PL_WLN_TASK_SCAN:
 'wln.scan() completed
 If wln.scanresultssid="" Then
 'passive scan failed to reveal the network, let's try active
scanning
 wln.activescan("CISCO1")
 Else
 'network discovered
 goto associate_now
 End If

 Case PL_WLN_TASK_ACTIVESCAN:
 'wln.activescan() completed
 If wln.scanresultssid="" Then
 'network still not found -- handle this
 ...
 End If
associate_now:
 wln.associate(wln.scanresultbssid,"CISCO1",wln.scanresultchannel,
wln.scanresultbssmode)

 Case PL_WLN_TASK_ASSOCIATE:
 'wln.associate() completed, proceed in this manner...
 ...
 End Select
End Sub

'---
Sub On_wln_event(wln_event As pl_wln_events)
 'here we catch hardware problems and disassociations -- also
asynchronously
End Sub

Notice the on_wln_event in the code above. It allows us to catch "problems".

565

565

542 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Wln State Transitions

The Wi-Fi hardware may be in one of the following states:

Uninitialized state (wln.enabled = 0- NO).

Booted and idle (wln.enabled= 1- YES and wln.associationstate = 0-
PL_WLN_NOT_ASSOCIATED).

Booted and associated with a network (wln.enabled= 1- YES and
wln.associationstate= 1- PL_WLN_ASSOCIATED).

Booted and running its own ad-hoc network (wln.enabled= 1- YES and
wln.associationstate= 2- PL_WLN_OWN_NETWORK).

The following diagram details possible state transitions.

The only way to advance from the uninitialized state into the booted state is
through a successful boot. The process is described in Bringing Up Wi-Fi Interface

. The key method for the process is wln.boot .

There is no special method for powering down. Your application can only hardware-
reset the GA1000, after which the boot process can be repeated. The
on_wln_event is generated when the GA1000 goes offline, either as a result of a
deliberate reset, or in case the Wi-Fi hardware malfunctions or gets disconnected.

Transition between the idle and associated states happens as a result of successful
association. This is detailed in Associating With Selected Network . The key
method is wln.associate .

The wln.disassociate method can be used to force disassociation. The wln
object also detects the loss of association automatically, i.e. when the network in

562

558

543 558

546

565

554

557

561

543Platforms

©2000-2011 Tibbo Technology Inc.

question "disappears". In both cases, the on_wln_event event is generated.

The Wi-Fi interface can also create its own ad-hoc network , which is achieved
through the wln.networkstart method. Terminating Own Ad-hoc Network
explains how to end this (in short, use wln.networkstop).

Notice that you cannot be associated and run your own network at the same time.
These states are mutually exclusive.

Brining Up Wi-Fi Interface

The easiest way to make the Wi-Fi interface work is by calling wln_start() of
the WLN library . This will save you a ton of effort, seriously!

If you can't or won't use the library, here is the sequence of steps that you just
have to take in order to bring up the Wi-Fi interface:

Configure interface lines

Reset Wi-Fi module

Select the domain

Allocate buffer memory

Set MAC address (optional)

Boot up the GA1000 add-on module

Set the IP, gateway IP, and netmask

Set TX power (really optional)

The following is a simplified sample code that demonstrates the process. Typically,
it would be called from the on_sys_init event handler, but you can actually call it
from anywhere in your application. You can also call this code repeatedly and even
after the Wi-Fi interface has already been running. We call the code simplified
because it does not check for any error conditions.

'BRINGING UP THE WI-FI MODULE (SIMPLIFIED)

#If PLATFORM_ID=EM500W
#define WLN_RESET_MODE 1 'reset is controlled by the combination of CS

and CLK
'there is no need to map CS, DI, DO, and CLK lines because they are

fixed
#elif PLATFORM_ID=EM1206W

#define WLN_RESET_MODE 0 'there is a dedicated reset line
#define WLN_RST PL_IO_NUM_11
#define WLN_CS PL_IO_NUM_15
#define WLN_DI PL_IO_NUM_12
#define WLN_DO PL_IO_NUM_13
#define WLN_CLK PL_IO_NUM_14

#else
#define WLN_RESET_MODE 0 'there is a dedicated reset line
#define WLN_RST PL_IO_NUM_51
#define WLN_CS PL_IO_NUM_49
#define WLN_DI PL_IO_NUM_52
#define WLN_Do PL_IO_NUM_50
#define WLN_CLK PL_IO_NUM_53

#endif

565

555

564 556

564

724

703

545

546

547

547

548

549

549

550 550 550

533

544 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

'---
-

'----- configure interface lines -----
'(on platforms with fixed mapping this will have no effect and do no

harm)
wln.csmap=WLN_CS
io.num=WLN_CS
io.enabled=YES
wln.dimap=WLN_DI
wln.domap=WLN_DO
io.num=WLN_DO
io.enabled=YES
wln.clkmap=WLN_CLK
io.num=WLN_CLK
io.enabled=YES
io.num=WLN_RST
io.enabled=YES

'----- reset Wi-Fi module -----
#If WLN_RESET_MODE

'reset is controlled by the combination of CS and CLK
io.lineset(wln.csmap,HIGH)
io.lineset(wln.clkmap,LOW)
io.lineset(wln.clkmap,HIGH)

#Else
'there is a dedicated reset line
io.num=WLN_RST
io.state=LOW
io.state=HIGH

#endif

'in case we called wln_init() after it has already been up and running
While wln.enabled=YES
Wend

'----- set the domain -----
wln.domain=PL_WLN_DOMAIN_FCC

'----- allocate buffers -----
wln.buffrq(5)
sys.buffalloc

'----- set MAC address (optional) -----
wln.mac="0.100.110.120.130.140"

'----- boot up the GA1000 -----
romfile.open("ga1000fw.bin")
wln.boot(romfile.offset)

'----- setup the IP, gateway, netmask -----
wln.ip="192.168.1.86"
wln.gatewayip="192.168.1.1"
wln.netmask="255.255.255.0"

'----- set TX power (REALLY optional) -----
wln.settxpower(15)
while wln.task<>PL_WLN_TASK_IDLE
wend

545Platforms

©2000-2011 Tibbo Technology Inc.

Configuring Interface Lines

The GA1000 add-on interacts with your BASIC-programmable device through an SPI
interface. The SPI interface has four signals: chip select (CS), clock (CLK), data in
(DI), and data out (DO). On the EM500 , DI and DO are combined together (this
saves one GPIO line on a module that has very few of them). Connecting GA1000
shows related schematic diagrams.

All Tibbo devices except the EM500 allow remapping of SPI lines. That is, any four
GPIO lines of your device can be chosen to control the GA1000. Wln.csmap ,
wln.clkmap , wln.dimap , and wln.domap properties exist for the purpose.
There is no remapping on the EM500 and manipulating these properties makes no
difference for it.

The GA1000 also has a reset (RST) line. As Connecting GA1000 explains, the RST
line can be driven by a dedicated GPIO line of your device, or through a "joint
effort" of CLK and DO, which, again, spares one GPIO pin of your device. There isn't
any property to remap the RST line. This is because the RST is supposed to be
controlled by your application directly. It exists outside of the wln. object's realm,
so choose any GPIO to control it.

This said, some Tibbo hardware has all the choices made for you already. We are
talking about the NB1000 board (part of DS100x) and the EM1206EV board. On
these boards, all the necessary hardware connections to the GA1000 are already
there, so your mapping just has to follow them. With the exception of the EM500,
you have a complete freedom to map any way you want on all other devices, but
why would you? We recommend you to follow this scheme:

#If PLATFORM_ID=EM500W
#define WLN_RESET_MODE 1 'reset is controlled by the combination of CS

and CLK
'there is no need to map CS, DI, DO, and CLK lines because they are

fixed
#elif PLATFORM_ID=EM1206W or PLATFORM_ID=DS1101W or PLATFORM_ID=DS1102W
'also applies to EM1206EV board

#define WLN_RESET_MODE 0 'there is a dedicated reset line
#define WLN_RST PL_IO_NUM_11
#define WLN_CS PL_IO_NUM_15
#define WLN_DI PL_IO_NUM_12
#define WLN_Do PL_IO_NUM_13
#define WLN_CLK PL_IO_NUM_14

#Else 'for all other devices including NB1010
#define WLN_RESET_MODE 0 'there is a dedicated reset line
#define WLN_RST PL_IO_NUM_51
#define WLN_CS PL_IO_NUM_49
#define WLN_DI PL_IO_NUM_52
#define WLN_Do PL_IO_NUM_50
#define WLN_CLK PL_IO_NUM_53

#endif

The above sets three schemes: one for the EM500 module and related devices,
the second one for the EM1206 , DS1101 , DS1102 , and related devices,
and the third one for all other devices including the EM1000 , EM1202 , etc.

Here is the code snippet that prepares GPIO lines:

'----- configure interface lines -----

138

201

560

560 560 562

201

138

158 168 174

143 151

546 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

'(on platforms with fixed mapping this will have no effect and do no
harm)

wln.csmap=WLN_CS
io.num=WLN_CS
io.enabled=YES
wln.dimap=WLN_DI
wln.domap=WLN_DO
io.num=WLN_DO
io.enabled=YES
wln.clkmap=WLN_CLK
io.num=WLN_CLK
io.enabled=YES
io.num=WLN_RST
io.enabled=YES

Note that mapping can't be changed when the Wi-Fi hardware is already booted
(i.e. wln.enabled = 1- YES).

Applying Reset

Once the RST line has been properly configured , you can hardware-reset the
GA1000 at any time by executing the following simple code. Note that the GA1000
has to be reset after the power up of your device. Proper hardware reset is not
optional!

If your design has no GPIO line to spare, the reset signal can be derived from the
combination of CS and CLK line signals (check Connecting GA1000 , diagram B).
When there is a dedicated RST line, this line is manipulated directly.

Notice also the while...wend loop. It is there for proper GA1000 reset after it has
already been up and running. When the hardware reset is applied, the GA1000 will
go offline, and the wln. object will detect this in a matter of milliseconds. Your
program should not try to work with the wln. object again until the wln.enabled
property goes to 0- NO in response to the hardware reset. Your code can stay and
wait for this (as shown below) or rely on the on_wln_event . Once the event is
triggered, you are free to repeat the whole process of bringing up Wi-Fi interface
.

'----- reset Wi-Fi module -----
#If WLN_RESET_MODE

'reset is controlled by the combination of CS and CLK
io.lineset(wln.csmap,HIGH)
io.lineset(wln.clkmap,LOW)
io.lineset(wln.clkmap,HIGH)

#Else
'there is a dedicated reset line
io.num=WLN_RST
io.state=LOW
io.state=HIGH

#endif

'in case we called wln_init() after it has already been up and running
While wln.enabled=YES
Wend

549

562

545

201

562

565

543

547Platforms

©2000-2011 Tibbo Technology Inc.

Selecting Domain

Wireless communications and channels are tightly regulated in every country on
Earth, and this applies to Wi-Fi networks as well. Not every one of 14 pre-defined
Wi-Fi frequencies is allowed to be used in every country. It is your responsibility to
set a correct "domain" for your Wi-Fi device. This is done through the wln.domain

 property. Supported domains are US (FCC), EU, JAPAN, and "OTHER", which
mimics US channel set.

Selected domain restricts available channels for wln.activescan and
wln.associate methods. These are methods that cause the GA1000 to transmit
data. Wln.scan is not restricted by the selected domain in any way, because it
only listens for incoming Wi-Fi signals, without actually transmitting anything.

One side effect of the above is that you may be able to discover the network with
wln.scan, yet unable to associate with it because this network is operating on a
channel which is disallowed in a currently selected domain!

Allocating Buffer Memory

The wln. object requires a single buffer. This buffer is used to form outgoing
packets and is necessary for correct operation. You never have to deal with this
buffer directly -- it is handled internally by the wln. object itself.

Buffer memory is allocated in pages. A page is 256 bytes of memory. Allocating
memory for a buffer is a two-step process: First you have to request for a specific
allocation (a number of pages) and then you have to perform the actual allocation.
Request the size you need in pages using the wln.buffrq method.

The allocation method (sys.buffalloc) applies to all buffers previously specified, in
one fell swoop:

Dim x As Byte
x = wln.buffrq(5) ' request 5 pages for the wln buffer. X will then contain
how many can actually be allocated
' Allocation requests for buffers of other objects...
sys.buffalloc 'perform actual memory allocation, as per previous requests

You may not always get the full amount of memory you have requested. Memory is
not an infinite resource, and if you have already requested (and received)
allocations for 95% of the memory for your platform, your next request will get up
to 5% of memory, even if you requested for 10%.

Current wln. buffer size in bytes can always be checked with the wln.buffsize
read-only property.

Note that wln buffer size can't be changed when the Wi-Fi hardware is already
booted (wln.enabled = 1- YES).

How many pages should the wln buffer get?

The size of the wln buffer directly dictates the maximum size of network packets
that the wln object will be able to send (this buffer has nothing to do with incoming
packets). Up to 100 bytes of the buffer space are required for various packet
headers, and the rest is available to packet payload. For example, if you have
allocated 2 pages for the buffer, then the buffer size is 512 bytes. Hence, maximum

561

556

557

567

559

530

559

549 562

548 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

payload size cannot exceed 412 bytes. That is, every TCP, UDP, etc. packet sent,
including its protocol headers, will not exceed 412 bytes.

For TCP communications, the size of individual packets is not that critical. The
beauty of TCP is that it can work with practically any buffer space available. in
theory, the bigger the buffer, the better the TCP throughput is. In reality, you will
stop feeling any improvement in TCP performance once your wln. buffer size
exceeds ~3 pages. UDP is another matter entirely. If you want to be able to send
UDP datagrams of a certain size, then you must make sure that you have created
an adequate wln. buffer.

In any case, TiOS does not send out TCP or UDP packets with payloads exceeding
1024 bytes (4 pages). This is the internal limitation of TiOS iteself. Add to this TCP/
UDP and Wi-Fi headers, and you are still within 5 pages. Therefore, there is no point
in setting the wln. buffer to more than 5 pages.

Setting MAC Address (Optional)

Every network interface needs its own MAC, and the Wi-Fi port is no exception.
The wln.mac property exists for this purpose. Your Wi-Fi module already carries
a MAC address onboard -- it is preset during manufacturing, so you don't actually
have to take care of the MAC. Leave the wln.mac at its default pre-boot value of
"0.0.0.0.0.0", boot up the Wi-Fi interface (wln.boot), and the wln.mac will be
updated with the pre-assigned address that is stored inside the Wi-Fi module.

You can use another MAC if you want, too. Set the desired MAC address before
booting up the Wi-Fi, and this MAC will be used instead of the pre-assigned one.
That is, if wln.mac is set to anything but "0.0.0.0.0.0" and then wln.boot is called,
then "your" MAC will be used instead.

'set the mac address
wln.mac="0.1.2.3.100.200" 'override pre-assigned MAC with another address
...
romfile.open("ga1000fw.bin")
wln.boot(romfile.offset) 'the hardware will start using your MAC

The pre-assigned MAC inside the Wi-Fi module will not be altered. It is always there
and can be called up by leaving the wln.mac at "all zeroes", then booting the Wi-Fi
hardware.

A bit of info on MACs

The MAC address can be either "globally unique" or "locally administered". There is
also a provision for "unicast" and "multicast" addressing. You can find more
information on this here: http://en.wikipedia.org/wiki/Mac_address.

Your organization can purchase a block of globally unique addresses, or choose to
assign random locally administered addresses. In the latter case, set the most
significant byte of the address to 2, and choose random values for the remaining 5
bytes (random function will help). Note that each device you are using should
have a unique MAC address. It is a good idea to generate the MAC once, and store
it in the EEPROM memory (see the stor. object). The MAC can then be retrieved
on each boot and written into the wln.mac property.

Note that the MAC address of the Wi-Fi interface can't be set when the hardware
is already booted (wln.enabled = 1- YES).

563

549 558

222

522

563

562

http://en.wikipedia.org/wiki/Mac_address

549Platforms

©2000-2011 Tibbo Technology Inc.

Booting Up the Hardware

Booting up the GA1000 hardware is done through the wln.boot method. The
GA1000 does not have a ROM or flash memory and its internal processor executes
the firmware from RAM. Before the GA1000 module can start working, you need to
upload this firmware into it, and this is what wln.boot really does.

The firmware file is called "ga1000fw.bin" (the file can be downloaded from Tibbo
website). The file must be added to your Tibbo Basic project as a binary
resource file .

Access to resource files is through the romfile. object. First, you open the
"ga1000fw.bin" file with the romfile.open method, then pass the pointer to this
file (value of the romfile.offset R/O property) to the wln.boot method:

'boot it up
romfile.open("ga1000fw.bin")
If wln.boot(romfile.offset) Then
 'something is wrong, react to this
 ...
End If

The boot takes 1-3 seconds to complete. The method will return 0- OK if the boot
was completed successfully. At that moment, wln.enabled will become 1- YES.

The boot will fail (return 1- NG) if:

The Wi-Fi hardware is not powered, not properly reset , mapped incorrectly ,
or malfunctions.

The offset to the firmware file is incorrect or the file is not included in your
project.

The Wi-Fi hardware is already booted and operational.

Setting IP, Gateway, and Netmask

The Wi-Fi is a separate network interface and so it has its own IP address, which is
set using the wln.ip property. This address is different from the IP address of the
Ethernet interface (see net.ip). We noticed that many people find it "unusual"
that Tibbo hardware device would turn out to have two IP addresses. In fact, this
is completely normal. On the PC, every network interface has the IP of its own as
well.

Technically speaking, IP address configuration can be done at any time. This topic
has been placed into this section to remind you that the IP of the wln. object has
to be set, if not right after the boot , then at some later point. If your application
uses a static IP, then setting it in the boot section of your code is a good idea. If
the application obtains the IP address through DHCP, then the IP can only be set
after communicating with the DHCP server, and this will only be possible after
successful association . You may even need to set the IP address repeatedly if
your product switches between different networks (access points).

There are also wln.gatewayip and wln.netmask properties that may need to

558

132

20

370

374

373

562

546 545

563

360

549

554

562 564

550 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

be set along with the IP address. This is optional and is only required if your device
will have to establish outgoing connections to the network hosts outside of your
LAN.

Note that IP, gateway IP, and netmask of the Wi-Fi interface can't be set when
there is at least one open socket in your system (sock.statesimple <> 0-
PL_SSTS_CLOSED) that operates on the Wi-Fi interface (sock.currentinterface =
2- PL_SOCK_INTERFACE_WLN).

A very useful DHCP library can handle IP, gateway IP, and netmask
configuration both for the Ethernet (net.) and Wi-Fi (wln.) interfaces of
your device. Use it and save yourself a ton of work!

Setting TX Power (Optional)

The output power of the Wi-Fi hardware can be adjusted in 12 steps. The
wln.settxpower method is provided for that purpose. The power value roughly
corresponds to dB. The lowest output power is set with wln.settxpower(4) and the
highest power is set with wln.settxpower(15). Lower power reduces the current
consumption of the Wi-Fi module, but not by much. We recommend that you do not
touch this.

Note that setting TX power is an "immediate" wln task and there is a certain
correct way of handling tasks. "Immediate" means you don't have to wait for the
task to complete -- it is finished as soon as wln.settxpower is done executing.

Scanning for Wi-Fi Networks

Scanning allows you to discover all networks in your device's range and also learn
about their operating parameters, such as the name, RF channel, signal strength,
etc. Two methods -- wln.scan and wln.activescan -- are provided for this
purpose. Both methods are wln tasks and there is a certain correct way of
handling tasks.

Wln.scan performs a passive detection of networks. During the passive detection,
the hardware listens for "beacons" transmitted by wireless networks and extracts
network information from these beacon packets. This method can't collect the
network information of "hidden" wireless networks that do not broadcast their SSIDs
(names).

Passive scanning is performed on all 14 frequency channels, regardless of the value
of wln.domain . This is not in violation of any regulations because the passive
scanning does not involve transmitting any data out of the device (the transmitter
stays silent).

Wln.activescan actively "probes" the environment around the device by sending --
you guessed it -- "probe" packets. This method can find all the wireless networks
that wln.scan would find, plus it can discover a hidden network, but only if you
knew this network's name in advance.

Active scanning (sending of "probe" packets) is only performed on "allowed"
channels. The list of allowed channels depends on the selected domain (wln.domain

).

Scanning can be performed at any time, even when the Wi-Fi interface is in the
associated state (wln.associationstate= 1- PL_WLN_ASSOCIATED) or running its
own ad-hoc network (wln.associationstate= 2- PL_WLN_OWN_NETWORK). Keep in
mind, however, that scanning temporarily disrupts communications between the
device and the access point. This is because scanning involves checking for
available access points on all (allowed) frequencies. Obviously, the radio can't keep

505

478

618

358

570

539

567 556

539

561

561

558

551Platforms

©2000-2011 Tibbo Technology Inc.

communicating with the "current" access point while jumping from channel to
channel.

Both wln.scan and wln.activescan accept a single argument of string type.
Presence or absence of this argument defines the "operating mode" of these
methods. You can either discover all wireless networks in range, or try to collect
information about the specific network .

Also read about what happens when several access points have the same name .

Discovering All Wireless Networks

When called with an empty string argument, wln.scan and wln.activescan will
attempt to find all wireless networks in range. After the task completes, the
wln.scanresultssid R/O property will contain a comma-separated list of network
names.

'scan for available network
Dim s As String
...
wln.scan("") 'you could use wln.activescan('') instead
While wln.task<>PL_WLN_TASK_IDLE
Wend
s=wln.scanresultssid 'the list of networks will be copied into s

After the execution of the above, the s string may contain something like this:
"TIBBO,c1100_1,.....,WNET2". Notice "....." -- these are five bytes with ASCII code
0. They represent a hidden network (i.e. the network that does not broadcast its
SSID). Naturally, the name of this network is not revealed to your device. This will
be the case regardless of whether you used wln.scan or wln.activescan.

Collecting Data About Specific Network

When called with the argument set to the name of a particular network, the
wln.scan and wln.activescan methods will attempt to find this wireless
network and obtain its operational parameters:

'scan for a specific network
wln.activescan("Tibbo1") 'you could use wln.scan(''), unless you are
expecting to be dealing with a hidden network
While wln.task<>PL_WLN_TASK_IDLE
Wend
If wln.scanresultssid<>"" Then

'network found!
...

End If

After the scan...

551

551

552

567 556

569

567 556

552 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Wln.scanresultssid R/O property will contain the name of the specified
network, or nothing if the network wasn't found. If the network was found, the
following five properties will also be updated:

Wln.scanresultbssid R/O property will contain the BSSID ("MAC address") of the
specified network.

Wln.scanresultbssmode R/O property will contain the BSS mode of the network
(infrastructure or ad-hoc).

Wln.scanresultchannel R/O property will return the number of the RF channel
on which the network operates.

Wln.scanresultrssi R/O property will contain the strength of the RF signal
received from the specified network.

Wln.scanresultwpainfo R/O property will contain the data necessary for WPA/
WPA2 protocols . This is not a human-readable data. Better let our WLN library

 interpret it.

Both wln.scan and wln.activescan will collect exactly the same data about the
specified network. The only difference is that wln.scan won't be able to do the job
if this wireless network does not broadcast its SSID. Wln.activescan, on the
contrary, will get this done. So, if you need to work with a hidden network, then
you need to know this network's name, and you need to use wln.activescan to
obtain this network's data.

Multiple Access Points With the Same Name

Many installations have several access points with the same SSID (name). These
may be viewed as a single wireless network consisting of multiple access points, or
several networks that use the same SSID. What happens when you do wln.scan
or wln.activescan in this environment?

Let's assume you have five access points in range: "CISCO1", "Net10", and three
access points named "tibbo_net".

If you are discovering all wireless networks in range, i.e. do wln.scan("") or
wln.activescan(""), then after the scanning task is complete, wln.scanresultssid
will contain several identical entries, like this: "CISCO1,tibbo_net,tibbo_net,Net10,
tibbo_net". You can't really distinguish one "tibbo_net" from another!

If you are collecting data about specific network , i.e. do wln.scan("tibbo_net")
or wln.activescan("tibbo_net"), then wln.scanresultssid will end up containing a
single entry: "tibbo_net". Question is, which one of the three "tibbo_net" access
points does this entry represent? The answer: it is the one with the strongest
signal (the highest wln.scanresultrssi)! All other "wln.scanresult..." R/O properties
will then contain values pertaining to this access point. Thus, when given a choice,
the wln. object automatically selects the best access point to work with.

Setting Wi-Fi Security

The wln. object supports two types of Wi-Fi security:

WEP64 and WEP128 -- a weak and old form of Wi-Fi protection.

WPA-PSK and WPA2-PSK -- two modern forms of Wi-Fi security (use WPA2
whenever possible). These security modes require the WLN library (or a lot of
coding effort) to work correctly.

WEP and WPA security must be set before associating with the selected network
or creating own ad-hoc network .

569

567

568

568

569

569

553

703

567

556

551

569

551

569

553

553

703

554

555

553Platforms

©2000-2011 Tibbo Technology Inc.

Setting WEP Mode and Key

The wln.setwep method allows you to specify the WEP mode and key. Note that
wln.setwep is an "immediate" wln task and there is a certain correct way of
handling tasks. "Immediate" means you don't have to wait for the task to complete
-- it is finished as soon as wln.setwep is done executing.

The mode can be either DISABLED, WEP64, or WEP128. WEP key is entered as a
HEX string, not ASCII string. Each character in a string represents one HEX digit:
0..9 or A..F (a..f). The key has a fixed length: 10 HEX digits for WEP-64 or 26 HEX
digits for WEP-128. If your key is too short it will be padded with zeroes. If the key
is too long it will be truncated.

Here is the code example that sets the Wi-Fi to WEP128 mode:

'set WEP128
wln.setwep("11111111111111111111111111",PL_WLN_WEP_MODE_128) 'we love to
choose difficult keys

Wi-Fi devices routinely define four WEP keys, but Tibbo hardware only uses a single
key (key 1).

Note that the WEP mode and key can't be changed while the Wi-Fi interface is in
the associated state (wln.associationstate= 1- PL_WLN_ASSOCIATED) or is
running its own network (wln.associationstate= 2- PL_WLN_OWN_NETWORK).

You need to call wln.setwep every time before associating with the
access point or starting own network. If you are switching from an
access point using WEP security to another access point with no security
or WPA security , you still need to execute wln.setwep("",
PL_WLN_WEP_MODE_DISABLED)!

Setting WPA Mode and Key

The wln.setwpa method allows you to specify the WEP mode and key. Looks
easy, similar to WEP , but the reality is that doing WPA is a hard hard job! It is, in
fact, so hard and involves so many steps that we are not even going to attempt to
explain how this is done. Use the WLN library whenever you have to deal with
WPA/WPA2. This is the way of doing this, really!

Tibbo devices only support "personal" WPA modes WPA-PSK and WPA2-PSK.

If you are switching from an access point using WPA security to another
access point with no security or WEP security , you still need to execute
wln.setwpa(PL_WLN_WPA_DISABLED,0,"",0)!

570

539

558

554

555

553

571

553

703

553

554 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Associating With Selected Network

Association is a process by which your Wi-Fi device establishes a link with an
access point or another wireless station running an ad-hoc network.

The association process is initiated using the wln.associate method. Association
is a required step before you will be able to send and receive the data over the Wi-
Fi. Note that wln.associate is a wln task and there is a certain correct way of
handling tasks.

Wln.associate will be rejected (return 1- REJECTED) if:

Another task is currently in progress.

GA1000 add-on module is not online (wln.enabled = 0- NO).

The Wi-Fi interface is already in the non-idle state (wln.associationstate <>0-
PL_WLN_NOT_ASSOCIATED). That is, you can't try to associate when you are
already associated or running own ad-hoc network .

The method will return 0- ACCEPTED if the task is accepted for processing.

Prior to associating, you need to set the WEP or WPA security (if required).
You also need to know several key parameters about the network you are
associating with:

SSID (the name) of this network;

BSSID ("MAC") of this network;

Channel on which this network operates;

BSS mode of this network (whether the network is infrastructure or ad-hoc).

Normally, the SSID is known, but BSSID, channel, and BSS mode require some
digging. The easiest way to sniff out correct values of these parameters is through
scanning . Wln.scan or wln.activescan will fill out wln.scanresultbssid ,
wln.scanresultchannel , and wln.scanresultbssmode R/O properties. You only
need to put them to good use, as shown in the example below.

Before you look at the example, consider this: you may be able to discover the
network with wln.scan, yet unable to associate with it because this network is
operating on a channel which is disallowed in a currently selected domain .

'connect to the access point named TIBBO.
wln.scan("TIBBO") 'scanning for a specific network will give us necessary
parameters (you can also use wln.activescan)
While wln.task<>PL_WLN_TASK_IDLE
Wend
If wln.scanresultssid<>"" Then
 'wireless network not found
End If

'now can associate: 'wln.scanresult...' properties contain necessary data
after the scanning
wln.associate(wln.scanresultbssid, wln.scanresultssid,
wln.scanresultchannel, wln.scanresultbssmode)
While wln.task<>PL_WLN_TASK_IDLE
Wend
If wln.associationstate=PL_WLN_ASSOCIATED Then
 'successful association!
 ...
End If

557

539

562

558

555

553 553

551 567 556 567

568 568

547

555Platforms

©2000-2011 Tibbo Technology Inc.

After the association task is completed you have to check the association result.
Mere task completion does not indicate success! The wln.associationstate will
provide the indication.

If you are running with no security or WEP security , you can start
communicating over the Wi-Fi interface as soon as you are done associating. If
it is WPA you are dealing with, completing wln.associate is really just a first step.
There is a lengthy and laborious message exchange to follow. It is best to delegate
this to our WLN library !

When the wln. object is in the associated state, wln.rssi read-only property is
constantly updated with the strength of the signal coming from the access point.
Do not confuse this with the wln.scanresultrssi property which returns the signal
strength of a particular network obtained during scanning .

Creating Own Ad-hoc Network

Rather than associating with somebody else's network, the Wi-Fi interface can
create an ad-hoc network of its own and have other devices associate with it. This
is done by using wln.networkstart . Note that wln.networkstart is a wln task
and there is a certain correct way of handling tasks.

Wln.networkstart will be rejected (return 1- REJECTED) if:

Another task is currently in progress.

GA1000 add-on module is not online (wln.enabled = 0- NO).

The Wi-Fi interface is already in the non-idle state (wln.associationstate <>0-
PL_WLN_NOT_ASSOCIATED). That is, you can't start a network when you are
already associated or running a network.

The method will return 0- ACCEPTED if the task is accepted for processing.

To start a network, you only need to make up your mind regarding its name and
operating channel:

'take control and run your own network
wln.networkstart("VOICEOFREBELS",6)
While wln.task<>PL_WLN_TASK_IDLE
Wend

Communicating via Wln Interface

Actual data exchange over the Wi-Fi interface falls outside the responsibilities of
the wln object. This is the task of the sock. object. This object has a set of
properties that define whether a particular socket will be listening on the Wi-Fi
interface (sock.allowedinterfaces property), establish an outgoing connection
through the Wi-Fi interface (sock.targetinterface property). See also:
sock.currentinterface read-only property.

558

553

555

703

566

569

550

554

564 539

562

558

421

474

506

478

556 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Disassociating From the Network

To disassociate from the network, use the wln.disassociate method. Note that
wln.disassociate is a wln task and there is a certain correct way of handling
tasks.

'disassociate now
wln.disassociate
While wln.task<>PL_WLN_TASK_IDLE
Wend

Disassociation can be forced by the access point. Disassociation will also happen if
the access point goes offline or out of range, or if the Wi-Fi hardware is powered
down, reset, disconnected, or malfunctions. This will be detected by the wln
object.

Terminating Own Ad-hoc Network

Use wln.networkstop to terminate your ad-hoc network. We are talking about
the network your hardware has created -- you can't terminate an ad-hoc network
of someone else. Note that wln.networkstop is a wln task and there is a certain
correct way of handling tasks.

Detecting Disassociation or Offline State

The wln. object automatically detects disassociation from the wireless network and
powering-off of or reset of the GA1000. On_wln_event event is fired up if either
condition is detected. in response to this event, your application can re-initialize
the Wi-Fi hardware and/or re-associate with the wireless network.

8.3.18.2Properties, Methods, Events

Properties, methods, and events of the wln object.

.Activescan Method

Function: Causes the Wi-Fi interface to commence either the active
detection of available wireless networks or obtainment of
an additional information about a particular network
specified by its SSID (name).

Syntax: wln.activescan(byref ssid as string) as
accepted_rejected

Returns: One of accepted_rejected constants:

0- ACCEPTED.

1- REJECTED.

See Also: Scanning for Wi-Fi Networks , Wln Tasks ,

wln.scan

Part Description

561

539

556

564

539

565

550 539

567

557Platforms

©2000-2011 Tibbo Technology Inc.

ssid Network name. Leave empty to detect all available networks -- after the
scan, the comma-delimited list of networks will be in wln.scanresultssid

. Alternatively, specify the network name. If the network is detected,
its parameters will be available through wln.scanresultssid ,
wln.scanresultbssid , wln.scanresultbssmode , wln.scanresultchannel

, wln.scanresultrssi , wln.scanresultwpainfo .

Details

Active scanning process is a task and there is a certain correct way of handling
tasks.

Scanning while the Wi-Fi interface is in the associated state (wln.associationstate=
 1- PL_WLN_ASSOCIATED) or running its own ad-hoc network

(wln.associationstate= 2- PL_WLN_OWN_NETWORK) will temporarily disrupt
communications between the device and the "current" access point.

Active detection of networks is performed only on allowed channels, as determined
by the wln.domain property. This is because an active "probe" signal is
transmitted during the active scanning.

Active scanning can detect a networks that doesn't broadcast its SSID, but you
still need to know this network's name in advance.

.Associate Method

Function: Causes the Wi-Fi interface to attempt association with
the specified wireless network.

Syntax: wln.associate(byref bssid as string, byref ssid as
string, channel as byte, bssmode as
pl_wln_bss_modes) as accepted_rejected

Returns: One of accepted_rejected constants:

0- ACCEPTED.

1- REJECTED.

See Also: Associating With Selected Network , Setting Wi-Fi
Security , Wln Tasks

wln.disassociate

Part Description

bssid The BSSID ("MAC address") of the network with which to associate.

ssid The name of the target network with which to associate.

chan
nel

Channel on which the target network is operating.

bssm
ode

Network mode:

0- PL_WLN_BSS_MODE_INFRASTRUCTURE: This is an infrastructure
network (access point).

1- PL_WLN_BSS_MODE_ADHOC: This is an ad-hoc (device-to-device)
network.

569

569

567 568

568 569 569

539

558

561

554

552 539

561

558 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Details

The association process is a task and there is a certain correct way of handling
tasks. Task completion does not imply success -- association result has to be
verified by reading the state of the wln.associationstate read-only property after
the task is completed.

.Associationstate R/O Property

Function: Indicates whether the Wi-Fi interface is idle, associated
with another network, or running its own ad-hoc network.

Type: Enum (pl_wln_association_states, byte)

Value Range: 0- PL_WLN_NOT_ASSOCIATED (default): The Wi-Fi
interface is idle.

1- PL_WLN_ASSOCIATED: The Wi-Fi interface is
associated with a wireless network.

2- PL_WLN_OWN_NETWORK: The Wi-Fi interface is running
its own ad-hoc network.

See Also: Associating With Selected Network , Disassociating From
the Network , Creating Own Ad-hoc Network ,
Terminating Own Ad-hoc Network , Detecting
Disassociation or Offline State

Details

After the successful association, which is initiated through the wln.associate
method, the value of this property changes to 1- PL_WLN_ASSOCIATED. The value
is reset back to 0- PL_WLN_NOT_ASSOCIATED if disassociation occurs
(on_wln_event will be generated too).

Disassociation can be induced through the wln.disassociate method or forced by
the access point. Disassociation will also happen if the access point goes offline or
out of range, or if the GA1000 is powered down, reset, disconnected, or
malfunctions.

After the Wi-Fi interface succeeds in creating its own ad-hoc network (see
wln.networkstart), the value of this property becomes 2-
PL_WLN_OWN_NETWORK. The value is reset back to 0- PL_WLN_NOT_ASSOCIATED
when the ad-hoc network is terminated with wln.networkstop .

.Boot Method

Function: Boots up the Wi-Fi interface, which involves sending to
the GA1000 hardware a firmware file for its embedded
processor.

Syntax: wln.boot(offset as dword) as ok_ng

Returns: One of ok_ng constants:

0- OK: completed successfully.

1- NG: boot failed.

539

558

554

556 555

556

556

557

565

561

564

564

559Platforms

©2000-2011 Tibbo Technology Inc.

See Also: Booting Up the Hardware

Part Description

offse
t

Offset of the "ga1000fw.bin" file within the compiled binary of your
project. The offset is obtained using the romfile.offset read-only
property.

Details

For wln.boot to succeed, ga1000fw.bin file must be present in your project as a
binary resource file.

.Buffrq Method

Function: Pre-requests "numpages" number of buffer pages (1 page=
256 bytes) for the TX buffer of the wln. object.

Syntax: wln.buffrq(numpages as byte) as byte

Returns: Actual number of pages that can be allocated (byte).

See Also: Allocating Buffer Memory

wln.buffsize

Part Description

nump
ages

Requested numbers of buffer pages to allocate (recommended value is 5)
.

Details

This method will not work if the GA1000 is already operational (wln.enabled = 1-
YES).

.Buffsize R/O Property

Function: Returns the current capacity (in bytes) of the wln.
object's TX buffer.

Type: Word

Value Range: 0-65535, default= 0 (0 bytes).

See Also: Allocating Buffer Memory

wln.buffrq

Details

549

373

547

559

562

547

559

560 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

.Clkmap Property

Function: Sets/returns the number of the I/O line to serve as the
clock (CLK) line of the GA1000's SPI interface.

Type: Enum (pl_io_num, byte)

Value Range: Platform-specific. See the list of pl_io_num constants in
the platform specifications. Default= PL_IO_NULL (NULL
line).

See Also: Configuring Interface Lines

wln.csmap , wln.dimap , wln.domap

Details

The selection cannot be changed once the Wi-Fi hardware is already operational
(wln.enabled = 1- YES).

This property has no effect on the EM500W platform.

.Csmap Property

Function: Sets/returns the number of the I/O line to serve as the
chip select (CS) line of the GA1000's SPI interface.

Type: Enum (pl_io_num, byte)

Value Range: Platform-specific. See the list of pl_io_num constants in
the platform specifications. Default= PL_IO_NULL (NULL
line).

See Also: Configuring Interface Lines

wln.clkmap , wln.dimap , wln.domap

Details

The selection cannot be changed once the Wi-Fi hardware is already operational
(wln.enabled = 1- YES).

This property has no effect on the EM500W platform.

.Dimap Property

Function: Sets/returns the number of the I/O line to serve as the
data in (DI) line of the GA1000's SPI interface.

Type: Enum (pl_io_num, byte)

Value Range: Platform-specific. See the list of pl_io_num constants in
the platform specifications. Default= PL_IO_NULL (NULL
line).

See Also: Configuring Interface Lines

wln.clkmap , wln.csmap , wln.domap

545

560 560 562

562

138

545

560 560 562

562

138

545

560 560 562

561Platforms

©2000-2011 Tibbo Technology Inc.

Details

The selection cannot be changed once the Wi-Fi hardware is already operational
(wln.enabled = 1- YES).

This DI line must be connected to the DO pin of the GA1000.

The property has no effect on the EM500W platform.

.Disassociate Method

Function: Causes the Wi-Fi interface to commence disassociation
from the wireless network.

Syntax: wln.disassociate() as accepted_rejected

Returns: One of accepted_rejected constants:

0- ACCEPTED.

1- REJECTED.

See Also: Disassociating From the Network , Wln Tasks

wln.associate , wln.associationstate

Details

The disassociation process is a task and there is a certain correct way of
handling tasks.

.Domain Property

Function: Selects the domain (area of the world) in which this
device is operating. This defines the list of channels on
which the Wi-Fi interface will perform active scanning or
associate with wireless networks.

Type: Enum (pl_wln_domains, byte)

Value Range: 0- PL_WLN_DOMAIN_FCC (default): FCC domain (US).
Allowed channels: 1-11.

1- PL_WLN_DOMAIN_EU: European Union. Allowed
channels: 1-13.

2- PL_WLN_DOMAIN_JAPAN: Japan. Allowed channels: 1-
14.

3- PL_WLN_DOMAIN_OTHER: All other countries. Allowed
channels: 1-11.

See Also: Selecting Domain

Details

This property can't be changed while the Wi-Fi hardware is operational (wln.enabled
= 1- YES). Note that domain selection only affects active scanning

(wln.activescan) and association (wln.associate). Passive scanning
(wln.scan) is not restricted by the selected domain in any way, because the
GA1000 will only listen for incoming Wi-Fi signals, without actually transmitting

562

138

556 539

557 558

539

547

562

556 557

567

562 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

anything. Selected domain also doesn't limit the ability of the Wi-Fi interface to
start its own ad-hoc network (wln.networkstart) on whatever channel you
specify.

.Domap Property

Function: Sets/returns the number of the I/O line to serve as the
data out (DO) line of the GA1000's SPI interface.

Type: Enum (pl_io_num, byte)

Value Range: Platform-specific. See the list of pl_io_num constants in
the platform specifications. Default= PL_IO_NULL (NULL
line).

See Also: Configuring Interface Lines

wln.clkmap , wln.csmap , wln.dimap

Details

The selection cannot be changed once the Wi-Fi hardware is already operational
(wln.enabled = 1- YES).

The DO line must be connected to the DI pin of the GA1000.

This property has no effect on the EM500W platform.

.Enabled R/O Property

Function: Indicates whether the Wi-Fi interface is operational.

Type: Enum (no_yes, byte)

Value Range: 0- NO (default): The Wi-Fi interface is not operational.

1- YES: The Wi-Fi interface is operational.

See Also: Bringing Up the Hardware , Detecting Disassociation or
Offline State

Details

The Wi-Fi hardware becomes operational after a successful boot using the wln.boot
 method, at which time wln.enabled is set to 1- YES.

The Wi-Fi interface is disabled and the wln.enabled is reset to 0- NO if the Wi-Fi
hardware is disconnected, powered down, malfunctioned, or was intentionally reset

. When this happens, the on_wln_event event is generated with its
wln_event argument set to 0- PL_WLN_EVENT_DISABLED.

.Gatewayip Property

Function: Sets/returns the IP address of the default gateway for the
Wi-Fi interface of your device.

Type: Dot-decimal string

Value Range: Any IP address, such as "192.168.1.1". Default= "0.0.0.0".

564

545

560 560 560

562

138

549

556

558

546 565

563Platforms

©2000-2011 Tibbo Technology Inc.

See Also: Setting IP, Gateway, and Netmask

wln.ip , wln.netmask

Details

This property can only be written to when no socket is engaged in communicating
through the Wi-Fi interface, i.e. there is no socket for which sock.statesimple <>
0- PL_SSTS_CLOSED and sock.currentinterface = 2- PL_INTERFACE_WLN.

.Ip Property

Function: Sets/returns the IP address of the Wi-Fi interface of your
device.

Type: Dot-decimal string

Value Range: Any IP address, such as "192.168.100.40". Default=
"1.0.0.1".

See Also: Setting IP, Gateway, and Netmask

wln.gatewayip , wln.netmask

Details

This property can only be written to when no socket is engaged in communications
through the Wi-Fi interface, i.e. there is no socket for which sock.statesimple <>
0- PL_SSTS_CLOSED and sock.currentinterface = 2- PL_INTERFACE_WLN.

.Mac Property

Function: Sets/returns the MAC address of the Wi-Fi interface.

Type: Dot-decimal string

Value Range: Any valid MAC address, i.e. "0.1.2.3.4.5". Default=
"0.0.0.0.0.0".

See Also: Setting MAC Address

Details

This property can only be written to while the Wi-Fi hardware is not operational
(wln.enabled = 0- NO).

The GA1000 add-on board already has a proper MAC address internally. To use this
MAC, leave the wln.mac at "0.0.0.0.0.0".

549

563 564

505

478

549

562 564

505

478

548

562

564 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

.Netmask Property

Function: Sets/returns the netmask of the Wi-Fi interface of your
device.

Type: Dot-decimal string

Value Range: Any valid netmask, such as "255.255.255.0". Default=
"0.0.0.0".

See Also: Setting IP, Gateway, and Netmask

wln.ip , wln.gatewayip

Details

This property can only be written to when no socket is engaged in communications
through the Wi-Fi interface, i.e. there is no socket for which sock.statesimple <>
0- PL_SSTS_CLOSED and sock.currentinterface = 2- PL_INTERFACE_WLN.

.Networkstart Method

Function: Causes the Wi-Fi interface to commence creating its own
ad-hoc network.

Syntax: wln.networkstart(byref ssid as string, channel as byte)
as accepted_rejected

Returns: One of accepted_rejected constants:

0- ACCEPTED.

1- REJECTED.

See Also: Creating Own Ad-hoc network , Setting Wi-Fi Security
, Wln Tasks

wln.networkstop

Part Description

ssid The name of the ad-hoc network to create.

chan
nel

Channel on which the new ad-hoc network will operate.

Details

The network creation process is a task and there is a certain correct way of
handling tasks. Task completion does not imply success -- the result has to be
verified by reading the state of the wln.associationstate read-only property after
the task is completed.

.Networkstop Method

Function: Causes the Wi-Fi interface to commence the termination
of its own ad-hoc network.

Syntax: wln.networkstop() as accepted_rejected

549

563 562

505

478

555

552 539

564

539

558

565Platforms

©2000-2011 Tibbo Technology Inc.

Returns: One of accepted_rejected constants:

0- ACCEPTED.

1- REJECTED.

See Also: Terminating Own Ad-hoc Network , Wln Tasks

wln.networkstart

Details

The network termination process is a task and there is a certain correct way of
handling tasks.

On_wln_event Event

Function: Generated when the wln object detects disassociation
from the wireless network or the Wi-Fi hardware is
disconnected, powered-down, reset, or is malfunctioning.

Declaration: on_wln_event(wln_event as pl_wln_events)

See Also: Detecting Disassociation or Offline State

on_wln_task_complete

Part Description

wln_e
vent

Registered event:

0- PL_WLN_EVENT_DISABLED: Wi-Fi hardware has been disconnected,
powered down, or is malfunctioning.

1- PL_WLN_EVENT_DISASSOCIATED: Wi-Fi interface has been
disassociated from the wireless network.

Details

Multiple on_wln_event events may be waiting in the event queue. For this reason
the doevents statement will be skipped (not executed) if encountered within the
event handler for this event or the body of any procedure in the related call chain.

On_wln_task_complete Event

Function: Generated when the Wi-Fi interface completes executing a
given task.

Declaration: on_wln_task_complete(completed_task as
pl_wln_tasks)

See Also: Wln Tasks

on_wln_event

556 539

564

539

556

565

539

565

566 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Part Description

comple
ted_ta
sk

The task just completed:

1- PL_WLN_TASK_SCAN: Scan task completed (this task is initiated by
the wln.scan method).

2- PL_WLN_TASK_ASSOCIATE: Association task completed (this task
is initiated by the wln.associate method).

3- PL_WLN_TASK_SETTXPOWER: TX power adjustment task completed
(this task is initiated by the wln.settxpower method). This is an
"immediate" task.

4- PL_WLN_TASK_SETWEP: WEP mode and keys setup task completed
(this task is initiated by the wln.setwep method). This is an
"immediate" task.

5- PL_WLN_TASK_DISASSOCIATE: Disassociation task completed (this
task is initiated by the wln.disassociate method).

6- PL_WLN_TASK_NETWORK_START: Ad-hoc network creation
completed (this task is initiated by the wln.networkstart method).

7- PL_WLN_TASK_NETWORK_STOP: Ad-hoc network termination
completed (this task is initiated by the wln.networkstop method).

8- PL_WLN_TASK_SETWEP: WPA mode and keys setup task completed
(this task is initiated by the wln.setwpa method). This is an
"immediate" task.

Details

The wln.task read-only property will change to 0- PL_WLN_TASK_IDLE along with
this event generation.

Multiple on_wln_task_complete events may be waiting in the event queue. For this
reason the doevents statement will be skipped (not executed) if encountered within
the event handler for this event or the body of any procedure in the related call
chain.

.Rssi R/O Property

Function: Indicates the strength of the signal being received from
the wireless network that the Wi-Fi interface is currently
associated with, or wireless peer in case of the ad-hoc
network.

Type: Byte

Value Range: 0-255, default= 0.

See Also: Associating With Selected Network

wln.scanresultrssi

Details

The signal strength is expressed in 256 aribitrary levels that do not correspond to
any standard measurement unit.

This property is only updated while the Wi-Fi interface is in the non-idle state

567

557

570

570

561

564

564

571

572

554

569

567Platforms

©2000-2011 Tibbo Technology Inc.

(wln.associationstate <>0- PL_WLN_NOT_ASSOCIATED).

.Scan Method

Function: Causes the Wi-Fi interface to commence either the
passive detection of available wireless networks or
obtainment of an additional information about a particular
network specified by its SSID (name).

Syntax: wln.scan(byref ssid as string) as accepted_rejected

Returns: One of accepted_rejected constants:

0- ACCEPTED.

1- REJECTED.

See Also: Scanning for Wi-Fi Networks , Wln Tasks ,

wln.activescan

Part Description

ssid Network name. Leave empty to detect all available networks -- after the
scan, the comma-delimited list of networks will be in wln.scanresultssid

. Alternatively, specify the network name. If the network is detected,
its parameters will be available through wln.scanresultssid ,
wln.scanresultbssid , wln.scanresultbssmode , wln.scanresultchannel

, wln.scanresultrssi , wln.scanresultwpainfo .

Details

Passive scanning process is a task and there is a certain correct way of handling
tasks.

Scanning while the Wi-Fi interface is in the associated state (wln.associationstate=
 1- PL_WLN_ASSOCIATED) or running its own ad-hoc network

(wln.associationstate= 2- PL_WLN_OWN_NETWORK) will temporarily disrupt
communications between the device and the "current" access point.

Passive detection of networks is performed on all channels, regardless of the value
of the wln.domain property. This is because no radio signal is transmitted during
the passive scanning.

Passive scanning won't work with networks that have their SSID (name) hidden. To
work with "hidden networks", use wln.activescan method instead.

.Scanresultbssid R/O Property

Function: After a successful scan for a particular network (wln.scan
 with the ssid specified) this property will contain the

BSSID ("MAC address") of this network.

Type: Dot-decimal string

Value Range: Standard 6-byte MAC value

See Also: Scanning for Wi-Fi Networks

wln.scanresultbssmode , wln.scanresultchannel ,
wln.scanresultrssi , wln.scanresultssid ,

558

550 539

556

569

569

567 568

568 569 569

539

558

561

556

567

550

568 568

569 569

568 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

wln.scanresultwpainfo

Details

This property will not be updated if the wln.scan method is invoked with its ssid
argument left empty ("search for all networks" mode).

.Scanresultbssmode R/O Property

Function: After a successful scan for a particular network (wln.scan
 with the ssid specified) this property will contain the

network mode of this network.

Type: Enum, byte

Value Range: 0- PL_WLN_BSS_MODE_INFRASTRUCTURE: wireless
network with an access point.

1- PL_WLN_BSS_MODE_ADHOC: device-to-device network
without an access point.

See Also: Scanning for Wi-Fi Networks

wln.scanresultbssid , wln.scanresultchannel ,
wln.scanresultrssi , wln.scanresultssid ,
wln.scanresultwpainfo

Details

This property will not be updated if the wln.scan method is invoked with its ssid
argument left empty ("search for all networks" mode).

.Scanresultchannel R/O Property

Function: After a successful scan for a particular network (wln.scan
 with the ssid specified) this property will contain the

number of the channel on which this network operates.

Type: Byte

Value Range: 1-14

See Also: Scanning for Wi-Fi Networks

wln.scanresultbssid , wln.scanresultbssmode ,
wln.scanresultrssi , wln.scanresultssid ,
wln.scanresultwpainfo

Details

This property will not be updated if the wln.scan method is invoked with its ssid
argument left empty ("search for all networks" mode).

569

567

567

550

567 568

569 569

569

567

567

550

567 568

569 569

569

567

569Platforms

©2000-2011 Tibbo Technology Inc.

.Scanresultrssi R/O Property

Function: After a successful scan for a particular network (wln.scan
 with the ssid specified) this property will contain the

strength of the signal received from this network.

Type: Byte

Value Range: 0-255

See Also: Scanning for Wi-Fi Networks

wln.scanresultbssid , wln.scanresultbssmode ,
wln.scanresultchannel , wln.scanresultssid ,
wln.scanresultwpainfo , wln.rssi

Details

This property will not be updated if the wln.scan method is invoked with its ssid
argument left empty ("search for all networks" mode).

.Scanresultssid R/O Property

Function: After the scan this property will contain a comma-
delimited list of discovered networks or the name of a
particular network depending on how the scan was
performed.

Type: String

Value Range: Up to 95 characters of data

See Also: Scanning for Wi-Fi Networks

wln.scanresultbssid , wln.scanresultbssmode ,
wln.scanresultchannel , wln.scanresultrssi ,
wln.scanresultwpainfo

Details

If the wln.scan method was invoked with its name argument left empty, this
property will contain the list of all discovered networks. If the name argument
specified a particular network and scanning found this network to be present, then
this property will contain the name of this network.

.Scanresultwpainfo R/O Property

Function: After a successful scan for a particular network (wln.scan
 with the ssid specified) this property will contain

binary data required for WPA/WPA2 security protocol.

Type: Byte

Value Range: 0-255

See Also: Scanning for Wi-Fi Networks

wln.scanresultbssid , wln.scanresultbssmode ,

567

550

567 568

568 569

569 566

567

550

567 568

568 569

569

567

567

550

567 568

570 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

wln.scanresultchannel , wln.scanresultrssi ,
wln.scanresultssid

Details

This property will not be updated if the wln.scan method is invoked with its ssid
argument left empty ("search for all networks" mode).

This data is not intended for humans. The property exists to facilitate the operation
of the WLN library .

.Settxpower Method

Function: Causes the Wi-Fi interface to commence the adjustment
of TX power to the specified level.

Syntax: wln.settxpower(level as byte) as accepted_rejected

Returns: One of accepted_rejected constants:

0- ACCEPTED.

1- REJECTED.

See Also: Setting TX Power , Wln Tasks

Details

Part Description

level Value between 4 and 15 that roughly corresponds to the transmitter's
output power in dB. Attempting to specify the level < 4 results in level =
4; attempting to specify the level > 15 results in level = 15.

Adjusting TX power is an "immediate" task and there is a certain correct way of
handling tasks. "Immediate" means you don't have to wait for the task to complete
-- it is finished as soon as wln.settxpower is done executing. The
on_wln_task_complete event is still generated.

.Setwep Method

Function: Causes the Wi-Fi interface to commence setting new WEP
mode and key.

Syntax: wln.setwep(byref wepkey as string, wepmode as
pl_wln_wep_modes) as accepted_rejected

Returns: One of accepted_rejected constants:

0- ACCEPTED.

1- REJECTED.

See Also: Setting WEP Mode and Key , Wln Tasks

wln.setwpa

568 569

569

567

703

550 539

539

565

553 539

571

571Platforms

©2000-2011 Tibbo Technology Inc.

Part Description

wep
key

A string containing new WEP key. This is a "HEX strings" -- each
character in the string represents one HEX digit. The string must contain
10 HEX digits for WEP64 and 26 HEX digits for WEP128. Excessive digits
are ignored. Missing digits are assumed to be 0.

wep
mod
e

WEP mode to set:

0- PL_WLN_WEP_MODE_DISABLED: WEP is to be disabled.

1- PL_WLN_WEP_MODE_64: 64-bit WEP is to be used.

0- PL_WLN_WEP_MODE_128: 128-bit WEP is to be used.

Details

Changing WEP mode and keys is an immediate task and there is a certain correct
way of handling tasks. "Immediate" means you don't have to wait for the task to
complete -- it is finished as soon as wln.setwep is done executing. The
on_wln_task_complete event is still generated.

.Setwpa Method

Function: Causes the Wi-Fi interface to commence setting new WPA
mode and key.

Syntax: wln.setwpa(wpamode as pl_wln_wpa_modes, algorithm
as pl_wln_wpa_algorithms, byref wpakey as string,
cast as pl_wln_wpa_unicast_multicast) as
accepted_rejected

Returns: One of accepted_rejected constants:

0- ACCEPTED.

1- REJECTED.

See Also: Setting WPA Mode and Key , Wln Tasks

wln.setwep

Part Description

wep
mod
e

WPA mode to set:

0- PL_WLN_WPA_DISABLED: WPA is to be disabled.

1- PL_WLN_WPA_WPA1_PSK: WPA1-PSK is to be used.

0- PL_WLN_WPA_WPA2_PSK: WPA2-PSK is to be used.

algor
ithm

Encryption algorithm to be used:

0- PL_WLN_WPA_ALGORITHM_TKIP: TKIP algorithm.

1- PL_WLN_WPA_ALGORITHM_AES: AES algorithm (also referred to as
CCMP).

wpa
key

A string containing new WPA key. Supposed to be 16 characters long.

cast Type of key:

0- PL_WLN_WPA_CAST_UNICAST: unicast key.

539

565

553 539

570

572 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

1- PL_WLN_WPA_CAST_MULTICAST: multicast key.

Details

WPA/WPA2 security is very complex. We recommend using the WLN library .

Changing WPA mode and keys is an immediate task and there is a certain correct
way of handling tasks. "Immediate" means you don't have to wait for the task to
complete -- it is finished as soon as wln.setwpa is done executing. The
on_wln_task_complete event is still generated.

.Task R/O Property

Function: Indicates current wln. task being executed.

Type: Enum (pl_wln_tasks, byte)

Value Range: 0- PL_WLN_TASK_IDLE (default): No task is in progress.

1- PL_WLN_TASK_SCAN: Scan task is in progress (initiated
by wln.scan).

2- PL_WLN_TASK_ASSOCIATE: Association task is in
progress (initiated by wln.associate).

3- PL_WLN_TASK_SETTXPOWER: TX power adjustment
task is in progress (initiated by wln.settxpower).

4- PL_WLN_TASK_SETWEP: WEP mode and keys setup
task is in progress (initiated by wln.setwep).

5- PL_WLN_TASK_DISASSOCIATE: Disassociation task is in
progress (initiated by wln.disassociate).

6- PL_WLN_TASK_NETWORK_START: Ad-hoc network
creation task is in progress (initiated by wln.networkstart

).

7- PL_WLN_TASK_NETWORK_STOP: Ad-hoc network
termination task is in progress (initiated by
wln.networkstop).

8- PL_WLN_TASK_SETWPA: WPA mode and keys setup
task is in progress (initiated by wln.setwpa).

See Also: Wln Tasks

Details

The wln. object will only accept another task for execution after the previous task
has been completed (wln.task= 0- PL_WLN_TASK_IDLE). Whenever a task
completes, an on_wln_task_complete event is generated.

Libraries
Powerful as they are, our platforms (with their objects and functions) still
leave you with a fair amount of coding to do for many common tasks. Official Tibbo
libraries aim to alleviate this burden by providing a framework of standard plug-and-
play code modules that you can freely reuse in your projects.

703

539

565

567

557

570

570

561

564

564

571

539

565

138 231 205

573Libraries

©2000-2011 Tibbo Technology Inc.

In this section:

 Common Library Info section explains how our libraries are organized.

 Library Reference contains detailed documentation on all our libraries.

... and here is something to GRAB YOUR ATTENTION:

Many of our libraries now feature configurators -- HTML/JavaScript-based
editors for configuration files. Trust us, these really simplify your life. Instead of
going on and on about why this is cool, we limit ourselves to a descriptive
screenshot (it is from the AggreGate library):

575

580

578

580

574 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

575Libraries

©2000-2011 Tibbo Technology Inc.

Common Library Info
Below you will find:

 Library Sets

 Anatomy of Tibbo Libraries

 Libraries and Platforms

 Adding Library Files to Projects

 About Get_info() API Functions .

 Library Configurators

Library Sets

By default, libraries reside in the platforms folder, in the \src subfolder ("src" stands
for "sources").

Go there and you will discover several internal folders, with names like 0_90 and
2_00. Each one of those is a library set.

All libraries employed in your project always come from the same library set. The
idea behind library sets is that you want to freeze the libraries for use in a
particular project, while we need to continue expanding them. Once the library set
is selected, it stays unchanged (or, rather, we don't change it), and so does your
project. If we want to add something, we create a new set and make changes
there. You can then use this new library set in your future projects.

The current library set is selected in the Project Settings dialog. When starting a
new project, choose the library set with the highest version number. This will be
the latest one we've got.

575

576

577

577

577

578

38

576 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Anatomy of Tibbo Libraries

Most Tibbo libraries are supplied as a pair of files -- a .tbs file with all the code,
and a .tbh header file with declarations. Both must be added to your project.

Tibbo libraries consist of a set of procedures (subs and functions) that typically fall
into three categories:

API procedures provide a way for your program to control and interact with the
library. For example, the DHCP library has a dhcp_start() function that
launches the DHCP client on the specified network interface. It is usually up to
you to select when and how to invoke API procedures.

Event procedures must be called from corresponding event handlers and you
don't have any leeway in how you implement this. Each event procedure must be
properly called, or the library will not work correctly. Typically, you only need to
call the procedure without any additional conditional code surrounding the call. If
several libraries "hook" onto the same event then you can call event procedures
of different libraries in any order.

Callback procedures have their bodies outside of their library. That is, the
libraries will expect you to create the bodies for callback procedures elsewhere in
your code (and may we suggest that you choose to have them in the device.tbs
file of your project). Callback procedures are used by libraries to inform your
"other code" of events happening within the library. For example, the DHCP
library calls the callback_dhcp_ok() procedure whenever a DHCP process
completes successfully. Arguments for this procedure carry the newly obtained IP
and related parameters. You can then place necessary code within
callback_dhcp_ok(). The is supposed to update your device's IP, etc. according
to the data supplied by the DHCP library.

Virtually every library has a number of defines located in the .tbh (header) file of
the library. Defines determine how the library operates -- they are library "options".
Each define looks like this:

#ifndef DHCP_DEBUG_PRINT
#define DHCP_DEBUG_PRINT 0

#endif

Libraries that come with configurators take care of all defines automatically. Just
edit the stuff in the configurator and you are done. Some libraries don't have
configurators, mostly because there isn't much to configure. With such libraries you
need to add your own #define statements as described in the documentation.

Do not edit library header files! Instead, put your #define statements into the
global.tbh file, like this:

global.tbh:

'DEFINES---
#define DHCP_DEBUG_PRINT 1 'this overrides the default value, which is 0

'INCLUDES--
include "dhcp\trunk\dhcp.tbh"

577

668 636

668

638

578

576

577Libraries

©2000-2011 Tibbo Technology Inc.

Libraries and Platforms

Some libraries can't run on every platform -- there may be conditions or
requirements that the platform must satisfy in order for a certain library to run on
it. For example, the WLN library can only run on platforms that support the Wi-Fi
(wln.) network interface.

Such limitations, if any, are described under "Supported platforms" in the library info
table (found on the title page of each library manual).

Adding Library Files to Projects

Most Tibbo libraries are supplied as a pair of files -- a .tbs file with all the code,
and a .tbh header file with declarations. Both must be added to your project.

Reminder: library files you are adding always come from the selected library set .

To add library files to your project, follow the instructions under Adding, Removing
and Saving Files (the section about adding existing files).

Library files are not copied into your project's directory. They are just "referenced".
Notice also how they appear in the Libraries tree node of the project tree . Added
library files are initially locked for editing. This is why you will see their file names in
gray, with the "lib, lock" label printed next to them as well.

You can unlock the files (by right-clicking on the file in the tree and selecting
"Unlock"), but this is not recommended.

Do not change the code in the library files. If you feel that a certain library
doesn't fully answer your needs and requires modifications, copy the
library files into your project's directory, add these files as the project files
and then modify the code in the "derivative" files.

About _get_info() API Functions

Most libraries include _get_info() API functions (as an example, see dhcp_get_info
). These are created with a purpose of providing a standard interface for

obtaining various library information. "Questions" you application may want to "ask"
will depend on the nature of the library.

Each _get_info() procedure accepts, as the main parameter, the info_element
argument which specifies what kind of information is being requested. There is
always a corresponding _info_elements enum, which lists all information elements
available.

There is also a second argument -- extra_data (string) -- which is used for
passing additional information when necessary.

For universality, _get_info() functions return data in a string form. It is your
application's responsibility to handle the returned data correctly. For example, if you
requested the number of buffer pages required for correct library operation, then
your application should convert the returned string into a value.

138

703

536

575

18

134

636

578 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Library Configurators

Configurators are HTML/JavaScrip-based editors for configuration files.

Internally, configuration files are text files that contain (define) necessary data (for
the library to operate). For example, the configuration file for the AGG (AggreGate)
library contains text describing AggreGate variables, functions, and events. Looking
at the "unshielded" file reveals some really heavy stuff:

==info root <R=<A GG_TEST_DEV ICE><apoint>>

==variables root <R=<version><<<version><S>> <M=1>

<X=1>><V ersion><1><0><̂ ><remote|General><̂ >>

~~<R=<date><<<date><D>> <M=1> <X=1>><Date/T ime><1><0><̂ ><remote|General><̂ >>

~~<R=<modtime><<<variable><S>> <<modtime><D><F=N>>><Modification

time><1><0><̂ ><̂ ><̂ >>

>>BR S <R=
<<
<I><V =<L=0

13>><S=<1200=0><2400=1><4800=2><9600=3><19200=4><38400=5><57600=6><115200=7>

<150=8><300=9><600=10><28800=11><230400=12><460800=13>>><M=1><X=1>><Baudrate>

<1><1><̂ ><remote|A ccess Control><̂ >>

>>EG S <R=<EG><<<EG>><M=1><X=1>><Generate Event><1><1><̂ ><remote|A ccess

Control><̂ >>

>>UT S <R=<UT><<<UT><I><V =<L=0 255>>><M=1><X=1>><Unlock

T ime><1><1><̂ ><remote|A ccess Control><̂ >>

>>DS S <R=<DS><<<DS><I><S=<Closed=0><Opened=1>><V =<L=0

1>>><M=1><X=1>><Door State><1><0><̂ ><remote|A ccess Control><̂ >>

>>user T <R=<user><<<user_id><S><V =<L=1 14>><A =123456>><<name><S><V =<L=0

31>>><M=0><X=1024>><user><1><1><̂ ><remote|A ccess Control><̂ >>

==functions root

<R=<hash><<<context><S>><<variable><S>><M=1><X=1>><<<hash><I>><M=1><X=1>><Table

Hash><̂ ><̂ >>

~~<R=<finishTable><<<context><S>><<variable><S>><M=1><X=1>><<<hash><I>><M=1><X=1>><

Finish Table><̂ ><̂ >>

~~<R=<startTable><<<context><S>><<variable><S>><M=1><X=1>><<M=0><X=0>><Start

Table><̂ ><̂ >>

~~<R=<addRecord><<<context><S>><<variable><S>><<record><S>><M=1><X=1>><<M=0><X=0>>

<A dd Record><̂ ><̂ >>

We are sure you'd rather look at this (see below).

Descriptor files are added like any other files (see Adding, Removing and Saving
Files). The Type is set to Configuration File, and then the Format is set to the
format of the library you are dealing with.

18

579Libraries

©2000-2011 Tibbo Technology Inc.

580 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Library Reference
This library reference documents the library set V2.0.0.

This is the library set which is recommended for use with all new projects.

Here is the breakdown of available libraries, by levels. The levels reflect library
dependencies. For example, the SOCK and FILENUM libraries are on the lowest
level because they do depend on any other libraries. The STG (settings) library
is one level higher because its operation requires the services of the FILENUM
library (albeit optionally).

Dependencies may be "hard", soft, or conditional. Hard dependency is when "library
A relies on library B". For example, the DHCP library needs the SOCK library, or
the project won't even compile.

Soft dependencies are caused by the anticipated logic of operation. For example,
the DHCP library does not technically need the STG library. However, as
demonstrated in the DHCP sample code , it is nice to have the STG library in the
project because it can help us store the obtained IP. Hence, the DHCP library sits
higher than the STG library.

Example of a conditional dependency: the DHCP library doesn't require the WLN
library, unless you want to run DHCP over the Wi-Fi interface, in which case the
WLN library becomes necessary.

High (top)

AGG (AggreGate)

DHCP

WLN (Wi-Fi Association); GPRS (PPP link negotiation); PPPOE (PPPoE
Login)

STG (Settings); TBL (Tables) [not yet documented]

SOCK (Socket numbers); FILENUM (File numbers); TIME (Date/Time) [not
yet documented]

Low (bottom)

The Library Reference section introduces libraries in the top-to-bottom order.

AGG (AggreGate) Library

The AGG library implements an interface to Tibbo AggreGate Server (http://
aggregate.tibbo.com). It is the "agent" that runs on your Tibbo BASIC device and
connects it to the server using Tibbo's proprietary AggreGate Communication
Protocol, or ACP (http://aggregate.tibbo.com/docs/ap_protocol.htm). Among the
six ways to connect a device to the AggreGate server (http://aggregate.tibbo.com/
technology/connectivity.html), using the library fast-tracks you through either the
"second way" or the "fourth way".

The second way -- "Connecting An Existing Device With AggreGate Agent" --
assumes that there is a "legacy" device which is already designed, and possibly in
production. This device knows nothing about Tibbo's AggreGate technology, yet
you want to connect it to the AggreGate server. In order to achieve this, you use a
Tibbo BASIC module or controller (EM1000 , DS1206 , etc.) to act as an

664 641

668

618

622

703

580

618

703 645 655

668

664 641

143 158

http://aggregate.tibbo.com
http://aggregate.tibbo.com
http://aggregate.tibbo.com/docs/ap_protocol.htm
http://aggregate.tibbo.com/technology/connectivity.html
http://aggregate.tibbo.com/technology/connectivity.html

581Libraries

©2000-2011 Tibbo Technology Inc.

"adaptor" that translates between the native protocol (or signals) of the legacy
device and the AggreGate server. The fastest way to get this done is to write a
Tibbo BASIC application that relies on the AGG library for the ACP implementation.

The fourth way -- "Designing A New Device Based On Programmable Module" -- is
for when you are building a new device from scratch and you want this device to
work with AggreGate. You take one of our very capable modules (such as the
EM1000) and use it as the "CPU" of the new device. You then task this "CPU"
with all kinds of things that make your device operational. One of the tasks --
communicating with the AggreGate server -- is handled by the AGG library.

The AggreGate Communication Protocol (ACP) is rather complex and would take you
quite some time to read through, comprehend, and implement -- have you not had
the AGG library. When you are using the library, all this complexity is hidden behind
an easy-to-use configurator . Fill in all the necessary "items", and the server will
know how to work with your device.

Without resorting to rewriting the AggreGate manual (http://aggregate.tibbo.com/
docs/), let's remind ourselves that from the AggreGate's point of view, your device
is an "object" which comprises items of three kinds: variables (properties), functions
(methods), and events. To avoid confusion with the internal variables, methods,
and events of Tibbo BASIC, we will refer to AggreGate ones as A-variables, A-
functions, and A-events.

An A-variable can be a simple single-value affair, an array of values, or a full-blown
data table (and it will still be a "variable" in the AggreGate's view). The AGG library
relies on the STG (settings) library for storing single-value and array A-variables.
This provides for persistent and reliable storage of A-variables, and also -- through
pre-gets and post-sets -- for controlling and monitoring the device operation
through A-variables (settings). Naturally, the latter will require the custom code to
be written and placed into callback_stg_pre_get() and callback_stg_post_set()

.

Table A-variables are handled through the TBL (tables) library [not yet
documented].

A-functions and A-events require custom code to be written, so it's not enough to
just put necessary data into the configurator .

Library Info

Supported
platforms:

Any platform. If the platform of your choice doesn't
support the RTC you will have to implement date/time-
keeping in your own way (for example, by connecting an
external RTC chip and writing necessary code).

Files to include: aggregate.tbs, aggregate.tbh (from
current_library_set\aggregate\trunk\).

Dependencies: SOCK library;

TIME library [not yet documented];

WLN library if your application will be connecting to the
AggreGate server through Wi-Fi;

GPRS library if your application will be connecting to the
AggreGate server through GPRS.

API procedures: agg_start() -- starts the AGG library, parses the
configuration file, prepares all necessary variables.

143

583

668

683

700

701

583

375

664

703

645

607

http://aggregate.tibbo.com/docs/
http://aggregate.tibbo.com/docs/

582 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Use API procedures
 to interact with

the library.

agg_stop() -- stops the AGG library causing it to
release occupied buffers.

agg_get_connection_state() -- gets the current state
of the connection to the AggreGate server

agg_record_decode() -- extracts the value of the
specified argument from the encoded string containing the
values of all arguments for an A-function.

agg_record_encode() -- appends the argument's value
to the encoded A-function's argument string in preparation
for sending this string to the AggreGate server.

agg_fire_instant_event() -- generates an A-event and
sends it to the AggreGate server without storing it into
the log.

agg_stored_event_added() -- must be called every
time a stored A-event is added to the log file.

agg_proc_stored_events() -- nudges the AGG library to
process stored A-events.

Event
procedures:

agg_proc_timer() -- call this from the on_sys_timer()
 event handler.

agg_proc_data() -- call this from the
on_sock_data_arrival() event handler.

agg_proc_data_sent() -- call this from the
on_sock_data_sent() event handler.

agg_proc_sock_event() -- call this from the
on_sock_event() event handler.

Callback
procedures:

Implement the
bodies of callback
procedures
elsewhere in your
project.

callback_agg_get_firmware_version() -- requests the
version string for the current application.

callback_agg_device_function() -- invoked when the
device needs to execute an A-function.

callback_agg_synchronized() -- informs of the
completion of the synchronization process between the
device and the AggreGate server.

callback_agg_pre_buffrq() -- called when the library
needs to allocate buffer space and the required space is
not available.

callback_agg_buff_released() -- called when the library
no longer needs buffers and released them.

callback_agg_error() -- informs of an error or condition
detected within the library.

callback_agg_convert_setting() -- invoked every time
an A-variable is being read or written. Provides an
opportunity to change the value or type before writing to
a setting or after reading from a setting.

576

608

609

609

610

610

611

612

612

533

612

489

613

489

612

490

576

613

613

614

614

615

615

616

583Libraries

©2000-2011 Tibbo Technology Inc.

callback_agg_convert_event_field() -- invoked every
time a stored A-event is being extracted from the log and
sent to the server. Provides an opportunity to change the
value or type of A-event arguments before sending the
stored A-event to the server.

callback_agg_rtc_sg() -- invoked when the library
needs to get or set the device's date and time. Necessary
only when "use custom RTC" option is selected in the
configurator .

Required buffer
space:

4 buffer pages

9.2.1.1AggreGate Configurator

The AggreGate configurator is a JavaScript-based editor for the AggreGate
configuration file. Do not confuse the two. The AggreGate configuration file is a
part of your project (it is a resource file). The configurator is a "representer" -- it
provides a convenient interface for the editing of the configuration file. Along with
providing a pleasant interface, the configurator masks the enormous complexity of
the underlying configuration file.

The following access control demo will teach you how to use the configurator.
For now, enjoy this screenshot...

617

618

583

578

585

584 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

585Libraries

©2000-2011 Tibbo Technology Inc.

9.2.1.2The Access Control Demo

We are going to teach the AGG library by creating a simple access control
application. The application is super-minimalistic but it still implements the core of
access control functionality:

Monitoring one door;

Maintaining a user table (a list of allowed users and their access codes) and
granting access;

Sounding alarm when the door is forced;

Allowing for remote door opening by the AggreGate operator.

The plan is to allow running this access control demo on most of our BASIC-
programmable devices. You will need a bit of a "make believe" to be able to see an
access control system in a product like our DS1206:

We will pretend that the green status LED is the door lock. Green LED ON =
unlocked.

We will further pretend that the red status LED is the alarm relay. Red LED ON
= alarm (door forced).

We will imagine that the MD button is our door sensor. MD button pressed =
door opened.

Finally, we will use the serial port for receiving user codes. You can connect a
real card reader, or use I/O NINJA to type in the codes.

The application will work on BASIC-programmable Tibbo devices with RTC. Examples

200

200

201

586 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

of such devices:

DS1206 (shown above)

DS1202

DS1000

EM1000 (EM1000EV, EM1000TEV)

EM1206 (EM1206EV)

 ...

If you are designing a real access control system based on our module or device,
you will have no difficulty converting this demo application to driving real relays,
monitoring real sensors, etc.

9.2.1.3The Steps

Here is our action plan for creating a simple access control application. To follow
the steps, download test_agg_lib.zip archive from our website:

http://tibbo.com/basic/resources.html.

The archive contains all the implementation steps as listed below:

1. Prepare (install, configure) the AggreGate server and client.

2. Embryonic project -- the device connects to the server, does nothing else
(test_agg_lib_1).

3. Add setting A-variables for storing the device configuration (test_agg_lib_2)
.

4. Add table A-variable for storing user codes (test_agg_lib_3).

5. Add an A-function for remote door unlocking (test_agg_lib_4).

6. Generate instant A-event on device boot (test_agg_lib_5).

7. Generate stored A-event for access control activity reporting
(test_agg_lib_6).

8. Add the glue code that ties it all together (test_agg_lib_6).

Preparing the AggreGate Server

The AggreGate Server and AggreGate client software can be downloaded here:

http://aggregate.tibbo.com/downloads.html

Be careful to select correct files!

You can install both the Server and Client components on the same PC.

The demo application you are about to test expects the AggreGate server to have
an account named admin.

186

181

164

143

158

586

587

588

593

596

598

601

605

http://tibbo.com/basic/resources.html
http://aggregate.tibbo.com/downloads.html

587Libraries

©2000-2011 Tibbo Technology Inc.

Step 1: The Embryo

This step corresponds to test_agg_lib_1.

In this step we are going to create an embryonic application. It will be able to
connect to the AggreGate server and transmit the minimally necessary identifying
information.

The success of this step depends on many factors. You have to correctly install
and prepare the AggreGate Server and AggreGate Client software. You have
to use matching account names on the server and on the device. Passwords must
match. The IP address of your device must be correctly chosen. The IP address of
the server must be specified correctly, and so on. In other words, pay attention to
all the details!

The steps

We assume you are not going to type everything in from scratch and just open the
test_agg_lib_1 project. Notice that...

1. The project contains the SOCK and TIME libraries [not yet documented].

2. Aggregate.tbs and aggregate.tbh are added to the project as well (from
current_library_set\aggregate\trunk\). There is also a necessary line in
global.tbh: include "aggregate\trunk\aggregate.tbh".

3. There is an aggregate.xtxt configuration file with type= configuration file,
and format= AggreGate (AGG) library. There is a line in global.tbh that is
required for the configuration file to work correctly: includepp
"aggregate.xtxt".

4. In the configuration file, Debug Printing is enabled. This allows you to "see
what's going on". Don't forget to disable this later, after you've made sure that
the library operates as expected.

5. Also, the Description field is set to AGG_TEST_DEVICE. The Context Type is
Apoint.

6. AGG library event procedures are added to event handlers:

- agg_proc_timer() is in the on_sys_timer() event handler (this library
assumes that this event is generated twice per second);

- agg_proc_data() is in the on_sock_data_arrival() event handler;

- agg_proc_sock_event() is in the on_sock_event() event handler (the
exact line is agg_proc_sock_event(newstate,newstatesimple).

7. There are empty callback procedures in device.tbs:

- callback_agg_get_firmware_version() ;

- callback_agg_pre_buffrq() ;

- callback_agg_buff_released() ;

- callback_agg_error() ;

- callback_agg_device_function() ;

- callback_agg_synchronized() .

8. Callback_agg_get_firmware_version() contains the code that returns the
firmware version string. There is a #define FIRMWARE_VERSION in global.tbh.

9. on_sys_init() calls agg_start() -- this is required to make the library

586

664

577

583

96

612 533

612 489

612 490

613

614

615

615

613

614

613

533 607

588 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

operational. Notice how we check the code returned by agg_start()!

10. Ours is a simple demo and we are sure we won't have memory shortage. In
large projects where a lot of things compete for memory you may get the
callback_agg_pre_buffrq() call. This will indicate that the AGG library doesn't
have enough memory for its buffers and that you need to clear up this memory
right inside callback_agg_pre_buffrq(). Failure to do so will result in the
EN_AGG_STATUS_INSUFFICIENT_BUFFER_SPACE code returned by agg_start().

The result

With debug printing enabled, you will see the following output in TIDE:

AGG()> ---START---
AGG()> connection established
AGG()> Device synchronized with the server

At the same time your device will appear in AggreGate. Nothing fancy yet, just the
basics:

Step 2: Adding Setting A-variables

This step corresponds to test_agg_lib_2.

In this step we are going to add necessary setting A-variables. These will be used
to store the few configuration and status parameters our application requires.

614

589Libraries

©2000-2011 Tibbo Technology Inc.

A-variables we are going to have are:

The BR setting to store the baudrate of the serial port. This will allow us to
select a standard baudrate from a list of baudrates (like 9600, 19200, etc.)

The EG setting to enable/disable access control event generation.

The UT setting to store the unlock time for the door. This is the number of half-
second intervals that the door lock will stay unlocked for (once it is unlocked).

The DS setting for reading the current door state (closed or opened).

The steps

Looking now at the test_agg_lib_2 project, notice that...

1.The STG library is now in the project (and all related steps were taken,
including calling stg_start() in on_sys_init() , etc.).

2. A way to initialize settings is provided. After each boot, the device will start
blinking its red and green status LEDs . This will continue for 5 seconds. If you
press the MD button within this time, stg_restore_multiple() will be called.
Reboot the device after the green status LED is turned on. If you do not press
the button within the 5-second time window, the application will continue
running. All related code is in the on_sys_init() event handler.

3. Settings.xtxt defines required settings . Notice that the Timestamp option
is enabled in the setting configurator . This is because the AGG library requires
settings to carry timestamps.

4. AggreGate.xtxt lists required A-variables .

5. There is an additional callback procedure in device.tbs -- for
callback_agg_convert_setting() . Examine the code -- it "converts" between
the UT setting (measuring time in half-second intervals) and the UT A-variable
(measuring time in seconds). You can now see this procedure's usefulness -- it
allows you to store values differently compared to how they are perceived in
AggreGate.

The result

You will now be able to see newly created A-variables in the AggreGate Client (as
shown on the screenshot below). Notice how all four A-variables appear on the
Access Control tab? This is defined in the AggreGate configurator.

Notice also that each A-variable is displayed/edited differently:

The Baudrate (BR) setting has a drop-down which shows all available values;

The Generate Event (GE) setting as a checkbox because it is of the boolean
type;

The Unlock Time (UT) setting is just a plain value that is expressed in seconds
(although the UT setting is in half-seconds).

The Door State (DS) setting displays custom values "closed" and "opened" and is
read-only.

Setting A-variables as we have them now are not doing anything useful on the
device just yet. They simply exist as values. We will glue it all together later.

668

691 533

677

200

201 692

533

590

670

591

576

616

591

605

590 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Define Required Settings

Add BR, EG, UT, and DS variables using STG library's configurator . You should
end up with a setting table as shown below. Some things to notice:

The Timestamp is enabled. This is required by the AggreGate library.

The BR setting has the maximum value of 13. This is because we will support 14
different baudrates (0~13).

The EG setting has the maximum value of 1. On the AggreGate side it will be
boolean, hence there are only two possible values for it: 0 and 1.

The UT setting is limited to 255 max. This is measure in half-second intervals (this
is how often the on_sys_timer event is generated).

The DS setting resides in the volatile memory (RAM). This is a read-only
parameter that simply reflects the door state, so it makes no sense to put it into
the EEPROM.

670

533

591Libraries

©2000-2011 Tibbo Technology Inc.

Define Required A-variables

Add BR, EG, UT, and DS setting A-variables using AGG library's configurator . You
should end up with a setting table as shown below:

583

592 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Note that Reference Library (Settings) must be enabled and correct setting
configurator file must be specified (settings.xtxt). We are sure you will quickly
find your way around the AggreGate configurator. Let's just briefly review some
things worth noting. Double-click on the BR A-variable line -- the Edit (A-
variables) dialog will open.

 On the General tab, notice that the A-variable is Linked to the Settings
Library. The Variable Name drop-down contents reflect available settings. Your
A-variable is basically a "propagated" setting! You can also link to tables -- this
will be our next step's task .

 Notice also that the A-variable is Readable and Writable. All our A-variables
are, except DS, which is only Readable (read-only).

 Description is set to Baudrate, and this is how this A-variable is visible in
AggreGate.

 The Group is set to Access Control. This is where the Access Control tab you
see in the AggreGate client comes from. The client will create separate tabs for
all groups encountered. We only use one custom group in this project.

 Now switch to the Advanced tab and press Edit. Don't we have a lot here!

 Notice how the Field Type is Integer. The AggreGate server supports a different
type set, and byte isn't on the list. The nearest suitable type is selected, which
is integer.

 Selection Value is enabled and if you click ... you will see the whole list. Now
you know where the drop-down selector on the Baudrate A-variable comes from.

670

593

593Libraries

©2000-2011 Tibbo Technology Inc.

 Maximum Limit will not allow you to set anything above 13.

 There are numerous other fields we haven't touched. Explore and you shall
discover!

Moving now to the remaining A-variables, and only touching on the notable
differences:

 The EG A-variable has its Field Type = Boolean.

 The UT A-variable is limited to 127.

 The DS A-variable has two custom Selection Values (opened and closed). it is
only Readable, and not Writable.

Step 3: Adding Table A-variables

This step corresponds to test_agg_lib_3.

This is an access control project, hence it requires a user table which will keep user
names and ID codes. In this step we create this user table.

The steps

Notice that...

1. The TBL library [not yet documented] is now in the project. Inspect the
on_sys_init() event handler -- it contains several things related to the library's
operation: the flash disk is mounted and formatted if necessary. The flash disk is
also formatted during the initialization. Tbl_start() [not yet documented] is
called.

2. The FILENUM library is now in the project -- it is required by the TBL library.

3. Tables.xtxt defines the USER table .

4. Aggregate.xtxt contains new table A-variable .

533

641

594

595

594 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

5. Notice how the AggreGate Hash option is enabled in the table configurator
[not yet documented]. This is because the AGG library requires this.

The result

Now you have an editable user table! It isn't yet "connected" to anything in any
useful way -- we will take care of this later.

Define the User Table

This table configurator [not yet documented] screenshot shows the added user
table. Note that...

AggreGate Hash is enabled. This is required by the AggreGate library.

The user table has one key field. It is the first one in the list -- the user_id
field.

605

595Libraries

©2000-2011 Tibbo Technology Inc.

Add the Table A-variable

These AggreGare configurator screenshots show the added user table A-
variable.

583

596 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Step 4: Adding A-functions

This step corresponds to test_agg_lib_4.

A-functions are methods that the AggreGate server can execute on the device. In
our access control project, we will add an "open door" A-function which will be used
for remote unlocking of the door. This A-function will have an argument -- for how
long the door will have to remain unlocked.

The A-function's argument will be of an overriding nature. When set to 0, it will
have no effect and the door will be unlocked for the period of time specified by the
UT A-variable . When not zero, the argument will override the UT A-variable
once.

The steps

Notice that...

1. Aggregate.xtxt now contains the UL A-function .

2. Callback_agg_device_function() implements necessary code for executing
the UL A-function.

3. Notice how Agg_record_decode() is used to extract the argument of the A-
function.

4. Agg_record_encode() is used to return A-function value to the AggreGate
server. The value is always "success" in our case.

The result

Single-click on the device in the AggreGate tree, and locate Unlock the Door in
the Related Actions pane below. Click Unlock the Door, and you will get a dialog
requesting Door Unlock Duration. Input a value, press OK. The function will be
executed and return Success.

588

597

613

609

610

597Libraries

©2000-2011 Tibbo Technology Inc.

Of course, there is no code (yet) that actually unlocks the door. We will take care
of this later .

Can't see Unlock the Door in the list? Navigate away from your test device,
i.e. click on something else in the tree. Come back -- and you will see the
newly added A-function.

Adding A-function

These AggreGare configurator screenshots show the added UL A-function.

605

583

598 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Step 5: Firing Instant A-events

This step corresponds to test_agg_lib_5.

Instant A-events are sent to the AggreGate server "on the spot". They are
"lightweight" -- there is no dealing with storing them on the flash disk, etc. They
are fast(er) -- just send! They are more reliable -- no flash disk complexity
involved. They are also easier to be lost. Should your device lose power at a wrong

599Libraries

©2000-2011 Tibbo Technology Inc.

moment, the instant A-event will be forgotten. Another limitation: instant A-events
can only be fired successfully when there is an active connection to the AggreGate
server. Bottom line: use instant A-events for events that are not-so-important
and/or numerous.

In this step we add an instant A-event for reporting the booting (powering up) of
the device.

The steps

Notice that...

1. Aggregate.xtxt now contains the DB instant A-event . This event has only
one field -- the date/time of the event. It is possible to have additional fields, of
course.

2. There is a new generate_boot_event() sub is in device.tbs. It calls
agg_fire_instant_event() to send the instant A-event to the AggreGate
server. We call generate_boot_event() from callback_agg_synchronized() ,
not on_sys_init() . As was explained above, you need to have an established
connection to the AggreGate server in order to be able to fire instant A-events,
and the connection is ready when callback_agg_synchronized() is called.

3. Notice how this procedure uses agg_record_encode() .

4. Notice also the use of the TIME library [not yet documented] for producing the
date/time field of correct format.

Notice how the add_fire_instant_event() call has the event_level argument.
The level defined by this argument will override the default level set in the
configurator , unless you set the event_level=
EN_AGG_EVENT_LEVEL_USE_DEFAULT, in which case the default event level will be
used.

The result

To be able to see instances of your new event, right-click on the device in the tree
and choose Monitor Related Events.

600

610

614

533

610

610

600

600 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Adding Instant A-event

These AggreGare configurator screenshots show the added instant A-event.

Notice the Default Level field. This is the event level that will be reported if
agg_fire_instant_event() is called with event_level=
EN_AGG_EVENT_LEVEL_USE_DEFAULT.

583

610

601Libraries

©2000-2011 Tibbo Technology Inc.

Step 6: Handling Stored A-events

This step corresponds to test_agg_lib_6.

Stored A-events, as their name implies, are first stored on the device. Stored A-
events are kept in the log table, and log tables are handled by the TBL library [not
yet documented]. Each stored A-event is kept in the log until the AGG library has a
chance to send it to the AggreGate server. Once recorded, these A-events won't
be lost. Having an AggreGate server connection is not a precondition for the
generation of stored A-events. The disadvantage is somewhat heavier
implementation and slower event handling speed.

There will be a separate log table [not yet documented] (and a file on the flash disk
) for each type of stored A-event in your application. This is because different

A-event types can potentially have a different set of fields and, hence, the
different storage format.

Another important point to discuss: if you come from a field like access control or
IT, then you may be accustomed to a certain way of using the term "event". You
probably dealt with events like "access granted", "access violation", "access
denied", and so on. Each one of those is considered to be a separate "event".

With AggreGate, if it comes from the same log table, then it is the same A-event.
The ACE A-event below is generated on "access granted", "access violation", etc.,
yet it is all the same single event called the "Access Control Event (ACE)". It is the
event description that differentiates each ACE A-event instance. Keep this in mind
when reviewing the code added in step 6.

The steps

Notice that...

1. The TBL library [not yet documented] is already in the project. We added it
when we were creating the USER table .

236

593

602 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

2. Tables.xtxt now contains the ACE table. Note how there are three fields:

 - The DT field for storing the date and time of the event.

 - The AEL field for event the level. Stored A-events, like instant A-events ,
have the default event level which can be overridden. To be able to override,
have a special field named AEL (A-event level) in your log table . This field must
be of the byte type, with possible values from 0 to 5 . Once you have the AEL
field in the table, the event level for each particular event instance will come from
this field.

 - The DS field carrying the event description (like "access granted", "access
violation", etc.). Notice how this field's size is only four characters -- how can we
possible fit a meaningful description in four characters?.. Read on and you will know!

3. Aggregate.xtxt now contains the ACE stored A-event . It "links" to the
ACE table.

4. Call to agg_proc_data_sent() is in on_sock_data_sent() event handler.

5. New generate_door_event() sub is in device.tbs. We call this from
on_button_pressed() . You don't have to be connected to the AggreGate
server in order to be able to generate this event -- that's the beauty of stored
A-events. Whenever you press the MD button , one ACE event is generated.
The description it carries for now is always "ACE". This is temporary -- we will
add real descriptions in the next step .

6. Notice how this procedure uses agg_stored_event_added() . You have to use
it every time you add a stored A-event. It "nudges" the AGG library, i.e. tells it
that there are stored events that haven't been sent to the server yet.

7. Notice that agg_proc_stored_events() is also called(). This is completely
optional and serves to speed up the sending of the stored A-event to the
AggreGate server. The AGG library already uses this procedure internally. Calling
this "manually" just after doing agg_stored_event_added() may speed things up a
bit, especially on big projects with heavy and complicated code.

8. Our sample code also makes use of callback_agg_convert_event_field() . If
you put a breakpoint there you will notice that this procedure is invoked every
time you generate a stored A-event. The procedure is called separately for each
even't field, except the ACE field. The idea is the same as for the
callback_agg_convert_setting call, which was discussed in Adding Setting A-
variables : you get a chance to convert or change a field's value before
sending it to the AggreGate Server. In our code we use the call to convert short
event descriptions (abbreviations, really) into comprehensible lines of text!

The result

To be able to see instances of your new event, right-click on the device in the tree
and choose Monitor Related Events.

603

598

604

603

606

604 600

613 489

234

201

605

611

612

617

616

588

603Libraries

©2000-2011 Tibbo Technology Inc.

Define the ACE Table

This table configurator [not yet documented] screenshot shows the added ACE log
table.

 Notice the AEL (A-Event level) field. Since the ACE log table has this field, the
level of each ACE event instance will be taken from this field.

 Notice also that the DS (description) field accommodates up to 4 characters --
read about our processing technique for this field here .601

604 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Define the ACE Stored Event

These AggreGare configurator screenshots show the added ACE stored A-event.

Notice the note in red under the Default Level. It means that the AEL (A-event
level) field is found in the ACE table and the event level will be defined separately
for each event instance in accordance with the AEL field's value.

583

605Libraries

©2000-2011 Tibbo Technology Inc.

Step 7: Gluing it All Together

This step corresponds to test_agg_lib_7.

And now, ladies and gentlemen, let's crown this application with some glue code.
Observe the code and notice the following...

1. Handling of the BR setting A-variable :

 - Every time we select new baudrate in AggreGate, callback_stg_post_set() is
invoked. Our code there calls baudrate_set(). Don't understand how this works?
Read Using Pre-gets and Post-sets .

 - We also call baudrate_get() from callback_stg_pre_get() .

 - Baudrate_get() is also invoked from setup_serial_port(), which is called from
the on_sys_init() .

2. Handling of the UT setting A-variable : again, we just return the actual
door status in callback_stg_pre_get() . If you may recall , the MD button

588 588

701

683

700

533

588 588

700 585 201

606 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

is used as a make-believe door sensor.

3. The GE setting A-variable now properly allows or prevents the events from
generating.

4. Handling of user access codes is in the on_ser_data_arrival event handler.

Step 8: Adding Bells and Whistles

This step does not exist yet -- you can just go ahead and create it yourself.

You can enhance the access control demo in a myriad ways. We will just point out
additional facilities offered by the AGG library.

Note that...

1. You can always stop the library and free up buffer memory by calling agg_stop()
. When your application does this, it will get callback_agg_buff_released()

invoked.

2. You can use agg_get_connection_state() to poll the AGG library for it
connection state. You can then display the state on the LCD screen (if your
device has it), using LEDs, or in some other way.

3. Callback_agg_error() provides a unified place to respond to errors generated
by the AGG library.

4. Some hardware projects require precise timekeeping (don't we know this!). If
you are not satisfied with the internal RTC of your device (such as the EM1000

), or you are using a device that has no RTC (EM500) then you can always
connect your own RTC chip and write your own RTC routines:

 - Enable (check) Using Custom RTC in the AggreGate configurator.

 - Add the Callback_agg_rtc_sg() procedure to your code.

9.2.1.4En_agg_event_levels

Available event levels apply both to instant A-events and stored A-events .

0- EN_AGG_EVENT_LEVEL_NONE

1- EN_AGG_EVENT_LEVEL_NOTICE

2- EN_AGG_EVENT_LEVEL_INFO

3- EN_AGG_EVENT_LEVEL_WARNING

4- EN_AGG_EVENT_LEVEL_ERROR

5- EN_AGG_EVENT_LEVEL_FATAL

6- EN_AGG_EVENT_LEVEL_USE_DEFAULT

In the above list, the last value ("DEFAULT") can only be used as the value of the
event_level argument of instant A-events and as the value of the AEL field for
stored A-events .

9.2.1.5En_agg_status_codes

Several procedures in the library utilize the en_agg_status_codes enum. This enum
has the following members:

0- EN_AGG_STATUS_OK: success.

588 588

412

608 615

609

615

143 138

618

598 601

598

601

607Libraries

©2000-2011 Tibbo Technology Inc.

1- EN_AGG_STATUS_NOT_STARTED: agg_start() was not used or failed.

2- EN_AGG_STATUS_WRONG_DESCRIPTOR: wrong descriptor file data.

3- EN_AGG_STATUS_OUT_OF_SOCKETS: no free sockets available for the library to
operate.

4- EN_AGG_STATUS_INVALID_INTERFACE: unsupported network interface specified.

5- EN_AGG_STATUS_INSUFFICIENT_BUFFER_SPACE: insufficient number of buffer
pages available and the call to callback_agg_pre_buffrq() failed to cure the
problem.

6- EN_AGG_STATUS_CONNECTION_LOST: lost connection to the AggreGate server.

7- UNABLE TO CONNECT: unable to connect to the AggreGate server.

8- EN_AGG_STATUS_SETTING_ERROR: a problem with a setting A-variable .

9- EN_AGG_STATUS_TABLE_ERROR: a problem with a table A-variable .

10- EN_AGG_STATUS_FUNCTION_ERROR: a problem with an A-function .

11- EN_AGG_STATUS_ITEM_NOT_FOUND: unknown item specified.

9.2.1.6Library Procedures

In this section:

Agg_start()

Agg_stop()

Agg_get_connection_state()

Agg_record_decode()

Agg_record_encode()

Agg_fire_instant_event()

Agg_proc_stored_events()

Agg_proc_timer()

Agg_proc_data()

Agg_proc_sock_event()

Agg_proc_data_sent()

Callback_agg_get_firmware_version()

Callback_agg_device_function()

Callback_agg_synchronized()

Callback_agg_pre_buffrq()

Callback_agg_buff_released()

Callback_agg_error()

Callback_agg_convert_setting()

Callback_agg_convert_event_field()

Callback_agg_rtc_sg()

Agg_start()

Description: API procedure, starts the AGG library, parses the
configuration file , prepares the library for operation.

607

583

614

588

593

596

607

608

609

609

610

610

612

612

612

612

613

613

613

614

614

615

615

616

617

618

583

608 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Syntax: function agg_start(interface as pl_sock_interfaces,
byref owner_name as string, byref device_name as
string, byref password as string, byref agg_server_ip as
string, agg_server_port as word, agg_server_tout as
word, auto_reg as no_yes) as en_agg_status_codes

Returns: One of the en_agg_status_codes

See Also: The Embryo

Part Description

interface The network interface through which the library will be
connecting to the AggreGate server. The list of available
interfaces is platform-dependent (look for the Enum
pl_sock_interfaces topic inside your platform's
documentation).

owner_name Must match your account on the AggreGate server ("admin"
by default).

device_name The name under which the device will appear in the list of
devices under your account.

password The password your device will use to login to the AggreGate
server.

agg_server_ip The IP address of the AggreGate server.

agg_server_port The listening port on the AggreGate server (6480 by
default).

agg_server_tout Maximum waiting time for the AggreGate server interactions.
The recommended value is 600.

auto_reg Whether or not the device will be allowed to register on the
AggreGate server if the server does not already have this
device under the specified owner_name account

Details

MUST be called first, before any other procedure in this library is invoked, or
EN_AGG_STATUS_NOT_STARTED will be returned by every other procedure you
call.

Agg_stop()

Description: API procedure, stops the AGG library causing it to release
occupied buffers.

Syntax: declare sub agg_stop()

Returns: ---

See Also: Adding Bells and Whistles

callback_agg_buff_released()

606

587

138

606

606

615

609Libraries

©2000-2011 Tibbo Technology Inc.

Details

Agg_get_connection_state()

Description: API procedure, returns the current state of the device's
connection to the AggreGate server as well as the
synchronization status.

Syntax: sub agg_get_connection_state(byref link_state as
en_agg_link_states, byref sock_state as
pl_sock_state_simple)

Returns: TCP connection state and synchronization status

See Also: Adding Bells and Whistles

Part Description

link_state Indirectly returns the synchronization status:

0- EN_AGG_LINK_STATE_IDLE: no connection to the
AggreGate server.

1- EN_AGG_LINK_STATE_CONNECTING: connecting now.

2- EN_AGG_LINK_STATE_SYNCRONIZING: synchronizing
now.

3- EN_AGG_LINK_STATE_DISCONNECTED: disconnected (by
the server).

4- EN_AGG_LINK_STATE_ESTABLISHED: connected and fully
synchronized.

sock_state Indirectly returns the state of the TCP link to the server.
This is directly from the sock.statesimple property of the
socket used for connecting to the AggreGate server.

Details

Agg_record_decode()

Description: API procedure, extracts the value of the specified
argument from the encoded string containing the values of
all arguments for an A-function.

Syntax: function agg_record_decode(byref encode_string as
string, field_index as byte) as string

Returns: The specified argument's value

606

505

610 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

See Also: Adding A-functions

Part Description

encode_string The argument string sent by the server.

field_index The index (counting from 0) of the argument that needs to
be extracted.

Details

Only works for argument strings containing simple single-value arguments. Need to
pass complex arguments containing entire tables? Write your own decoder. String
format is described here:

http://aggregate.tibbo.com/docs/en/ap_data_tables_encoding.htm

Agg_record_encode()

Description: API procedure, appends the argument's value to the
encoded A-function's or A-event's argument string in
preparation for sending this string to the AggreGate
server.

Syntax: sub agg_record_encode(byref encode_string as string,
byref field_value as string)

Returns: Updated encode_string

See Also: Adding A-functions , Firing Instant A-events

Part Description

encode_string The argument string being prepared.

field_index New value to be appended to the string.

Details

Should be called repeatedly if the A-function has multiple arguments.

Can only handle simple single-value arguments. Need to pass complex arguments
containing entire tables? Write your own encoder. String format is described here:

http://aggregate.tibbo.com/docs/en/ap_data_tables_encoding.htm

Agg_fire_instant_event()

Description: API procedure, generates an instant A-event and sends it
directly to the AggreGate server.

Syntax: sub agg_fire_instant_event(byref context_name as

609

596 598

http://aggregate.tibbo.com/docs/en/ap_data_tables_encoding.htm
http://aggregate.tibbo.com/docs/en/ap_data_tables_encoding.htm

611Libraries

©2000-2011 Tibbo Technology Inc.

string, byref event_name as string, byref event_string
as string, event_level as en_agg_event_levels)

Returns: ---

See Also: Firing Instant A-events

Part Description

context_name Always set this to "root".

event_name Name of the instant A-event, must match one of the A-
events you've defined through the configurator .

event_string The encoded string containing the values of the A-event's
arguments. Use agg_record_encode() to prepare. Use
agg_record_encode() to prepare.

event_level A-event level as defined by the en_agg_event_levels
enum. If you set this to
EN_AGG_EVENT_LEVEL_USE_DEFAULT then the event level
defined through the configurator will be used. Specifying
any other event level will override the default level specified
in the configurator.

Details

Agg_stored_event_added()

Description: API procedure, must be called every time a stored A-
event is added to the log file.

Syntax: sub agg_stored_event_added(byref event_name as
string)

Returns: ---

See Also: Handling Stored A-events

Part Description

event_name Name of the A-event, must match the event that's been
added.

Details

598

583

610

610

606

600

601

612 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Agg_proc_stored_events()

Description: API procedure, nudges the AGG library to process stored
A-events.

Syntax: sub agg_proc_stored_events()

Returns: ---

See Also: Handling Stored A-events

Details

The use of this procedure is completely optional.

Agg_proc_timer()

Function: Event procedure, call it from the on_sys_timer() event
handler.

Syntax: sub agg_proc_timer()

Returns: ---

See Also: The Embryo

Details

The AGG library expects that the system timer is running at half-second
intervals.

Agg_proc_data()

Function: Event procedure, call it from the on_sock_data_arrival()
 event handler.

Syntax: sub agg_proc_data()

Returns: ---

See Also: The Embryo

Details

Agg_proc_sock_event()

Function: Event procedure, call it from the on_sock_event()
event handler.

Syntax: sub agg_proc_sock_event(sock_state as
pl_sock_state, sock_state_simple as
pl_sock_state_simple)

601

533

587

528

489

587

490

613Libraries

©2000-2011 Tibbo Technology Inc.

Returns: ---

See Also: The Embryo

Details

This procedure's arguments are the same as for on_sock_event() .

Agg_proc_data_sent()

Function: Event procedure, call it from the on_sock_data_sent()
event handler.

Syntax: sub agg_proc_data_sent()

Returns: ---

See Also: Handling Stored A-events

Details

Callback_agg_get_firmware_version()

Description: Callback procedure, requests the version string for the
current application. Procedure body has to be created
elsewhere in the project (externally with respect to the
library).

Syntax: function callback_agg_get_firmware_version() as
string

Returns: Version string

See Also: The Embryo

Details

This isn't required, but customarily we enclose version strings in braces ("{}"). For
example: {agg_demo.1.01.01}.

Callback_agg_device_function()

Description: Callback procedure, invoked when the device needs to
execute an AggreGate function. Procedure body has to be
created elsewhere in the project (externally with respect
to the library).

Syntax: function callback_agg_device_function(byref
function_name as string ,byref context_name as string,
byref function_input as string, byref function_output as
string) as ok_ng

Returns: ---

587

490

489

601

587

614 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

See Also: Firing Instant A-events

Part Description

function_name AggreGate function name.

context_name This library only supports the root context, so
context_name should be ignored.

function_input The encoded string containing the values of all arguments of
the AggreGate function. Use agg_record_decode() to
process.

function_output The encoded string containing the values of the function's
output. Use agg_record_encode() to process.

Details

Callback_agg_synchronized()

Description: Callback procedure, informs of the completion of the
synchronization process between the device and the
AggreGate server. Procedure body has to be created
elsewhere in the project (externally with respect to the
library).

Syntax: sub callback_agg_synchronized()

Returns: Version string

See Also: Firing Instant A-events

Details

Callback_agg_pre_buffrq()

Description: Callback procedure, informs of the insufficient number of
free buffer pages available for use by the library.
Procedure body has to be created elsewhere in the
project (externally with respect to the library).

Syntax: sub callback_agg_pre_buffrq(required_buff_pages as
byte)

Returns: ---

See Also: The Embryo

598

609

610

598

587

615Libraries

©2000-2011 Tibbo Technology Inc.

Part Description

required_buffer_p
ages

The number of additional buffer pages that the AGG library
needs to operate. Your application must free up at least this
number of buffer pages within callback_agg_pre_buffrq() or
agg_start() will fail with the
AGG_STATUS_INSUFFICIENT_BUFFER_SPACE code .

Details

This procedure will be called only if there are not enough buffer pages available.

Callback_agg_buff_released()

Description: Callback procedure, informs of the release of buffer pages
by the library. Procedure body has to be created
elsewhere in the project (externally with respect to the
library).

Syntax: sub callback_agg_buff_released()

Returns: ---

See Also: Adding Bells and Whistles

agg_stop()

Details

The number of free buffer pages can be checked through the sys.freebuffpages
R/O property.

Callback_agg_error()

Description: Callback procedure, informs of an error or condition
detected within the library. Procedure body has to be
created elsewhere in the project (externally with respect
to the library).

Syntax: sub callback_agg_error(failure_code as
en_agg_status_codes, byref error_item as string)

Returns: ---

See Also: ---

Part Description

failure_code One of the en_agg_status_codes

error_item Name of the item in question, for example, the name of a
setting A-variable.

607

606

606

608

531

606

616 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Details

Callback_agg_convert_setting()

Description: Callback procedure, invoked every time a setting A-
variable is being read or written. Provides an opportunity
to convert the value before writing to a setting or after
reading from a setting.

Procedure body has to be created elsewhere in the
project (externally with respect to the library).

Syntax: sub callback_agg_convert_setting(byref setting_name
as string, index as byte, byref setting_value as string,
op as en_agg_rdwr)

Returns: ---

See Also: Adding Setting A-variables

Callback_agg_convert_event_field()

Part Description

setting_name Name of the setting being read or written.

index Setting index (zero for single-value settings).

setting_value Value to be converted. This argument is also used for
returning the converted value: take setting_value, modify
as needed, and store back.

op EN_AGG_GET- reading from the setting

EN_AGG_SET- writing to the setting

Details

This procedure allows to store the value in a format or type that is different from
the way the same is perceived in AggreGate.

Here is a simple example: Supposing, there is a setting that stores device
temperature. The setting data originates from a temperature measuring IC, which
outputs a byte value. Seven most significant bits are degrees. The least significant
bit represent a 0.5-degree step. The output of 0 corresponds to -40 degrees C.
Therefore, the output of 255 corresponds to +87.5 degrees C.

Now, the operator in AggreGare would surely prefer to see "natural" temperature
values like -40 and +87.5, rather than 0 and 255. This procedure can provide a
place to do the conversion.

The same possibility exists for stored event's fields (see
Callback_agg_convert_event_field()) but not for table A-variables . Tables

588

617

617 593

617Libraries

©2000-2011 Tibbo Technology Inc.

must be stored in exactly the same way that the AggreGate server "believes" them
to be stored. This is because table synchronization is based on hash strings.

Callback_agg_convert_event_field()

Description: Callback procedure, invoked every time a stored A-event
is being extracted from the log and sent to the server.
Provides an opportunity to change the value or type of A-
event fields before sending the stored A-event to the
server.

Procedure body has to be created elsewhere in the
project (externally with respect to the library).

Syntax: declare sub callback_agg_convert_event_field(byref
table_name as string, byref field_name as string, byref
field_value as string)

Returns: ---

See Also: Handling Stored A-events

Callback_agg_convert_setting()

Part Description

table_name The name of the stored A-event (and the log table which
stores it).

field_name The name of the field.

field_value The value of the field.

Details

For every stored A-event being sent to the server, this procedure will be called
separately for each event's field.

Type/value conversion possibility also exists for setting A-variables (see
callback_agg_convert_setting()) but not for table A-variables . Tables must be
stored in exactly the same way that the AggreGate server "believes" them to be
stored. This is because table synchronization is based on hash strings.

601

616

616 593

618 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Callback_agg_rtc_sg()

Description: Callback procedure, invoked when the library needs to get
or set the device's date and time. Procedure body has to
be created elsewhere in the project (externally with
respect to the library).

Syntax: sub callback_agg_rtc_sg(byref wdaycount as word,
byref wmincount as word, byref bsec as byte, byref
wmilsec as word, op as en_agg_rdwr)

Returns: ---

See Also: ---

Part Description

wdaycount Number of elapsed days.

wmincount Number of elapsed minutes.

bsec Number of elapsed seconds.

wmilsec Number of elapsed milliseconds.

op EN_AGG_GET or EN_AGG_SET

Details

Necessary only when Use custom RTC option is enabled in the configurator .

DHCP Library

The DHCP library implements DHCP client on Ethernet (net.) and Wi-Fi (wln.)
network interfaces. The DHCP protocol is used for automatic configuration of your
device's IP address, netmask, and gateway IP address. More on the protocol here:
http://en.wikipedia.org/wiki/Dhcp.

The library is capable of running DHCP clients on both network interfaces
concurrently. The library is event-based and non-blocking -- it quietly runs in the
background and takes a minimal amount of CPU time.

Library Info

Supported
platforms:

Any platform with at least the Ethernet (net.) or Wi-Fi
(wln.) interface except for EM202.

Files to include: Dhcp.tbs, dhcp.tbh (from current_library_set\dhcp\trunk\)
.

Dependencies: SOCK library;

You may also need WLN library

API procedures:

Use API procedures
 to interact with

dhcp_get_info() -- returns library-specific information
(such as required buffer space).

dhcp_start() -- starts the DHCP client on the specified

583

358 536

358

536

664

703

576 636

http://en.wikipedia.org/wiki/Dhcp

619Libraries

©2000-2011 Tibbo Technology Inc.

the library. network interface.

dhcp_stop() -- stops the DHCP client on the specified
network interface.

Event
procedures:

Call event
procedures from
corresponding
event handlers, as
described here .

dhcp_proc_timer() -- call this from the on_sys_timer()
 event handler.

dhcp_proc_data() -- call this from the
on_sock_data_arrival() event handler.

Callback
procedures:

Implement the
bodies of callback
procedures
elsewhere in your
project.

callback_dhcp_ok() -- called when the library
completes successfully on one of the interfaces.

callback_dhcp_failure() -- called when the library fails
on one of the interfaces after DHCP_MAX_RETRIES .

callback_dhcp_pre_clear_ip() -- called when the library
is about to set the interface's IP to 0.0.0.0.

callback_dchp_pre_buffrq() -- called when the library
needs to allocate buffer space and the required space is
not available.

callback_dhcp_buff_released() -- called when the
library no longer needs buffers and released them.

Required buffer
space:

6 buffer pages. These are utilized when needed and
released when the DHCP client completes its job. The
amount of buffer space needed is constant and does not
depend on the number of network interfaces involved.

9.2.2.1Step-by-step Usage Instructions

Minimal steps

1. Make sure you have the SOCK library in your project.

2. Add dhcp.tbs and dhcp.tbh files to your project (they are in
current_library_set\dhcp\trunk).

3. Add #define DHCP_DEBUG_PRINT 1 to the defines section of the global.tbh file
of your project. This way you will "see what's going on". Don't forget to remove
this later, after you've made sure that the library operates as expected.

4. Add include "dhcp\trunk\dhcp.tbh" to the includes section of the global.tbh
file.

5. Add dhcp_proc_timer() to the on_sys_timer() event handler code (see
"Further considerations" below).

6. Add dhcp_proc_data() to the on_sock_data_arrival() event handler code.

7. Create empty callback function bodies (presumably in the device.tbs):
callback_dhcp_ok() , callback_dhcp_failure() , callback_dhcp_pre_clear_ip()

, callback_dhcp_pre_buffrq() , and callback_dhcp_buff_released() . Hint:
copy from declarations in the dhcp.tbh or from our code example .

8. Call dhcp_start() from somewhere -- once for every interface you want to

637

576

619

637

533

638

489

576

638

639

634

639

640

640

664

577

634

637 533

638 489

576

638 639

639 640 640

622

636

620 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

use DHCP on. How you will do this depends on your program's logic. The no-
brainer decision is to call from the on_sys_init() event handler. In the simplest
case, leave the suggested_ip and host_name arguments empty. Note that
dhcp_start() may fail, so it is wise to check the returned status code.

9. Implement meaningful code for the callback_dhcp_ok() function. Typically,
once the DHCP process completes, you should update the IP, netmask, and
gateway IP of the corresponding interface.

All of the above is illustrated in the Code Examples .

Additional recommended steps

1. Store the obtained IP address in the EEPROM and provide it with the dhcp_start
() . The STG library comes handy for this -- see our example . This way
your device will be (mostly) able to keep using the same IP.

2. Optionally provide the device (host) name with the dhcp_start() . Some DHCP
servers are linked to DNS servers and sending the host name will automatically
register your device with the DNS server. By default, device names are disabled.
To enable names, add a like like this to the global.tbh: #define
DHCP_MAX_HOST_NAME_LEN 32 (this will allow names of up to 32 chars).

3. The use of dhcp_stop() is optional. In fact, under the normal circumstances
you should let the DHCP client run continuously. This is because the library needs
to take care of the "lease expiration" and renew the lease at proper times (see
Operation Details). However, you may choose to terminate the DHCP client on
a particular interface if the DHCP configuration fails (too many times).

4. The use of callback_dhcp_failure() is optional. You may leave the procedure
empty. Alternatively, once DHCP fails (too many times), you can set an
alternative IP, netmask, and gateway IP for the corresponding network interface
of your device.

5. Callback_dhcp_pre_buffrq() is only called when there isn't enough free buffer
space for the DHCP library's needs. Leave the procedure empty if you are
supremely confident that there is always enough free buffer space. Alternatively,
free up the required space when asked for it, or the DHCP will fail.

6. Callback_dhcp_buff_released() is called when the DHCP library no longer
needs buffer space. A smart application would seize on the opportunity to
redistribute newly available buffer pages to other needy parts of your system.
Then, again, you can just ignore this chance.

See Code Examples for illustration of the points above.

Not enough buffer space to run DHCP? Take some space away from your
socket buffers . Without properly configured IP, sockets are of no use,
right? So, deallocate socket buffer space in the
callback_dhcp_pre_buffalloc() and give buffers back to sockets in the
callback_dhcp_buff_released().

Further considerations

The DHCP library expects the dhcp_proc_timer() to be called at 0.5 sec
intervals. This is the default value which can be changed through the
sys.onsystimerperiod property. If your project needs to have the on_sys_timer()

 event at a different rate, please make sure that dhcp_proc_timer() is still called
2 times/second. For example, if the on_sys_timer() is set to trigger 4 times/second,

533

638

622

636 668 631

636

634

637

621

639

640

640

622

422

637

533

533

621Libraries

©2000-2011 Tibbo Technology Inc.

you need to add "divider" code that only calls dhcp_proc_timer() on every second
invocation of the on_sys_timer().

9.2.2.2Operation Details

The DHCP client, once started on a particular interface with the dhcp_start() ,
will run continuously until stopped through the dhcp_stop() . The operation of the
library may be observed in the debug mode by adding #define
DHCP_DEBUG_PRINT 1 to the defines section of the global.tbh file of your
project. A wealth of status information will then be printed in the console pane as
the DHCP library operates.

Once dhcp_start() is called successfully (and it can fail -- observe returned code!),
the library attempts to obtain the IP address, netmask, and the gateway IP address
from the DHCP server. If the process fails, the library will retry. A total of
DHCP_MAX_RETRIES attempts are performed (with randomized waiting times
between retries, but not exceeding DHCP_MAX_RETRY_DELAY seconds), after
which callback_dhcp_failure() is called and the library goes into the waiting
period of DHCP_POST_FAIL_DELAY seconds. When the period is over, another
batch of DHCP_MAX_RETRIES attempts is performed, and so on ad infinitum, until
the dhcp_stop() is called or DHCP configuration succeeds.

DHCP configuration requires that the initial IP address of the client device be
0.0.0.0. If the IP address of the specified interface is different, the library will set it
to 0.0.0.0. Changing the IP address on a particular interface requires all socket
connections operating on this interface to be closed first. The DHCP library will take
care of that by calling sock.discard for each involved socket. Before doing that,
the DHCP library will invoke callback_dhcp_pre_clear_ip() . This way, your
application may "prepare" for what is coming. For example, you can add code for
gracefully closing TCP connections (instead of letting the DHCP library to do a rude
discard).

A buffer space of 6 pages is required while a batch of DHCP_MAX_RETRIES
attempts is performed on either network interface. The library will check if the
required buffer space is available and call callback_dhcp_pre_buffrq() if more
space is needed. Once the batch of retry attempts finishes (either successfully or
unsuccessfully), the buffer space is no longer needed and is released by the library.
The callback_dhcp_buff_released() is called to notify your system of the fact.
Your system can then check the total number of free pages available (now that the
DHCP library released some pages) through the sys.freebuffpages R/O property.

The library can run DHCP configuration on both the Ethernet (net.) and Wi-Fi
(wln.) interfaces concurrently. This does not increase buffer space requirements.
The library will appropriate buffer pages when needed by either of the interfaces
and release buffer pages when neither network interface requires them any longer.

Once the DHCP configuration completes successfully on a particular network
interface, the callback_dhcp_ok() is invoked. You can then program the new IP
(and the netmask, and the gateway IP) into the net. or wln. object. Doing so
is only possible when no sockets are active on the network interface whose
properties you are about to change.

After the successful DHCP configuration, the library goes into counting lease time.
Once 90% of the lease time passes, the library will attempt to renew the lease.
Buffer pages will be needed for this again. The IP address does not have to be
reset to 0.0.0.0 for the lease renewal, so callback_dhcp_pre_clear_ip() will not be
called, either.

Note that even in case of the lease renewal the IP address offered by the DHCP
server may change. Don't forget to take care of this! Actually, it may be easier to
just reboot the device than deal with all the implications of the changed IP. Code

636

637

27

634

634

634

639

634

637

478

639

640

640

531

358

536

638

358 536

622 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Examples topic shows how to deal with this.

The library also monitors the link state of network interfaces. If the Ethernet cable
is unplugged and then re-plugged (this is monitored through the net.linstate R/O
property), the DHCP process (if enabled) will restart automatically for the Ethernet
interface. Similarly, if the access point association is lost and then reestablished
(wln.associationstate), the DHCP process (if enabled) will restart automatically
for the Wi-Fi interface.

9.2.2.3Code Examples

Projects in the Code Examples section are published on our website under the
name "test_wln_lib".

In this section:

Step 1: Code Example For the Ethernet Interface

Step 2: Code Example For the Wi-Fi Interface

Step 3: Adding Bells and Whistles

Step 4: Adding More Bells and Whistles

Step 1: Code Example for the Ethernet Interface

This and other projects in the Code Examples section are published on our website
under the name "test_dhcp_lib".

Here is a simple example of using DHCP on the Ethernet (net.) interface. Notice
how the callback_dhcp_ok() procedure is implemented! This is a good illustration
of the protracted explanation in the Operations Details topic (not that we think
you will read it all).

Note also the use of the NET_AVAILABLE define. This comes from the platform. If
the Ethernet interface is available on the currently selected platform, then
NET_AVAILABLE is "1". Similarly, if the Wi-Fi interface is available, then
WLN_AVAILABLE is "1". Using such defines you can create applications that will
compile on any platform, as long as this platform has at least the Ethernet, or the
Wi-Fi interface.

Here is a sample debug output we've got after running the code:

DHCP(net)> ---START---
DHCP(net)> TX discovery message
DHCP(net)> RX offer message
DHCP(net)> TX request message
DHCP(net)> RX confirmation message
DHCP(net)> ---OK(ip: 192.168.1.246, gateway: 192.168.1.1, netmask:
255.255.255.0, lease: 529200 sec.)---

If you are compiling on one of the "W" platforms (that is, platforms with Wi-
Fi), then you need to disable the wln. object, or this project won't
compile. Go Project -> Settings -> Customize and set Wi-Fi (wln.) object to
"Disabled".

622

361

558

622

624

628

631

358

638

621

536

623Libraries

©2000-2011 Tibbo Technology Inc.

And here is the code itself...

global.tbh:

'DEFINES---
#define DHCP_DEBUG_PRINT 1 'to see debug output by the DHCP lib

'INCLUDES--
include "sock\trunk\sock.tbh" 'this lib is necessary for the DHCP lib's
operation
include "dhcp\trunk\dhcp.tbh"

main.tbs:

include "global.tbh"

'==
sub on_sys_init()

#if NET_AVAILABLE
dhcp_start(PL_SOCK_INTERFACE_NET,"","")

#endif
end sub

'--
sub on_sys_timer()

dhcp_proc_timer()
end sub

'--
sub on_sock_data_arrival()

dhcp_proc_data()
end sub

device.tbs:

include "global.tbh"

'==
sub callback_dhcp_ok(renew as no_yes, interface as pl_sock_interfaces, byref
ip as string, byref gateway_ip as string, byref netmask as string,
lease_time as dword)

dim f as byte

#if NET_AVAILABLE
if interface=PL_SOCK_INTERFACE_NET then

if renew=YES and net.ip<>ip then
'this is a lease renewal and the DHCP server has

issues new IP
'it is better to reboot than deal with the

implications of the changed IP
sys.reboot

end if

if net.ip<>ip then
'no need to close sockets -- this is definitely

NOT a renewal an the DHCP lib

624 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

'has already closed all socket connections on
this interface prior to setting

'the IP to 0.0.0.0
net.ip=ip
net.gatewayip=gateway_ip
net.netmask=netmask

end if
end if

#endif
end sub

'--
sub callback_dhcp_failure(interface as pl_sock_interfaces,failure_code as
en_dhcp_status_codes)
end sub

'--
sub callback_dhcp_pre_clear_ip(interface as pl_sock_interfaces)
end sub

'--
sub callback_dhcp_pre_buffrq(required_buff_pages as byte)
end sub

'--
sub callback_dhcp_buff_released()
end sub

Step 2: Code Example for the Wi-Fi Interface

This and other projects in the Code Examples section are published on our website
under the name "test_dhcp_lib".

Now let's add DHCP for the Wi-Fi interface (wln.) to the previous sample code
.

In order to even get to the DHCP stage, the Wi-Fi interface must first associate
with the access point. We use our own handy WLN library for that. Notice the
use of the WLN_AVAILABLE define. This example does not address Wi-Fi WPA
security, see Trying WPA for inspiration.

Sample debug output follows. Notice some error messages there. This is because
our device, although working with two interfaces, was actually connected to the
same LAN with the same DHCP server. DHCP messages are sent as broadcasts and
both interfaces will get the same message. This results in one interface getting
messages intended for the other interface and rejecting them as erroneous. This
does not affect the operation of the library.

DHCP(net)> ---START---
DHCP(wln)> ---START---
DHCP(net)> TX discovery message
DHCP(net)> RX offer message
DHCP(net)> INFO: RX unexpected message (wasn't expecting anything at the
moment)
DHCP(net)> INFO: RX unexpected, invalid, or unrelated message (it was
discarded)
DHCP(net)> TX request message

536 622

703

711

625Libraries

©2000-2011 Tibbo Technology Inc.

DHCP(net)> RX confirmation message
DHCP(net)> ---OK(ip: 192.168.1.215, gateway: 192.168.1.1, netmask:
255.255.255.0, lease: 529200 sec.)---
DHCP(wln)> Wi-Fi interface associated with the AP -- DHCP (re)started
DHCP(wln)> TX discovery message
DHCP(wln)> RX offer message
DHCP(wln)> INFO: RX unexpected message (wasn't expecting anything at the
moment)
DHCP(wln)> INFO: RX unexpected, invalid, or unrelated message (it was
discarded)
DHCP(wln)> TX request message
DHCP(wln)> RX confirmation message
DHCP(wln)> ---OK(ip: 192.168.1.216, gateway: 192.168.1.1, netmask:
255.255.255.0, lease: 529200 sec.)---

If you disabled the wln. object in the previous step , the you need to
enable it now. Plus, you need to test on one of the "W" platforms (that is,
platforms with Wi-Fi). Go Project -> Settings -> Customize and set Wi-Fi
(wln.) object to "Enabled".

And now the code (plus don't forget to add ga1000fw.bin into your project)...

global.tbh:

'DEFINES---
#define DHCP_DEBUG_PRINT 1 'to see debug output by the DHCP lib

'this is for WLN library
#if PLATFORM_ID=EM500 or PLATFORM_ID=EM500W

#define WLN_RESET_MODE 1 'there will be no dedicated reset, and all
other lines are fixed
#elif PLATFORM_ID=EM1206 or PLATFORM_ID=EM1206W

#define WLN_CLK PL_IO_NUM_14
#define WLN_CS PL_IO_NUM_15
#define WLN_DI PL_IO_NUM_12
#define WLN_DO PL_IO_NUM_13
#define WLN_RST PL_IO_NUM_11

#else
'EM1000, NB1010,...
#define WLN_CLK PL_IO_NUM_53
#define WLN_CS PL_IO_NUM_49
#define WLN_DI PL_IO_NUM_52
#define WLN_DO PL_IO_NUM_50
#define WLN_RST PL_IO_NUM_51

#endif

'INCLUDES--
include "sock\trunk\sock.tbh" 'this lib is necessary for the DHCP lib's
operation
include "wln\trunk\wln.tbh" 'this lib is necessary for the DHCP on Wi-Fi
interface
include "dhcp\trunk\dhcp.tbh"

main.tbs:

536 622

626 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

include "global.tbh"

'==
sub on_sys_init()

#if NET_AVAILABLE
dhcp_start(PL_SOCK_INTERFACE_NET,"","")

#endif

#if WLN_AVAILABLE
wln_start("TIBB1",WLN_SECURITY_MODE_WEP64,"1234567890",

PL_WLN_DOMAIN_FCC) '<-- set what you need here, see WLN lib docs
dhcp_start(PL_SOCK_INTERFACE_WLN,"","")

#endif
end sub

'--
sub on_sys_timer()

dhcp_proc_timer()

#if WLN_AVAILABLE
wln_proc_timer() 'see WLN lib docs

#endif
end sub

'--
sub on_sock_data_arrival()

dhcp_proc_data()

#if WLN_AVAILABLE
wln_proc_data() 'see WLN lib docs

#endif
end sub

'--
#if WLN_AVAILABLE
sub on_wln_task_complete(completed_task as pl_wln_tasks)

wln_proc_task_complete(completed_task) 'see WLN lib docs
end sub
#endif

'--
#if WLN_AVAILABLE
sub on_wln_event(wln_event as pl_wln_events)

wln_proc_event(wln_event)
end sub
#endif

device.tbs:

include "global.tbh"

'==
sub callback_dhcp_ok(renew as no_yes, interface as pl_sock_interfaces, byref
ip as string, byref gateway_ip as string, byref netmask as string,
lease_time as dword)

dim f as byte

#if NET_AVAILABLE

627Libraries

©2000-2011 Tibbo Technology Inc.

if interface=PL_SOCK_INTERFACE_NET then
if renew=YES and net.ip<>ip then

'this is a lease renewal and the DHCP server has
issues new IP

'it is better to reboot than deal with the
implications of the changed IP

sys.reboot
end if

if net.ip<>ip then
'no need to close sockets -- this is definitely

NOT a renewal an the DHCP lib
'has already closed all socket connections on

this interface prior to setting
'the IP to 0.0.0.0
net.ip=ip
net.gatewayip=gateway_ip
net.netmask=netmask

end if
end if

#endif

#if WLN_AVAILABLE
if interface=PL_SOCK_INTERFACE_WLN then

if renew=YES and wln.ip<>ip then
'this is a lease renewal and the DHCP server has

issues new IP
'it is better to reboot than deal with the

implications of the changed IP
sys.reboot

end if

if wln.ip<>ip then
'no need to close sockets -- this is definitely

NOT a renewal an the DHCP lib
'has already closed all socket connections on

this interface prior to setting
'the IP to 0.0.0.0
wln.ip=ip
wln.gatewayip=gateway_ip
wln.netmask=netmask

end if
end if

#endif
end sub

'--
sub callback_dhcp_failure(interface as pl_sock_interfaces,failure_code as
en_dhcp_status_codes)
end sub

'--
sub callback_dhcp_pre_clear_ip(interface as pl_sock_interfaces)
end sub

'--
sub callback_dhcp_pre_buffrq(required_buff_pages as byte)
end sub

'--
sub callback_dhcp_buff_released()

628 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

end sub

'--
#if WLN_AVAILABLE
sub callback_wln_ok()
end sub
#endif

'--
#if WLN_AVAILABLE
sub callback_wln_failure(wln_state as en_wln_status_codes)
end sub
#endif

'--
#if WLN_AVAILABLE
sub callback_wln_pre_buffrq(required_buff_pages as byte)
end sub
#endif

'--
#if WLN_AVAILABLE
sub callback_wln_rescan_result(current_rssi as byte, scan_rssi as byte,
different_ap as no_yes)
end sub
#endif

Step 3: Adding Bells and Whistles

This and other projects in the Code Examples section are published on our website
under the name "test_dhcp_lib".

Writing quality code means anticipating things to go wrong and not as planned.
Here are some ideas on fortifying your code:

Check the result of dhcp_start()

This one returns one of the en_dhcp_status_codes() and you should check
what's returned! Decide for yourself what to do in each particular case or simply
halt the execution if there is an error:

...
if dhcp_start(PL_SOCK_INTERFACE_NET)<>DHCP_STATUS_OK then sys.halt 'do the
same for the Wi-Fi interface
...

What to do when callback_dhcp_failure() is called

The DHCP client, once started, continues to run indefinitely. Still, at some point
your application has to face the simple fact that the DHCP configuration has,
indeed, failed, and it is time to do something about it. A set of alternative
configuration parameters will come handy at that time. In the code below,

635

629Libraries

©2000-2011 Tibbo Technology Inc.

net_dhcp_fail_ctr and wln_dhcp_fail_ctr accumulate failures. Notice how dhcp_stop
() is called once the count reaches DHCP_FAIL_LIMIT:

device.tbs:

include "global.tbh"

'--
const DHCP_FAIL_LIMIT=1 'max number of DHCP retry "batches"
const ALT_NET_IP="192.168.1.40"
const ALT_NET_GATEWAY_IP="192.168.1.1"
const ALT_NET_NETMASK="255.255.255.0"
const ALT_WLN_IP="192.168.1.41"
const ALT_WLN_GATEWAY_IP="192.168.1.1"
const ALT_WLN_NETMASK="255.255.255.0"

'--
#if NET_AVAILABLE

dim net_dhcp_fail_ctr as byte 'no need to init to 0 (this is automatic
for global vars)
#endif

#if WLN_AVAILABLE
dim wln_dhcp_fail_ctr as byte 'no need to init to 0 (this is automatic

for global vars)
#endif

'==
sub callback_dhcp_ok(renew as no_yes, interface as pl_sock_interfaces, byref
ip as string, byref gateway_ip as string, byref netmask as string,
lease_time as dword)

dim f as byte

#if NET_AVAILABLE
if interface=PL_SOCK_INTERFACE_NET then

if renew=YES and net.ip<>ip then
'this is a lease renewal and the DHCP server has

issues new IP
'it is better to reboot than deal with the

implications of the changed IP
sys.reboot

end if

if net.ip<>ip then
'no need to close sockets -- this is definitely

NOT a renewal an the DHCP lib
'has already closed all socket connections on

this interface prior to setting
'the IP to 0.0.0.0
net.ip=ip
net.gatewayip=gateway_ip
net.netmask=netmask
net_dhcp_fail_ctr=0

end if
end if

#endif

#if WLN_AVAILABLE
if interface=PL_SOCK_INTERFACE_WLN then

if renew=YES and wln.ip<>ip then

637

630 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

'this is a lease renewal and the DHCP server has
issues new IP

'it is better to reboot than deal with the
implications of the changed IP

sys.reboot
end if

if wln.ip<>ip then
'no need to close sockets -- this is definitely

NOT a renewal an the DHCP lib
'has already closed all socket connections on

this interface prior to setting
'the IP to 0.0.0.0
wln.ip=ip
wln.gatewayip=gateway_ip
wln.netmask=netmask
wln_dhcp_fail_ctr=0

end if
end if

#endif
end sub

'--
sub callback_dhcp_failure(interface as pl_sock_interfaces,failure_code as
en_dhcp_status_codes)

#if NET_AVAILABLE
if interface=PL_SOCK_INTERFACE_NET then

if net_dhcp_fail_ctr>=DHCP_FAIL_LIMIT then
net.ip=ALT_NET_IP
net.gatewayip=ALT_NET_GATEWAY_IP
net.netmask=ALT_NET_NETMASK
dhcp_stop(PL_SOCK_INTERFACE_NET)

else
net_dhcp_fail_ctr=net_dhcp_fail_ctr+1

end if
end if

#endif

#if WLN_AVAILABLE
if interface=PL_SOCK_INTERFACE_WLN then

if wln_dhcp_fail_ctr>=DHCP_FAIL_LIMIT then
wln.ip=ALT_WLN_IP
wln.gatewayip=ALT_WLN_GATEWAY_IP
wln.netmask=ALT_WLN_NETMASK
dhcp_stop(PL_SOCK_INTERFACE_WLN)

else
wln_dhcp_fail_ctr=wln_dhcp_fail_ctr+1

end if
end if

#endif
end sub
...

What to do when callback_dhcp_pre_clear_ip() is called

This is very application-specific but we'd say, close your existing TCP connections
nicely. Whatever you leave unattended will be brutally squashed by the DHCP
library (using the sock.discard hammer), so you may have to tend to your socket478

631Libraries

©2000-2011 Tibbo Technology Inc.

connections in advance. Here is an example where you wait for the unsent data to
be sent out on a "SOCK_DATA" socket:

...
sock.num=SOCK_DATA
while sock.txlen>0

doevents 'optional, allows other things in your app to execute
wend

...

What to do when callback_dhcp_pre_buffrq() is called

If it is called then you don't have enough buffer pages. OK, don't panic... you can
always take some buffers away from somebody. Supposing you have a lot of buffers
in the "SOCK_DATA" socket of your project. Sockets are useless without properly
configured IP, so you could just temporary use this buffer space:

...
'--
sub callback_dhcp_pre_buffrq(required_buff_pages as byte)

sock_release(SOCK_DATA) 'this deallocates buffers
end sub

'--
sub callback_dhcp_buff_released()

sock.num=SOCK_DATA
sock.rxbuffrq(sys.freebuffpages/2)
sock.txbuffrq(sys.freebuffpages/2)
sys.buffalloc
'proceed with socket setup

end sub
...

Step 4: Adding More Bells and Whistles

This and other projects in the Code Examples section are published on our website
under the name "test_dhcp_lib".

OK, DHCP now works but your device is probably getting a new IP each time it
boots. This is because the device does not "suggest" an IP address when calling
dhcp_start() . It is a good practice to do so -- memorize the previously obtained
IP, then request the same from the DHCP server during the next boot.

Since the IP address must be preserved between boots, your device needs to store
it in the EEPROM. Use the STG (settings) library for the purpose (this is, by the
way, a shining example of STG's immense usefulness). In the code below, two
settings -- "IPN" and "IPW" -- remember the IP addresses for the Ethernet and Wi-
Fi interfaces. Note that the STG library is integrated here in a rather sloppy way.
Everything will work but don't take this as a golden standard for STG library use.

636

668

632 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Suggested IP address is provided in the on_sys_init() handler, when executing
dhcp_start() , first for Ethernet, and then for Wi-Fi. When you run the code for
the first time, settings won't have valid values, so stg_get() will return default
values of the settings, which are "0.0.0.0" (see settings.txt descriptor file). This
means that no specific IP is being requested.

Notice also how device names ("tibbo_net" and "tibbo_wln") are supplied with
dhcp_start().

global.tbh:

'DEFINES---
#define DHCP_DEBUG_PRINT 1 'to see debug output by the DHCP lib

'this is for WLN library
#if PLATFORM_ID=EM500 or PLATFORM_ID=EM500W

#define WLN_RESET_MODE 1 'there will be no dedicated reset, and all
other lines are fixed
#elif PLATFORM_ID=EM1206 or PLATFORM_ID=EM1206W

#define WLN_CLK PL_IO_NUM_14
#define WLN_CS PL_IO_NUM_15
#define WLN_DI PL_IO_NUM_12
#define WLN_DO PL_IO_NUM_13
#define WLN_RST PL_IO_NUM_11

#else
'EM1000, NB1010,...
#define WLN_CLK PL_IO_NUM_53
#define WLN_CS PL_IO_NUM_49
#define WLN_DI PL_IO_NUM_52
#define WLN_DO PL_IO_NUM_50
#define WLN_RST PL_IO_NUM_51

#endif

'INCLUDES--
include "sock\trunk\sock.tbh" 'this lib is necessary for the DHCP lib's
operation
include "settings\trunk\settings.tbh" 'this lib is for saving obtained IPs
includepp "settings.txt" 'for STG library
include "wln\trunk\wln.tbh" 'this lib is necessary for the DHCP on Wi-Fi
interface
include "dhcp\trunk\dhcp.tbh"

main.tbs:

...
sub on_sys_init()

stg_start()

#if NET_AVAILABLE
dhcp_start(PL_SOCK_INTERFACE_NET,stg_get("IPN",0),"tibbo_net")

#endif

#if WLN_AVAILABLE
wln_start("TIBB1",WLN_SECURITY_MODE_WEP64,"1234567890",

PL_WLN_DOMAIN_FCC) '<-- set what you need here, see WLN lib docs
dhcp_start(PL_SOCK_INTERFACE_WLN,stg_get("IPW",0),"tibbo_wln")

#endif

533

636

696

633Libraries

©2000-2011 Tibbo Technology Inc.

end sub
...

When DHCP configuration completes successfully, callback_dhcp_ok() is called and
the obtained IP is saved into the corresponding setting using stg_set() . This also
"repairs" the setting if its previous data was invalid. This way, when the device
boots next time, stg_get() will return the actual saved data.

device.tbs:

...
sub callback_dhcp_ok(renew as no_yes, interface as pl_sock_interfaces, byref
ip as string, byref gateway_ip as string, byref netmask as string,
lease_time as dword)

dim f as byte

#if NET_AVAILABLE
if interface=PL_SOCK_INTERFACE_NET then

if renew=YES and net.ip<>ip then
'this is a lease renewal and the DHCP server has

issues new IP
'it is better to reboot than deal with the

implications of the changed IP
sys.reboot

end if

if net.ip<>ip then
'no need to close sockets -- this is definitely

NOT a renewal an the DHCP lib
'has already closed all socket connections on

this interface prior to setting
'the IP to 0.0.0.0
net.ip=ip
net.gatewayip=gateway_ip
net.netmask=netmask
net_dhcp_fail_ctr=0

'save this IP into the EEPROM for future use
if stg_get("IPN",0)<>ip then

stg_set("IPN",0,ip)
end if

end if
end if

#endif

#if WLN_AVAILABLE
if interface=PL_SOCK_INTERFACE_WLN then

if renew=YES and wln.ip<>ip then
'this is a lease renewal and the DHCP server has

issues new IP
'it is better to reboot than deal with the

implications of the changed IP
sys.reboot

end if

if wln.ip<>ip then
'no need to close sockets -- this is definitely

NOT a renewal an the DHCP lib

697

696

634 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

'has already closed all socket connections on
this interface prior to setting

'the IP to 0.0.0.0
wln.ip=ip
wln.gatewayip=gateway_ip
wln.netmask=netmask
wln_dhcp_fail_ctr=0

'save this IP into the EEPROM for future use
if stg_get("IPW",0)<>ip then

stg_set("IPW",0,ip)
end if

end if
end if

#endif
end sub
...
'--
sub callback_stg_error(byref stg_name_or_num as string,index as byte,status
as en_stg_status_codes)
end sub

'--
sub callback_stg_pre_get(byref stg_name_or_num as string,index as byte,byref
stg_value as string)
end sub

'--
sub callback_stg_post_set(byref stg_name_or_num as string, index as byte,
byref stg_value as string)
end sub
...

settings.txt (the underlying configuration file):

>>IPN E D 1 4 4 A 0.0.0.0 Ethernet IP
>>IPW E D 1 4 4 A 0.0.0.0 Wi-Fi IP

#define STG_DESCRIPTOR_FILE "settings.xtxt"
#define STG_MAX_NUM_SETTINGS 2
#define STG_MAX_SETTING_NAME_LEN 3
#define STG_MAX_SETTING_VALUE_LEN 15

9.2.2.4Library Defines (Options)

Any of the options below look cryptic? Read the Operation Details section.

DHCP_DEBUG_PRINT (default= 0)

0- no debug information.

1- print debug information into the output pane. Debug printing only works when
the project is in the debug mode . However, still set this option to 0 for release,
as this will save memory and code space.

621

27

635Libraries

©2000-2011 Tibbo Technology Inc.

DHCP_MAX_RETRIES (default= 3)

The number of retry attempts in one batch of DHCP configuration attempts.

DHCP_WAIT_TIME (default= 2)

Maximum waiting time, in seconds, for the DHCP server to respond to the device's
request.

DHCP_MAX_RETRY_DELAY (default= 10)

Maximum waiting time, in seconds, between the retry attempts within one batch of
retries. Actual waiting time is randomized between 1 and
DHCP_RANDOM_RETRY_DELAY seconds.

DHCP_POST_FAIL_DELAY (default= 180)

Delay, in seconds, between the batches of retries.

DHCP_MAX_HOST_NAME_LEN (default=0)

Maximum device (host) name length.

9.2.2.5En_dhcp_status_codes

Several procedures in the library utilize the en_dhcp_status_codes enum. This enum
has the following members:

0- DHCP_STATUS_OK: success.

1- DHCP_STATUS_OUT_OF_SOCKETS: no free sockets available for the library to
operate.

2- DHCP_STATUS_INVALID_INTERFACE: unsupported network interface specified
(use PL_SOCK_INTERFACE_NET or PL_SOCK_INTERFACE_WLN only).

3- DHCP_STATUS_INSUFFICIENT_BUFFER_SPACE: insufficient number of buffer
pages available and the call to callback_dhcp_pre_buffrq() failed to cure the
problem.

4- DHCP_STATUS_FAILURE: interaction with the DHCP server failed (because there
was no reply, the reply was unrecognized, invalid, etc.).

9.2.2.6Library Procedures

In this section:

Dhcp_get_info()

Dhcp_start()

Dhcp_stop()

640

636

636

637

636 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Dhcp_proc_timer()

Dhcp_proc_data()

Callback_dhcp_ok()

Callback_dhcp_failure()

Callback_dhcp_pre_clear_ip()

Callback_dhcp_pre_buffrq()

Callback_dhcp_buff_released()

Dhcp_get_info()

Description: API procedure, returns library-specific information
according to the requested information element.

Syntax: function dhcp_get_info(info_element as
dhcp_info_elements, byref extra_data as string) as
string

Returns: Requested data in string form

See Also: About _get_info() API Functions

Part Description

info_element Information element being requested:

0- DHCP_INFO_ELEMENT_REQUIRED_BUFFERS: total number
of buffer pages required for the library to operate.

extra_data Leave this string argument empty.

Details

Dhcp_start()

Description: API procedure, starts DHCP client on the specified network
interface.

Syntax: function dhcp_start(interface as pl_sock_interfaces,
byref requested_ip as string, byref host_name as string)
as en_dhcp_status_codes

Returns: One of these en_dhcp_status_codes :
DHCP_STATUS_OK, DHCP_STATUS_OUT_OF_SOCKETS,
DHCP_STATUS_INVALID_INTERFACE

See Also: Step-by-step Usage Instructions , Operation Details

Part Description

637

638

638

639

639

640

640

577

635

619 621

637Libraries

©2000-2011 Tibbo Technology Inc.

interface Network interface to start the DHCP client on:

0- PL_SOCK_INTERFACE_NULL: do not choose this one, it is
for a "non-existing interface".

1- PL_SOCK_INTERFACE_NET: Ethernet (net.) interface.

2- PL_SOCK_INTERFACE_WLN: Wi-Fi (wln.) interface.

requested_ip Optionally provide an IP address that the device wishes to
use or continue using. This is typically an IP address that
was previously obtained. Leave this argument empty if no IP
is being requested specifically. This argument will be ignored
if the data format is wrong (for example, "192.168.1").

host_name The device name to register with the DHCP server. Add
DHCP_MAX_HOST_NAME_LEN option to global.tbh for this
to work. Leave this argument empty if you don't wish to
send the host name. Name length can't exceed the value
set by DHCP_MAX_HOST_NAME_LEN.

Details

The interface option 0- PL_SOCK_INTERFACE_NULL exists because the interface
argument is of the pl_sock_interfaces type, which defines available network
interfaces for the sock. object (see, for example, sock.targetinterface).
Obviously, there is no point selecting this option for dhcp_start().

Dhcp_stop()

Description: API procedure, stops DHCP client on the specified network
interface.

Syntax: function dhcp_stop(interface as pl_sock_interfaces)
as en_dhcp_status_codes

Returns: ---

See Also: Step-by-step Usage Instructions , Operation Details

Details

Dhcp_proc_timer()

Function: Event procedure, call it from the on_sys_timer() event
handler.

Syntax: sub dhcp_proc_timer()

Returns: ---

See Also: Step-by-step Usage Instructions , Operation Details
(see "Additional Considerations"!)

358

536

634

421 506

619 621

533

619 621

638 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Details

Dhcp_proc_data()

Function: Event procedure, call it from the on_sock_data_arrival()
 event handler.

Syntax: sub dhcp_proc_data()

Returns: ---

See Also: Step-by-step Usage Instructions , Operation Details

Details

Callback_dhcp_ok()

Description: Callback procedure, informs of the successful procurement
of configuration parameters from the DHCP server.
Procedure body has to be created elsewhere in the
project (externally with respect to the library).

Syntax: sub callback_dhcp_ok(renew as no_yes, interface as
pl_sock_interfaces, byref dhcp_obtained_ip as string,
byref dhcp_obtained_gateway as string, byref
dhcp_obtained_netmask as string,
dhcp_obtained_lease_time as dword)

Returns: ---

See Also: Step-by-step Usage Instructions , Operation Details

Part Description

renew 0- NO: this is an initial configuration of the IP, etc.

1- YES: this is a lease renewal (watch out for IP changes!).

interface Network interface on which the DHCP configuration has
completed successfully:

1- PL_SOCK_INTERFACE_NET: Ethernet (net.) interface.

2- PL_SOCK_INTERFACE_WLN: Wi-Fi (wln.) interface.

dhcp_obtained_ip Obtained IP address in the human-readable form, i.e.
"192.168.1.40".

dhcp_obtained_ga
teway

Obtained gateway IP address in the human-readable form,
i.e. "192.168.1.1".

dhcp_obtained_ne Obtained netmask in the human-readable form, i.e.

489

619 621

619 621

358

536

639Libraries

©2000-2011 Tibbo Technology Inc.

tmask "255.255.255.0".

dhcp_obtained_le
ase_time

Obtained lease time expressed as the number of seconds.

Details

Callback_dhcp_failure()

Description: Callback procedure, informs of the failure to procure
configuration parameters from the DHCP server after
DHCP_MAX_RETRIES . Procedure body has to be created
elsewhere in the project (externally with respect to the
library).

Syntax: sub callback_dhcp_failure(interface as
pl_sock_interfaces, failure_code as
en_dhcp_status_codes)

Returns: ---

See Also: Step-by-step Usage Instructions , Operation Details

Part Description

interface Network interface on which the DHCP client has failed:

1- PL_SOCK_INTERFACE_NET: Ethernet (net.) interface.

2- PL_SOCK_INTERFACE_WLN: Wi-Fi (wln.) interface.

failure_code One of the en_dhcp_status_codes

Details

Callback_dhcp_pre_clear_ip()

Description: Callback procedure, informs that the DHCP library will set
the specified interface's IP address to 0.0.0.0. Procedure
body has to be created elsewhere in the project
(externally with respect to the library).

Syntax: sub callback_dhcp_pre_clear_ip(interface as
pl_sock_interfaces)

Returns: ---

See Also: Step-by-step Usage Instructions , Operation Details

634

619 621

358

536

635

619 621

640 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Part Description

interface Network interface on which the library will set the IP to
0.0.0.0:

1- PL_SOCK_INTERFACE_NET: Ethernet (net.) interface.

2- PL_SOCK_INTERFACE_WLN: Wi-Fi (wln.) interface.

Details

This procedure will only be called if the IP address is not already set to 0.0.0.0.

Callback_dhcp_pre_buffrq()

Description: Callback procedure, informs of the insufficient number of
free buffer pages available for use by the library.
Procedure body has to be created elsewhere in the
project (externally with respect to the library).

Syntax: sub callback_dhcp_pre_buffrq(required_buff_pages as
byte)

Returns: ---

See Also: Step-by-step Usage Instructions , Operation Details

Part Description

required_buffer_p
ages

The number of additional buffer pages that the DHCP library
needs to operate. Your application must free up at least this
number of buffer pages within the callback_dhcp_pre_buffrq
() or DHCP configuration will fail with the
DHCP_STATUS_INSUFFICIENT_BUFFER_SPACE code .

Details

This procedure will be called only if there are not enough buffer pages available.

Callback_dhcp_buff_released()

Description: Callback procedure, informs of the release of buffer pages
by the library. Procedure body has to be created
elsewhere in the project (externally with respect to the
library).

Syntax: sub callback_dhcp_buff_released()

Returns: ---

See Also: Step-by-step Usage Instructions , Operation Details

Details

358

536

619 621

635

619 621

641Libraries

©2000-2011 Tibbo Technology Inc.

The number of free buffer pages can be checked through the sys.freebuffpages
R/O property.

FILENUM (File Numbers) Library

The FILENUM library automates file number assignment. The fd. object supports
up to fd.maxopenedfiles opened files. Using the FILENUM library, your code can
get an unused file number, work with the file "on" this number, then release the file
number into a pool of free file numbers.

Library Info

Supported
platforms:

Any platform with the fd. object.

Files to include: Filenum.tbs, filenum.tbh (from
current_library_set\filenum\trunk\).

Dependencies: ---

API procedures:

Use API procedures
 to interact with

the library.

filenum_get() -- returns a free file number or 255 if no
free file numbers left.

filenum_who_uses() -- returns the signature of the
specified file number's user.

filenum_release() -- releases the file number.

Event
procedures:

Callback
procedures:

Required buffer
space:

9.2.3.1Step-by-step Usage Instructions

Minimal steps

1. Add filenum.tbs and filenum.tbh files to your project (they are in
current_library_set\filenum\trunk).

2. Add include "filenum\trunk\filenum.tbh" to the includes section of the
global.tbh file.

3. Add #define FILENUM_MAX_FILENAME_LEN to the defines section of the
global.tbh file; set it to the value that reflects the longest filename you are
going to use.

4. Call filenum_get() whenever you need a free file number. Observe the result
-- if it is 255 then there are no free file numbers available!

5. Call filenum_release() when you no longer need a particular file number. This
way, the file number can be reused by something else in your code.

531

236

282

236

576

644

644

645

577

643

644

645

642 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Additional recommended steps

1.The use of filenum_who_uses() is optional. This call will return a string
signature left by the caller when obtaining the file number.
FILENUM_MAX_SIGNATURE_LEN must be >0 for signatures to be saved.

We have provided a code snippet illustrating the use of the FILENUM library.

Using the FILENUM library? Then, use it everywhere in your code! Do not
"appropriate" file numbers without going through this library.

9.2.3.2Operation Details

The FILENUM library maintains a list of free and occupied file numbers. This is kept
in the filenum_in_use array. You can see this array's contents under the debugger.
To get a free file number, call filenum_get() and it will return a file number, which
will now be marked as used. The function will return 255 if there are no free file
numbers left, so watch out for this number!

When calling filenum_get(), you can supply a meaningful short name of the caller.
For example, if the file number is to be used for accessing the log file, set the
signature to "LOG". The filenum_user_signature array keeps the signatures left by
filenum_get() callers. Observing this array's contents under the debugger will
provide a clear picture of who is using which file number. The signature of free file
numbers is "-". Note that FILENUM_MAX_SIGNATURE_LEN defines maximum
signature length and the default value is 0. Set this to anything above 0 to be able
to observe the signatures. You can set it back to 0 when the debugging process is
over.

Another way to observe the operation of the library in the debug mode is by
adding #define FILENUM_DEBUG_PRINT 1 to the defines section of the global.tbh
file of your project. A wealth of status information will be printed in the console
pane as the FILENUM library operates.

To release the file niumber, call filenum_release() . This will mark the file number
as free and the next caller of the filenum_get() will have a chance to reuse this file
number.

Filenum_who_uses() returns a signature left by the specified file number's user.
This function doesn't have to be used and exists only for convenience.

9.2.3.3A Code Snippet

Here is a small code snippet illustrating the process of getting and releasing file
numbers. We sacrificed robustness for simplicity, so don't take the code below for a
shining example of fd. object's usage. Just see the parts related to the FILENUM
library -- that's the point right now.

...
'set "#define FILENUM_MAX_SIGNATURE_LEN 3" and "#define FILENUM_DEBUG_PRINT
1" before running this test

'prepare the disk and create a file
fd.format(fd.availableflashspace,16)
fd.mount()
fd.create("log.txt")

644

643

642

644

27

643

645

644

236

643Libraries

©2000-2011 Tibbo Technology Inc.

'get a file number...
log_filenum=filenum_get("LOG")
if log_filenum=255 then

sys.halt '...uh-uh, out of sockets!
end if

'add data to the file, then close
fd.filenum=log_filenum
fd.open("LOG")
fd.setdata(filenum_who_uses(log_filenum))
fd.close

'release the file number
filenum_release(log_filenum)
...

And here is what appeared in the output pane of TIDE as the code executed:

FILENUM> 'LOG' got file #0
FILENUM> 'LOG' released file #0

The first message corresponds to filenum_get() , the second one -- to
filenum_release() . "LOG" is the signature left by us, because this code deals with
a log file.

Notice that the data saved into the log file consists of the file number's signature.
As a result, the file will contain the string "LOG".

9.2.3.4Library Defines (Options)

Any of the options below look cryptic? Read the Operation Details section.

FILENUM_DEBUG_PRINT (default= 0)

0- no debug information.

1- print debug information into the output pane. Debug printing only works when
the project is in the debug mode . However, still set this option to 0 for release,
as this will save memory and code space.

FILENUM_MAX_SIGNATURE_LEN (default= 0)

Size of members of the filenum_user_signature array. Set to >0 to be able to
observe the signatures left by the callers of the filenum_get() .

FILENUM_MAX_FILENAME_LEN (default= 0)

Maximum filename length. This must be set to at least the length of the longest
filename you are planning to use in your project.

644

645

642

27

644

644 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

9.2.3.5Library Procedures

In this section:

Filenum_get()

Filenum_who_uses()

Filenum_release()

Filenum_get()

Description: API procedure, returns a free file number or 255 if no free
file numbers left.

Syntax: function filenum_get(byref signature as string) as byte

Returns: The number of the unused file number or 255 if all file
numbers are in use.

See Also: Step-by-step Usage Instructions , Operation Details

Part Description

signature A string with a short description of the file number's
purpose. You may leave the signature empty, too.

Details

Set FILENUM_MAX_SIGNATURE_LEN to anything above 0 in order to be able to
use signatures.

Filenum_who_uses()

Description: API procedure, returns the signature of the specified file
number's user.

Syntax: function filenum_who_uses(file_num as byte) as string

Returns: The signature left by the file number's user on filenum_get
() invocation.

See Also: Step-by-step Usage Instructions , Operation Details

Part Description

file_num File number.

Details

Set FILENUM_MAX_SIGNATURE_LEN to anything above 0 in order to be able to
use signatures.

644

644

645

641 642

643

644

641 642

643

645Libraries

©2000-2011 Tibbo Technology Inc.

Filenum_release()

Description: API procedure, releases the file number.

Syntax: sub filenum_release(file_num as byte)

Returns: ---

See Also: Step-by-step Usage Instructions , Operation Details

Part Description

file_num The file number to be released.

Details

GPRS (PPP) Library

The GPRS library handles PPP link establishment and is primarily targeted for GPRS
modems. Together with the ppp. object, it forms a complete GPRS/PPP solution
for your device.

Although the library can theoretically work with any GPRS modem, it has been
specifically tested with GC864 GPRS module manufactured by TELIT
(www.telit.com). This module can be installed on the NB1010 board offered by
Tibbo.

The library is event-based and non-blocking -- it quietly runs in the background and
takes a minimal amount of CPU time.

Library Info

Supported
platforms:

Any platform with a serial port.

Files to include: Gprs.tbs, gprs.tbh (from current_library_set\gprs\trunk\).

Dependencies: SOCK library.

API procedures:

Use API procedures
 to interact with

the library.

gprs_start() -- starts the PPP login/configuration
process.

gprs_stop() -- stops (aborts) PPP link establishment or
session.

Event
procedures:

Call event
procedures from
corresponding
event handlers, as
described here .

gprs_proc_timer() -- call this from the on_sys_timer()
 event handler.

gprs_proc_sock_data() -- call this from the
on_sock_data_arrival() event handler.

gprs_proc_ser_data() -- call this from the
on_ser_data_arrival() event handler.

Callback
procedures:

callback_gprs_ok() -- called when the library completes
PPP login/configuration.

641 642

366

664

576

652

653

576

619

653

533

653

489

654

412

654

http://www.telit.com

646 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Implement the
bodies of callback
procedures
elsewhere in your
project.

callback_gprs_failure() -- called when PPP login/
configuration or established link fails.

callback_gprs_pre_buffrq() -- called when the library
needs to allocate buffer space and the required space is
not available.

Required buffer
space:

10 buffer pages minimum with GPRS_PAYLOAD_SIZE of
1. Released when gprs_stop() is called.

9.2.4.1Step-by-step Usage Instructions

Steps below assume that you are using the NB1010 board (DS101x device) for
testing.

1.Make sure you have the SOCK library in your project.

2. Add gprs.tbs and gprs.tbh files to your project (they are in
current_library_set\gprs\trunk).

3. Add #define GPRS_DEBUG_PRINT 1 to the defines section of the global.tbh file
of your project. This way you will "see what's going on". Don't forget to remove
this later, after you've made sure that the library operates as expected.

4. Add include "gprs\trunk\gprs.tbh" to the includes section of the global.tbh
file.

5. Add gprs_proc_timer() to the on_sys_timer() event handler code (see
"further considerations" below).

6. Add pppoe_proc_sock_data() to the on_sock_data_arrival() event handler
code.

7. Add pppoe_proc_ser_data() to the on_ser_data_arrival() event handler
code.

8. Create empty callback function bodies (presumably in the device.tbs):
callback_gprs_ok() , callback_gprs_failure() , callback_gprs_pre_buffrq() .
Hint: copy from declarations in the pppoe.tbh or from our code example .

9. Call gprs_start() from somewhere. The no-brainer decision is to call from the
on_sys_init() event handler. Supply correct ATDT line and APN. In our tests
on Taiwan Cellular network, we have to use *99# and INTERNET. Your network
may require a different string. Note that pppoe_start() may fail, so it is wise to
check the returned status code.

10. Implement meaningful code for the callback_gprs_ok() . Once it is called, you
know that your PPP link is up.

All of the above is illustrated in the code example .

Further considerations

The GPRS library expects the gprs_proc_timer() to be called at 0.5 sec intervals.
This is the default value which can be changed through the sys.onsystimerperiod
property. If your project needs to have the on_sys_timer() event at a different
rate, please make sure that gprs_proc_timer() is still called 2 times/second. For
example, if the on_sys_timer() is set to trigger 4 times/second, you need to add
"divider" code that only calls gprs_proc_timer() on every second invocation of the
on_sys_timer().

If you are using an external GPRS modem, you need to add #define

576

654

655

650

653

664

577

651

653 533

653 489

654 412

576

654 654 655

647

652

533

654

647

653

533

533

647Libraries

©2000-2011 Tibbo Technology Inc.

GPRS_MODULE_EXTERNAL 1 to global.tbh.

Depending on how you connect the GPRS modem, you may also need to add the
following custom defines:

GPRS_SER_PORT

GPRS_SER_PORT_RTSMAP

GPRS_SER_PORT_CTSMAP

GPRS_SWITCH

GPRS_RESET

9.2.4.2Operation Details

Enter topic text here.

9.2.4.3Operation Details

GPRS library's operation is persistent: once you start it by calling gprs_start() , it
will "persist" to keep PPP link established. No matter how many times the link fails,
the library will keep trying. If the successfully established PPP link fails, the library
will attempt to reestablish the link. This can only be halted by calling gprs_stop()
.

GPRS library is buffer-hungry. Even if you set GPRS_PAYLOAD_SIZE to 1, you will
need 10 buffer pages for the GPRS library to operate. With default payload size of
4, this increases to 25 buffer pages. GPRS_PAYLOAD_SIZE defines the maximum
size of TCP and UDP packets that the PPP interface will be able to handle. Unless
you specifically want to send out large UDP packets, it is actually OK to set the
payload size to the minimum -- GPRS links are slow and you won't feel any
performance decrease just because you limit the size of packets.

Buffer space is allocated when gprs_start() is called. The library will check if the
required buffer space is available and call callback_ppp_pre_buffrq() if more
space is needed. Buffer pages allocated to the PPP library will only be released if
gprs_stop() is called.

Successul PPP link establishment is a multi-step process and involves link
configuration using LCP protocol, followed by the login and the configuration of
device's IP address. To observe the process, add #define GPRS_DEBUG_PRINT 1
to the defines section of the global.tbh file of your project (and don't forget to
remove this later).

Once the PPP link is successfully established, the library will set ppp.ip and call
callback_gprs_ok() . The library will then start monitoring PPP link's "health". The
library will periodically send echo request packets and expect echo replies from the
other end. If this times out, the library will assume that the PPP link has failed, call
gprs_failure() , and attempt to reestablish the link.

If your application calls pppoe_stop() , the library will apply the hardware reset to
the GPRS module (provided that GPRS_MODULE_EXTERNAL is 0), release all
buffers, and go into the idle state until gprs_start() is called again.

9.2.4.4Code Example
global.tbh:

'DEFINES---
#define SUPPORTS_GPRS 1
#define GPRS_DEBUG_PRINT 1
#define GPRS_PAYLOAD_SIZE 1

650

650

650

650

650

650

652

653

650

652

663

661

650

368

654

654

661

650

652

648 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

'INCLUDES--
include "sock\trunk\sock.tbh"
include "gprs\trunk\gprs.tbh"

'DECLARATIONS--
declare tcp_sock_o as byte

main.tbs:

include "global.tbh"
'--

const AT_DT_COMMAND="*99#"
const REMOTE_IP="124.155.161.141" '<----- CHANGE THIS AS
NEEDED
const REMOTE_PORT=1001 '<----- CHANGE THIS AS
NEEDED
'--
dim tcp_sock_o as byte

'==
sub on_sys_init()

dim res as en_gprs_status_codes

'----- this is for the outgoing test connection
tcp_sock_o=sock_get("TCPA")
sock.num=tcp_sock_o
sock.txbuffrq(1)
sock.rxbuffrq(1)
sys.buffalloc
sock.protocol=PL_SOCK_PROTOCOL_TCP
sock.targetip=REMOTE_IP
sock.targetport=REMOTE_PORT
sock.targetinterface=PL_SOCK_INTERFACE_PPP
'----- end

res=gprs_start(AT_DT_COMMAND)
end sub

'--
sub on_ser_data_arrival()

gprs_proc_ser_data()
end sub

'--
sub on_sock_data_arrival()

dim s as string(32)

gprs_proc_sock_data()

'----- this is for the outgoing test connection
if sock.num=tcp_sock_o then

s=sock.getdata(255)
pat.play("-***",PL_PAT_CANINT)

end if
'----- end

end sub

649Libraries

©2000-2011 Tibbo Technology Inc.

'--
sub on_sys_timer()

gprs_proc_timer()

'----- this is for the outgoing test connection
sock.num=tcp_sock_o
if sock.statesimple=PL_SSTS_EST then

sock.setdata("ABC")
sock.send

end if
'----- end

end sub

'--
sub on_sock_event(newstate as pl_sock_state, newstatesimple as
pl_sock_state_simple)

'----- this is for the outgoing test connection
if sock.num=tcp_sock_o then

pat.play("-***",PL_PAT_CANINT)
end if
'----- end

end sub

'--
sub on_pat()

'----- this is for the outgoing test connection
sock.num=tcp_sock_o
if sock.statesimple=PL_SSTS_EST then

pat.play("G~",PL_PAT_CANINT)
end if
'----- end

end sub

device.tbs:

include "global.tbh"

'==
sub callback_gprs_ok()

sock.num=tcp_sock_o
sock.connect

end sub

'--
sub callback_gprs_failure()

sock.num=tcp_sock_o
sock.discard

end sub

'--
sub callback_gprs_pre_buffrq(required_buff_pages as byte)
end sub

650 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

9.2.4.5Library Defines (Options)

Any of the options below look cryptic? Read Operation Details section.

SUPPORTS_GPRS (default= 0)

0- GPRS disabled (library code won't be compiled into the project).

1- GPRS enabled.

GPRS_DEBUG_PRINT (default= 0)

0- no debug information.

1- print debug information into the output pane. Debug printing only works when
the project is in the debug mode . However, still set this option to 0 for release,
as this will save memory and code space.

GPRS_SEND_PING (default= 0)

0- suppress pinging.

1- ping GPRS_PING_IP in the end of PPP link establishment (as a proof of success).

GPRS_PING_IP (default= 0.0.0.0)

This is the IP address that will be pinged when GPRS_SEND_PING is set.

Only relevant when GPRS_SEND_PING is 1.

GPRS_SER_PORT (default= 3)

The serial port to which the GPRS modem is connected.

Like with ser.num , serial ports are numbered from 0. Keep at default value for
NB1010 and DS101x devices.

GPRS_SER_PORT_RTSMAP (default depends on GPRS_SER_PORT)

The mapping of the RTS line connected to the GPRS modem.

If GPRS_SER_PORT is 0, the default value of GPRS_SER_PORT_RTSMAP is 0.

If GPRS_SER_PORT is 1, the default value of GPRS_SER_PORT_RTSMAP is 1.

If GPRS_SER_PORT is 2, the default value of GPRS_SER_PORT_RTSMAP is 2.

If GPRS_SER_PORT is 3, the default value of GPRS_SER_PORT_RTSMAP is 3.

Keep at default value for NB1010 and DS101x devices.

GPRS_SER_PORT_CTSMAP (default depends on GPRS_SER_PORT)

The mapping of the CTS interrupt line connected to the GPRS modem.

647

27

411

651Libraries

©2000-2011 Tibbo Technology Inc.

If GPRS_SER_PORT is 0, the default value of GPRS_SER_PORT_CTSMAP is 0.

If GPRS_SER_PORT is 1, the default value of GPRS_SER_PORT_CTSMAP is 1.

If GPRS_SER_PORT is 2, the default value of GPRS_SER_PORT_CTSMAP is 2.

If GPRS_SER_PORT is 3, the default value of GPRS_SER_PORT_CTSMAP is 3.

Keep at default value for NB1010 and DS101x devices.

GPRS_MODULE_EXTERNAL (default= 0)

0- the GPRS module is internal (like on the NB1010 and DS101x), GPRS_SWITCH and
GPRS_RESET lines are used to control the module; there is a proper reset and
startup delay when gprs_start() is called.

1- the GPRS module is external, GPRS_SWITCH and GPRS_RESET GPIO lines are not
in use, there is no startup delay- the GPRS module is supposed to be up and
running by the time gprs_start() is called.

Keep at default value for NB1010 and DS101x devices.

GPRS_SWITCH (default= 54)

GPIO line that, when set LOW, diverts traffic on GPRS_SER_PORT to the GPRS
module. When the line is HIGH or disabled, serial port traffic goes elsewhere in the
device.

Only relevant when GPRS_MODULE_EXTERNAL is 0.

Keep at default value for NB1010 and DS101x devices.

GPRS_RESET (default= 55)

GPIO line that, when set HIGH, applies hardware reset to the GPRS module. The line
is set to LOW to release the GPRS module from reset.

'Only relevant when GPRS_MODULE_EXTERNAL is 0.

Keep at default value for NB1010 and DS101x devices.

GPRS_PAYLOAD_SIZE (default= 4)

Size of TCP and UDP packets that the GPRS interface will be able to carry,
expressed in 256-byte units.

'Do not set >4 or <1. Smaller value reduces the total number of buffer pages
required by the library (see gprs_get_info()).

9.2.4.6En_gprs_status_codes

Several procedures in the library utilize the en_gprs_status_codes enum. This enum
has the following members:

0- GPRS_STATUS_OK: success.

1- GPRS_STATUS_INSUFFICIENT_BUFFER_SPACE: insufficient number of buffer
pages available and the call to callback_gprs_pre_buffrq() failed to cure the
problem.

652

652

652

655

652 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

9.2.4.7Library Procedures

In this section:

Gprs_get_info()

Gprs_start()

Gprs_stop()

Gprs_proc_timer()

Gprs_proc_sock_data()

Gprs_proc_ser_data()

Callback_gprs_ok()

Callback_gprs_failure()

Callback_gprs_pre_buffrq()

Gprs_get_info()

Description: API procedure, returns library-specific information
according to the requested information element.

Syntax: function gprs_get_info(info_element as
gprs_info_elements, byref extra_data as string) as
string

Returns: Requested data in string form

See Also: About _get_info() API Functions

Part Description

info_element Information element being requested:

0- GPRS_INFO_ELEMENT_REQUIRED_BUFFERS: total number
of buffer pages required for the library to operate.

extra_data Leave this string argument empty.

Details

Gprs_start()

Description: API procedure, starts the PPP login/configuration process.

Syntax: function gprs_start(byref at_dt_command_param as
string, byref apn as string) as en_gprs_status_codes

Returns: One of these en_pppoe_status_codes :
PPP_STATUS_OK,
PPP_STATUS_INSUFFICIENT_BUFFER_SPACE

See Also: Step-by-step Usage Instructions , Operation Details

652

652

653

653

653

654

654

654

655

577

660

646 647

653Libraries

©2000-2011 Tibbo Technology Inc.

Part Description

at_dt_command_
param

This depends on the mobile network. Here is an actual line
to be used with Taiwan Cellular: *99#.

apn Again, the APN depends on the network. In here we have to
use INTERNET.

Details

GPRS library operation is persistent -- once you start it with this call, the library will
"persist" to keep the PPP link established. No matter how many times this fails, the
library will keep trying. If the successfully established PPP link fails, the library will
attempt to reestablish the link.

Gprs_stop()

Description: API procedure, stops (aborts) PPP link establishment or
session.

Syntax: sub gprs_stop()

Returns: ---

See Also: Step-by-step Usage Instructions , Operation Details

Details

Gprs_proc_timer()

Function: Event procedure, call it from the on_sys_timer() event
handler.

Syntax: sub gprs_proc_timer()

Returns: ---

See Also: Step-by-step Usage Instructions , Operation Details

Details

Gprs_proc_sock_data()

Function: Event procedure, call it from the on_sock_data_arrival()
 event handler.

Syntax: sub gprs_proc_sock_data()

Returns: ---

See Also: Step-by-step Usage Instructions , Operation Details

646 647

533

646 647

489

646 647

654 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Details

Gprs_proc_ser_data()

Function: Event procedure, call it from the on_ser_data_arrival()
event handler.

Syntax: sub gprs_proc_ser_data()

Returns: ---

See Also: Step-by-step Usage Instructions , Operation Details

Details

Callback_gprs_ok()

Description: Callback procedure, informs of the successful
establishment of the PPP link. Procedure body has to be
created elsewhere in the project (externally with respect
to the library).

Syntax: sub callback_gprs_ok()

Returns: ---

See Also: Step-by-step Usage Instructions , Operation Details

Details

By the time this procedure is called, the GPRS library will have already set ppp.ip .

Callback_gprs_failure()

Description: Callback procedure, informs that PPP login/configuration or
established link failed. Procedure body has to be created
elsewhere in the project (externally with respect to the
library).

Syntax: sub callback_gprs_failure()

Returns: ---

See Also: Step-by-step Usage Instructions , Operation Details

Details

412

646 647

646 647

368

646 647

655Libraries

©2000-2011 Tibbo Technology Inc.

Callback_gprs_pre_buffrq()

Description: Callback procedure, informs of the insufficient number of
free buffer pages available for use by the library.
Procedure body has to be created elsewhere in the
project (externally with respect to the library).

Syntax: sub callback_gprs_pre_buffrq(required_buff_pages as
byte)

Returns: ---

See Also: Step-by-step Usage Instructions , Operation Details

Part Description

required_buffer_p
ages

The number of additional buffer pages that the GPRS library
needs to operate. Your application must free up at least this
number of buffer pages within callback_gprs_pre_buffrq() or
PPP login/configuration will fail with the
GPRS_STATUS_INSUFFICIENT_BUFFER_SPACE code .

Details

This procedure will be called only if there are not enough buffer pages available.

PPPOE Library

The PPPOE library handles PPPoE login and configuration. Together with the pppoe.
 object, it forms a complete PPPoE solution for your device.

The library is event-based and non-blocking -- it quietly runs in the background and
takes a minimal amount of CPU time.

Library Info

Supported
platforms:

Any platform with the Ethernet (net.) interface.

Files to include: Pppoe.tbs, pppoe.tbh (from
current_library_set\pppoe\trunk\).

Dependencies: SOCK library.

API procedures:

Use API procedures
 to interact with

the library.

pppoe_start() -- starts the PPPoE login/configuration
process.

pppoe_stop() -- stops (aborts) PPPOE login/
configuration or session.

Event
procedures:

Call event
procedures from
corresponding
event handlers, as

pppoe_proc_timer() -- call this from the on_sys_timer()
 event handler.

pppoe_proc_data() -- call this from the
on_sock_data_arrival() event handler.

646 647

651

369

358

664

576

661

661

576

662

533

662

489

656 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

described here .

Callback
procedures:

Implement the
bodies of callback
procedures
elsewhere in your
project.

callback_pppoe_ok() -- called when the library
completes PPPoE login/configuration.

callback_pppoe_failure() -- called when PPPoE login/
configuration or established link fails.

callback_pppoe_pre_buffrq() -- called when the library
needs to allocate buffer space and the required space is
not available.

Required buffer
space:

2 buffer pages. These are never released, even when you
do pppoe_stop() .

9.2.5.1Step-by-step Usage Instructions

1. Make sure you have the SOCK library in your project.

2. Add pppoe.tbs and pppoe.tbh files to your project (they are in
current_library_set\pppoe\trunk).

3. Add #define PPPOE_DEBUG_PRINT 1 to the defines section of the global.tbh
file of your project. This way you will "see what's going on". Don't forget to
remove this later, after you've made sure that the library operates as expected.

4. Add include "pppoe\trunk\pppoe.tbh" to the includes section of the
global.tbh file.

5. Add pppoe_proc_timer() to the on_sys_timer() event handler code (see
"further considerations" below).

6. Add pppoe_proc_data() to the on_sock_data_arrival() event handler code.

7. Create empty callback function bodies (presumably in the device.tbs):
callback_pppoe_ok() , callback_pppoe_failure() , callback_pppoe_pre_buffrq()

. Hint: copy from declarations in the pppoe.tbh or from our code example .

8. Call pppoe_start() from somewhere. The no-brainer decision is to call from
the on_sys_init() event handler. Supply correct ADSL login and password
(suggestion: use STG library to keep them). Note that pppoe_start() may fail,
so it is wise to check the returned status code.

9. Implement meaningful code for the callback_pppoe_ok() . Once it is called, you
know that your PPPoE interface is up.

All of the above is illustrated in the code example .

Further considerations

The PPPOE library expects the pppoe_proc_timer() to be called at 0.5 sec
intervals. This is the default value which can be changed through the
sys.onsystimerperiod property. If your project needs to have the on_sys_timer()

 event at a different rate, please make sure that pppoe_proc_timer() is still
called 2 times/second. For example, if the on_sys_timer() is set to trigger 4 times/
second, you need to add "divider" code that only calls pppoe_proc_timer() on every
second invocation of the on_sys_timer().

619

576

662

662

663

661

664

577

659

662 533

662 489

576

662 662

663 657

661

533

668

662

657

662

533

533

657Libraries

©2000-2011 Tibbo Technology Inc.

9.2.5.2Operation Details

PPPoE library's operation is persistent: once you start it by calling pppoe_start() ,
it will "persist" to connect to the ADSL modem. No matter how many times the
connection fails, the library will keep trying. If the successfully established PPPOE
link fails, the library will attempt to reestablish the link. This can only be halted by
calling pppoe_stop() .

The PPPoE specification envisions the use of more than one ADSL modem (a.k.a.
"access concentrator") on the network. The protocol provides the means for the
device to choose which access concentrator it wants to communicate through. In
reality, most networks only have a single ADSL modem. Since this is a norm, the
PPPOE library is designed to attempt to use whatever access concentrator
responds to the device's "discovery" packets first.

A buffer space of 2 pages is required for the library operation. These are allocated
when pppoe_start() is called. The library will check if the required buffer space is
available and call callback_pppoe_pre_buffrq() if more space is needed. Buffer
pages allocated to the PPPOE library are never released, even when successful
PPPoE link is established or pppoe_stop() is called.

Successul PPPoE link establishment is a multi-step process and involves link
configuration using LCP protocol, followed by the login and the configuration of
device's IP address. To observe the process, add #define PPPOE_DEBUG_PRINT 1
to the defines section of the global.tbh file of your project (and don't forget to
remove this later).

Once the PPPoE link is successfully established, the library will set the properties of
the pppoe. object and call callback_pppoe_ok() . The library will then start
monitoring PPPoE link's "health". The library will periodically send echo request
packets and expect echo replies from the ADSL modem. If this times out, the library
will assume that the PPPoE link has failed, call pppoe_failure() , and attempt to
reestablish the link.

If your application calls pppoe_stop() , the library will property terminate the
PPPoE link (if it was established) and go into the idle state until pppoe_start() is
called again.

You can learn more about PPPoE here: http://en.wikipedia.org/wiki/Pppoe.

9.2.5.3Code Example

Here is a simple example of using the PPPOE library. Pppoe_start() is called on boot
(). Once the PPPoE link is established, the device will open an outgoing TCP
connection to a certain remote IP and port.

Green status LED is used to indicate the TCP connection status: it will be on when
the TCP connection is established.

To test the TCP connection, the code will periodically send a small string of data to
the remote end of the connection. If any reply is received, the green status LED
will momentarily turn off.

Before running the code, do not forget to change ADSL_NAME, ADSL_LOGIN,
REMOTE_IP, and REMOTE_PORT constants.

global.tbh:

'DEFINES---
#define PPPOE_DEBUG_PRINT 1

'INCLUDES--
include "sock\trunk\sock.tbh"

661

661

661

663

661

659

369 662

662

661

661

http://en.wikipedia.org/wiki/Pppoe

658 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

include "pppoe\trunk\pppoe.tbh"

'DECLARATIONS--
declare tcp_sock_o as byte

main.tbs:

include "global.tbh"

'--
const ADSL_NAME="correct_name" '<----- CHANGE THIS AS NEEDED
const ADSL_PASSWORD="correct_password" '<----- CHANGE THIS AS NEEDED
const REMOTE_IP="59.120.32.27" '<----- CHANGE THIS AS NEEDED
const REMOTE_PORT=40000 '<----- CHANGE THIS AS
NEEDED

'--
dim tcp_sock_o as byte

'==
sub on_sys_init()

dim res as en_pppoe_status_codes

'----- this is for the outgoing test connection
tcp_sock_o=sock_get("TCPA")
sock.num=tcp_sock_o
sock.txbuffrq(1)
sock.rxbuffrq(1)
sys.buffalloc
sock.protocol=PL_SOCK_PROTOCOL_TCP
sock.targetip=REMOTE_IP
sock.targetport=REMOTE_PORT
sock.targetinterface=PL_SOCK_INTERFACE_PPPOE
'----- end

res=pppoe_start(ADSL_NAME,ADSL_PASSWORD)
end sub

'--
sub on_sock_data_arrival()

dim s as string(32)

pppoe_proc_data()

'----- this is for the outgoing test connection
if sock.num=tcp_sock_o then

s=sock.getdata(255)
pat.play("-***",PL_PAT_CANINT)

end if
'----- end

end sub

'--
sub on_sys_timer()

pppoe_proc_timer()

'----- this is for the outgoing test connection
sock.num=tcp_sock_o
if sock.statesimple=PL_SSTS_EST then

659Libraries

©2000-2011 Tibbo Technology Inc.

sock.setdata("ABC")
sock.send

end if
'----- end

end sub

'--
sub on_sock_event(newstate as pl_sock_state, newstatesimple as
pl_sock_state_simple)

'----- this is for the outgoing test connection
if sock.num=tcp_sock_o then

pat.play("-***",PL_PAT_CANINT)
end if
'----- end

end sub

'--
sub on_pat()

'----- this is for the outgoing test connection
sock.num=tcp_sock_o
if sock.statesimple=PL_SSTS_EST then

pat.play("G~",PL_PAT_CANINT)
end if
'----- end

end sub

device.tbs:

include "global.tbh"

'==
sub callback_pppoe_ok()

sock.num=tcp_sock_o
sock.connect

end sub

'--
sub callback_pppoe_failure(pppoe_code as en_pppoe_status_codes)

sock.num=tcp_sock_o
sock.discard

end sub

'--
sub callback_pppoe_pre_buffrq(required_buff_pages as byte)
end sub

9.2.5.4Library Defines (Options)

There is only one define for this library:

PPPOE_DEBUG_PRINT (default= 0)

0- no debug information.

1- print debug information into the output pane. Debug printing only works when
the project is in the debug mode . However, still set this option to 0 for release,27

660 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

as this will save memory and code space.

9.2.5.5En_pppoe_status_codes

Several procedures in the library utilize the en_pppoe_status_codes enum. This
enum has the following members:

0- PPPOE_STATUS_OK: success.

1- PPPOE_STATUS_OUT_OF_SOCKETS: no free sockets available for the library to
operate.

2- PPPOE_STATUS_INSUFFICIENT_BUFFER_SPACE: insufficient number of buffer
pages available and the call to callback_pppoe_pre_buffrq() failed to cure the
problem.

3- PPPOE_TIMEOUT: PPPoE login/configuration or established link failed -- timeout
while waiting for the reply from the ADSL modem (access concentrator).

4- PPPOE_CONFIGURATION_ERROR: PPPoE login/configuration failed -- something
went wrong... and on the PPPoE many things can go wrong. Perhaps, login name or
password should be re-checked?

5- PPPOE_STOPPED: pppoe_stop() was called.

9.2.5.6Library Procedures

In this section:

Pppoe_get_info()

Pppoe_start()

Pppoe_stop()

Pppoe_proc_timer()

Pppoe_proc_data()

Callback_pppoe_ok()

Callback_pppoe_failure()

Callback_pppoe_pre_buffrq()

Pppoe_get_info()

Description: API procedure, returns library-specific information
according to the requested information element.

Syntax: function pppoe_get_info(info_element as
pppoe_info_elements, byref extra_data as string) as
string

Returns: Requested data in string form

See Also: About _get_info() API Functions

Part Description

info_element Information element being requested:

0- PPPOE_INFO_ELEMENT_REQUIRED_BUFFERS: total number

663

661

660

661

661

662

662

662

662

663

577

661Libraries

©2000-2011 Tibbo Technology Inc.

of buffer pages required for the library to operate.

extra_data Leave this string argument empty.

Details

Pppoe_start()

Description: API procedure, starts the PPPoE login/configuration
process.

Syntax: function pppoe_start(byref login as string, byref
password as string) as en_pppoe_status_codes

Returns: One of these en_pppoe_status_codes :
PPPOE_STATUS_OK, PPPOE_STATUS_OUT_OF_SOCKETS,
PPPOE_STATUS_INSUFFICIENT_BUFFER_SPACE

See Also: Step-by-step Usage Instructions , Operation Details

Part Description

login ADSL login name.

password ADSL login password.

Details

PPPOE library operation is persistent -- once you start it with this call, the library
will "persist" to connect to the ADSL modem. No matter how many times the
connection fails, the library will keep trying. If the successfully established PPPOE
link fails, the library will attempt to reestablish the link.

Pppoe_stop()

Description: API procedure, stops (aborts) PPPOE login/configuration or
session.

Syntax: sub pppoe_stop()

Returns: ---

See Also: Step-by-step Usage Instructions , Operation Details

Details

660

656 657

656 657

662 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Pppoe_proc_timer()

Function: Event procedure, call it from the on_sys_timer() event
handler.

Syntax: sub pppoe_proc_timer()

Returns: ---

See Also: Step-by-step Usage Instructions , Operation Details

Details

Pppoe_proc_data()

Function: Event procedure, call it from the on_sock_data_arrival()
 event handler.

Syntax: sub pppoe_proc_data()

Returns: ---

See Also: Step-by-step Usage Instructions , Operation Details

Details

Callback_pppoe_ok()

Description: Callback procedure, informs of the successful
establishment of the PPPoE link. Procedure body has to be
created elsewhere in the project (externally with respect
to the library).

Syntax: sub callback_pppoe_ok()

Returns: ---

See Also: Step-by-step Usage Instructions , Operation Details

Details

By the time this procedure is called, the PPPOE library will have already set pppoe.ip
, pppoe.acmac , and pppoe.sessionid .

Callback_pppoe_failure()

Description: Callback procedure, informs that PPPoE login/configuration
or established link failed. Procedure body has to be
created elsewhere in the project (externally with respect
to the library).

Syntax: sub callback_pppoe_failure(pppoe_code as

533

656 657

489

656 657

656 657

370 369 370

663Libraries

©2000-2011 Tibbo Technology Inc.

en_pppoe_status_codescodes)

Returns: ---

See Also: Step-by-step Usage Instructions , Operation Details

Part Description

pppoe_state Reason for failure:

3- PPPOE_TIMEOUT: timeout while waiting for the reply from
the ADSL modem (access concentrator).

4- PPPOE_CONFIGURATION_ERROR: something went wrong...
and on the PPPoE many things can go wrong. Perhaps, login
name or password should be re-checked?.

5- PPPOE_STOPPED: pppoe_stop() was called.

Details

As follows from the above, this procedure is called even if your application
"manually" aborts PPPoE by calling pppoe_stop() .

Callback_pppoe_pre_buffrq()

Description: Callback procedure, informs of the insufficient number of
free buffer pages available for use by the library.
Procedure body has to be created elsewhere in the
project (externally with respect to the library).

Syntax: sub callback_pppoe_pre_buffrq(required_buff_pages as
byte)

Returns: ---

See Also: Step-by-step Usage Instructions , Operation Details

Part Description

required_buffer_p
ages

The number of additional buffer pages that the PPPOE library
needs to operate. Your application must free up at least this
number of buffer pages within the
callback_pppoe_pre_buffrq() or PPPoE login/configuration will
fail with the PPPOE_STATUS_INSUFFICIENT_BUFFER_SPACE
code .

Details

This procedure will be called only if there are not enough buffer pages available.

656 657

661

661

656 657

660

664 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

SOCK (Socket Numbers) Library

The SOCK library automates socket number assignment. The sock. object
supports up to sock.numofsock sockets. Using the SOCK library, your code can
get an unused socket, use the socket as needed, then release the socket into a
pool of free sockets.

Library Info

Supported
platforms:

Any platform with the sock. object.

Files to include: Sock.tbs, sock.tbh (from current_library_set\sock\trunk\).

Dependencies: ---

API procedures:

Use API procedures
 to interact with

the library.

sock_get() -- returns a free socket number or 255 if no
free sockets left.

sock_who_uses() -- returns the signature of the
specified socket's user.

sock_release() -- releases the socket (number),
discards socket connection, restores socket's properties
to their default states.

Event
procedures:

Callback
procedures:

Required buffer
space:

9.2.6.1Step-by-step Usage Instructions

Minimal steps

1. Add sock.tbs and sock.tbh files to your project (they are in
current_library_set\sock\trunk).

2. Add include "sock\trunk\sock.tbh" to the includes section of the global.tbh
file.

3. Call sock_get() whenever you need a free socket. Observe the result -- if it
is 255 then there are no free sockets available!

4. Call sock_release() when you no longer need a particular socket. This way,
the socket can be reused by something else in your code.

Additional recommended steps

421

488

421

576

667

668

668

577

667

668

665Libraries

©2000-2011 Tibbo Technology Inc.

1. The use of sock_who_uses() is optional. This call will return a string signature
left by the caller when obtaining the socket. SOCK_MAX_SIGNATURE_LEN must
be >0 for signatures to be saved.

We have provided a code snippet illustrating the use of the SOCK library.

Using the SOCK library? Then, use it everywhere in your code! Do not
"appropriate" sockets without going through this library.

9.2.6.2Operation Details

The SOCK library maintains a list of free and occupied sockets. This is kept in the
sock_in_use array. You can see this array's contents under the debugger. To get a
free socket (number), call sock_get() and it will return a socket number, which
will now be marked as used. The function will return 255 if there are no free sockets
left, so watch out for this number!

When calling sock_get(), you can supply a meaningful short name of the caller. For
example, if the socket is to be used for TELNET-style communications with the
device, set the signature to "TLNT". The sock_user_signature array keeps the
signatures left by sock_get() callers. Observing this array's contents under the
debugger will provide a clear picture of who is using which socket. The signature of
free sockets is "-". Note that SOCK_MAX_SIGNATURE_LEN defines maximum
signature length and the default value is 0. Set this to anything above 0 to be able
to observe the signatures. You can set it back to 0 when the debugging process is
over.

Another way to observe the operation of the library in the debug mode is by
adding #define SOCK_DEBUG_PRINT 1 to the defines section of the global.tbh file
of your project. A wealth of status information will be printed in the console pane
as the SOCK library operates.

To release the socket, call sock_release() . This will mark the socket as free and
the next caller of the sock_get() will have a chance to reuse this socket number.
Additionally, the socket will be "cleaned up for reuse". Any socket connection in
progress will be discarded (with sock.discard) and each property will be returned
to its original, post-reset value.

Sock_who_uses() returns a signature left by the specified socket's user. This
function doesn't have to be used and exists only for convenience.

9.2.6.3A Code Snippet

Here is a small code snippet illustrating the process of getting and releasing
sockets. We sacrificed robustness for simplicity, so don't take the code below for a
shining example of sock. object's usage. Just see the parts related to the SOCK
library -- that's the point right now.

...
'set "#SOCK_MAX_SIGNATURE_LEN 4" and "#define SOCK_DEBUG_PRINT 1" before
running this test

dim tcp_sock as byte 'to remember the socket number we've got

net.ip="192.168.1.93" '<--- edit as needed

'get a socket

668

667

665

667

667

27

667

668

478

668

421

666 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

tcp_sock=sock_get("TCPS")
'gotta check if there was a free socket for us...
if tcp_sock=255 then

sys.halt '...uh-huh, out of sockets!
end if

'setup the socket
sock.num=tcp_sock
sock.rxbuffrq(1)
sock.txbuffrq(1)
sys.buffalloc
sock.protocol=PL_SOCK_PROTOCOL_TCP
sock.targetip="192.168.1.67" '<--- edit as needed
sock.targetport=10000 '<--- edit as needed
sock.connect
while sock.statesimple<>PL_SSTS_EST
wend

'send data -- we use the signature of the socket's user
sock.setdata(sock_who_uses(tcp_sock))
sock.send
while sock.txlen>0
wend

'close the connection
sock.close
while sock.statesimple<>PL_SSTS_CLOSED
wend

'release the socket
sock_release(tcp_sock)
...

And here is what appeared in the output pane of TIDE as the code executed:

SOCK> 'TCPS' got socket #2
SOCK> 'TCPS' released socket #2

The first message corresponds to sock_get() , the second one -- to sock_release
() . "TCPS" is the signature left by us, it stands for "TCP socket". The socket
number obtained is 2 because we ran this code within a large program that uses a
lot of other sockets for a lot of other things.

The example above establishes an outgoing connection to 192.168.1.67:10000. In
our test, this was a PC running I/O Ninja, our sniffer/terminal software (you can get
it at ninja.tibbo.com). We opened a "listener socket" on I/O Ninja, and here is what
we saw:

Accepted TCP connection from 192.168.1.93:10254
TCPS
Remote node 192.168.1.93:10254 has closed TCP connection

667

668

http://ninja.tibbo.com

667Libraries

©2000-2011 Tibbo Technology Inc.

This "TCPS" is the signature our code provided when calling sock_get(). The reason
it appeared in Ninja is because of the sock.setdata(sock_who_uses(tcp_sock)) line
in the code.

9.2.6.4Library Defines (Options)

Any of the options below look cryptic? Read the Operation Details section.

SOCK_DEBUG_PRINT (default= 0)

0- no debug information.

1- print debug information into the output pane. Debug printing only works when
the project is in the debug mode . However, still set this option to 0 for release,
as this will save memory and code space.

SOCK_MAX_SIGNATURE_LEN (default= 0)

Size of members of the sock_user_signature array. Set to >0 to be able to observe
the signatures left by the callers of the sock_get() .

9.2.6.5Library Procedures

In this section:

Sock_get()

Sock_who_uses()

Sock_release()

Sock_get()

Description: API procedure, returns a free socket number or 255 if no
free sockets left.

Syntax: function sock_get(byref signature as string) as byte

Returns: The number of the unused socket or 255 if all sockets are
in use.

See Also: Step-by-step Usage Instructions , Operation Details

Part Description

signature A string with a short description of the socket's purpose.
You may leave the signature empty, too.

Details

Set SOCK_MAX_SIGNATURE_LEN to anything above 0 in order to be able to use
signatures.

665

27

667

667

668

668

664 665

667

668 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Sock_who_uses()

Description: API procedure, returns the signature of the specified
socket's user.

Syntax: function sock_who_uses(sock_num as byte) as string

Returns: The signature left by the socket's user on sock_get()
invocation.

See Also: Step-by-step Usage Instructions , Operation Details

Part Description

sock_num Socket number.

Details

Set SOCK_MAX_SIGNATURE_LEN to anything above 0 in order to be able to use
signatures.

Sock_release()

Description: API procedure, releases the socket (number), discards
socket connection, restores socket's properties to their
default states.

Syntax: sub sock_release(sock_num as byte)

Returns: ---

See Also: Step-by-step Usage Instructions , Operation Details

Part Description

sock_num The number of the socket to be released.

Details

STG (Settings) Library

The STG library offers a persistent, convenient storage for your device's settings
(operational parameters). It can also play a pivotal role in the device control and
monitoring . The library is extremely easy to use -- just define a list of all desired
settings using a setting configurator and employ simple API calls to work with
them.

Setting configurator allows you to specify the names, types, value constraints, etc.
of your device's settings and the STG library uses this to automatically calculate
memory addresses for storing settings, protect the settings with a checksum, verify
the validity of their values, etc. You code is then able to reference setting values

667

664 665

667

664 665

670

670

669Libraries

©2000-2011 Tibbo Technology Inc.

by their names, like this: s=stg_get ("IP",0), stg_set ("IP",0,"192.168.1.40").

The library keeps your settings in the non-volatile memory or RAM. The non-volatile
memory used can be the EEPROM memory (stor.) or the flash disk (fd.). For
RAM, you can choose to go with "regular" RAM (the one that stores variables), or
"custom" RAM, for which you can create your own access routines .

Library Info

Supported
platforms:

Any platform.

Files to include: settings.tbs, settings.tbh (from
current_library_set\settings\trunk\).

Dependencies: FILENUM library when the Use Flash Disk option is
selected.

API procedures:

Use API procedures
 to interact with

the library.

stg_start() -- starts the STG library, parses the
descriptor file, restores all volatile (RAM) settings to
default values.

stg_check_all() -- verifies each setting by reading its
value.

stg_get_def() -- returns the default value for the
specified setting's member.

stg_restore_multiple() -- initializes (sets the default
values for) all or multiple settings.

stg_restore_member() -- initializes (sets the default
value for) the specified setting's member.

stg_get_num_settings() -- returns the number of
settings defined in your project.

stg_get_num_members() -- returns the number of
members for the specified setting.

stg_find() -- returns the number of the specified
setting or zero if the setting wasn't found.

stg_stype_get() -- returns the type of the specified
setting.

stg_get() -- reads (gets) the value of the specified
setting's member; reports errors through
callback_stg_error() .

stg_set() -- writes (sets) the value of the specified
setting's member; reports errors through
callback_stg_error() .

stg_sg() -- writes (sets) or reads (gets) the specified
setting's member; directly returns the execution result.

stg_sg_ts() -- available when the Timestamp option is
enabled (checked), reads or writes the setting
modification time /date.

696 697

522 236

684

641

576

691

691

692

692

693

694

694

695

696

696

700

697

700

698

699

670 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Event
procedures:

Callback
procedures:

Implement the
bodies of callback
procedures
elsewhere in your
project.

callback_stg_error() -- informs of the error during the
execution of stg_get() or set_set() .

callback_stg_pre_get() -- informs that the setting
member's value is being read through one of the STG
library's procedures; allows to update the setting
member's value before it is returned by the STG library.

callback_stg_post_set() -- informs that the setting
member's value is being written to through one of the STG
library's procedures; allows to respond to the value
change.

callback_stg_vm_read() -- should implement necessary
code for reading a byte of data from "custom" volatile
memory. Needed only when the Custom RAM option is
enabled (checked).

callback_stg_vm_write() -- should implement necessary
code for writing a byte of data to "custom" volatile
memory. Needed only when the Custom RAM option is
enabled (checked).

Required buffer
space:

9.2.7.1Controlling Your Device Through Settings

Like the Windows registry, the STG library may be used to provide a well-organized,
persistent storage for your device's operational parameters. In many cases,
settings will be the backbone of your Tibbo BASIC project, as numerous other
libraries utilize settings for parameter (variable) storage.

One less obvious and very powerful concept of setting usage is that settings can
serve as transit points for controlling and/or monitoring the device. That is, writing
to a setting can cause the related code to be executed after the new value is set
(post-set), and this code will put the new value "into action". Reading a setting
can cause the value of the setting to be updated first (pre-get), and only then
returned to the caller.

In other words, it is possible to change your device's operation (behavior, mode,
etc.) just by writing a new value to a setting. It is also possible to get the current
device status just by reading a setting's value. This is a very powerful concept.
Master it, and you will be able to create clean, structured applications.

Using Pre-gets and Post-sets continues this discussion.

9.2.7.2Setting Configurator

Setting configurator is a JavaScript-based editor for the setting configuration
file. Do not confuse the two. Setting descriptor file is a part of your project (it is a
resource file). The editor is a "representer" -- it provides a convenient interface for
the editing of the configuration file. The configurator also masks the complexity of
the underlying configuration file.

In this section:

576

700

696 697

700

701

702

703

683

683

683

578

671Libraries

©2000-2011 Tibbo Technology Inc.

Library options

Editing settings

Dot-decimal settings

Max number of members

P1 and P2 parameters

Default setting values

Library Options

The Library Options section of the configurator screen lists all configurable options.

Debug Printing check box

Check (enable) to print debug information into the output pane. Debug printing only
works when the project is in the debug mode . Always uncheck this for release,
as this will save memory and code space.

Use EEPROM / Use Flash Disk option boxes

Defines whether non-volatile settings are to be stored in the EEPROM or in the file
(on the flash disk). Choose Use EEPROM whenever possible.

Filename text box

671

673

674

675

675

675

27

672 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

When Use Flash Disk is selected, defines the filename in which the setting values
will be stored on the flash disk.

Timestamp check box

When checked (enabled), stores the date and time of the most recent setting
modification. One timestamp is kept for all members of each setting.

Redundancy drop-down

No Redunduncy - only one copy of data is stored for all settings.

Two copies for EEPROM - two copies of data are stored for non-volatile settings.
Only one copy is maintained for volatile settings.

Two copies for ALL - two copies of data are stored for all settings (non-volatile as
well as volatile).

Custom RAM

Check (enable) to be able to create your own routines for writing and reading
volatile settings through callback_stg_vm_read() and callback_stg_vm_write()
.

702 703

673Libraries

©2000-2011 Tibbo Technology Inc.

Editing Settings

Use Add, Edit, and Delete buttons to create the list of settings.

Setting name

It is this name that you will use to reference settings in stg_set() , stg_get() ,
etc. Names are case-sensitive and cannot start with a digit (i.e. 0-9 char). This is
because the STG library's procedures would interpret this as a setting number ,
not name. Try to keep the names short, this saves RAM memory space (by reducing
the amount of memory needed to keep the list of setting names).

Storage Location

Specifies whether the setting will be stored in the non-volatile memory (EEPROM or
flash as defined by the global Use EEPROM / Use Flash Disk option) or volatile
memory (RAM). Obviously, settings that go into the RAM are those that you don't
have to keep while the device is powered off. If so, why even use settings?
Wouldn't regular variables suffice? Yes and no. Regular variables are fast to access,
but using settings for the purpose has its own advantages .

697 696

680

670

674 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Setting Type

You've got byte (0-255 range), word (0-65535 range), string (up to 253
characters), and dot-decimal string (up to 63 bytes).

Number of Members

Each setting must have at least one member, and can be set to include multiple
members (like in an array). The maximum number of members for the setting
depends on this setting's type.

P1 Parameter (Min)

The minimum value for byte and word settings, minimum length for string and
dot-decimal settings.

P2 Parameter (Max)

The maximum value for byte and word settings, maximum length for string and
dot-decimal settings.

Initialization Mode

Initialize always -- the setting is unconditionally initialized during
stg_restore_multiple() execution.

Initialize when invalid -- the setting is only initialized during stg_restore_multiple()
execution if found to contain an invalid or corrupted value.

Default values

A separate default value can be provided for each setting member, but not
necessarily.

Comment

Any comment you like. Do add comments -- they really help. These get compiled
into the final application binary, so having longer commends increases the size of
your application.

Dot-decimal Settings

Dot-decimal settings exist to store parameters such as IP and MAC address. Like
strings, they consist of a number of bytes. The difference is that when a dot-
decimal setting is read, ddstr() is executed on its members. For example, if the
internal value of the setting consists of bytes 192, 168, 1, and 40, then
"192.168.1.40" is returned when the setting is read. When the setting is written to,
the ddval() is executed, so "192.168.1.40" because a set of 4 bytes (192, 168,

674

675

675

675

692

675

210

210

675Libraries

©2000-2011 Tibbo Technology Inc.

1, and 40) again.

Max Number of Members

Here is what you have when the Timestamp option is unchecked:

Byte settings: up to 254 members.

Word settings : up to 127 members.

String and dot-decimal settings: up to 254/(P2+1), see above for explanation
on the P2 parameter. Example: if P2=10 then a setting can have up to 23
members.

You get less with timestamps enabled:

Byte settings: up to 247 members.

Word settings : up to 123 members.

String and dot-decimal settings: up to 247/(P2+1), see above for explanation
on the P2 parameter. Example: if P2=10 then a setting can have up to 23
members.

P1 and P2 Parameters

These define minimum (P1) and maximum (P2) values for byte and word settings,
and minimum and maximum length for string and dot-decimal settings. Conditions:

P2 must be greater or equal to P1.

P2 can't be 0.

For byte settings, P1 and P2 can't exceed 255.

For word settings, P1 and P2 can't exceed 65535.

For string and dot-decimal settings, P1 and P2 can't exceed 254.

Default Setting Values

In the simplest case, you have a setting with one member, and one default value to
provide for it... but what to do when the setting is of string or dot-decimal type
and the intended default value for this setting is NULL? Don't just leave the field
empty, use a special character ̂instead!

Several default values may be supplied, in which case they should be separated
by /, like this: "abc/def/123". This string defines three default values. And what if
you have, say, five members in this setting? Then, member 0 will be initialized to
"abc", member 1 -- to "def", and members 2 through 4 -- to "123". And how about
this string -- "abc/^/123"? It specifies that the second initialization value is NULL.

Naturally, ̂and / can't be used in setting strings because they are "special"
characters carrying a special meaning. If you need to have them inside the
initialization value itself, use C style escape sequences. For example, if the default
value is supposed to be "2/3" then write "2\x2F3".

The total size of the default value field cannot exceed 255 characters. Hence, you
may not be able to provide all the default values you want to. Say, you have a
byte setting with 100 members. The default value for each member can take three
characters plus the separator. That's up to four characters per one default value.
Only 64 such values will fit in 255 characters.

671

676 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

9.2.7.3Step-by-step Usage Instructions

In this section:

Getting started

Verifying and Initializing Settings

Writing and Reading Settings

Getting Started

Minimal steps

1. Add settings.tbs and settings.tbh files to your project (they are in
current_library_set\settings\trunk).

2. Add the following to the includes section of the global.tbh file:

includepp "settings.xtxt"
include "settings\trunk\settings.tbh"

3. Create empty callback procedure bodies (presumably in the device.tbs, and
according to declarations in settings.tbh):

- callback_stg_error() ;

- callback_stg_pre_get() ;

- callback_stg_post_set() .

4. Add an empty settings.xtxt file to your project. In the Add New File to
Project dialog set the Type to Definition File, and the Format to STG (Settings)
Library.

5. Define desired settings through the configurator .

6. In the On_sys_init() event handler (or some other place you deem logical),
add a call to the stg_start() . This function may fail, so check the returned
status code .

7.Take care of setting initialization .

Additional Steps

1.By default, non-volatile settings are stored in the EEPROM. You can also store
the settings on the flash disk. EEPROM offers limited (but usually sufficient)
storage with a faster access, while the flash disk offers a virtually unlimited
storage with a slower access. Go with the EEPROM whenever possible. If you
want to use the flash disk, select Use Flash Disk option in the configurator ;
then set the desired Filename (this is the name of the file that will store setting
values).

2. Set Redundancy to Non-volatile only to increase the reliability of settings by
keeping two independent copies of their values. The penalty is in the reduced
performance of the library (increased setting access time) and doubling of the
EEPROM (or flash) memory storage needs (see Operation Details for
explanation how memory is allocated for both copies).

676

677

678

577

576

700

700

701

18

670

533

691

690

677

670

684

677Libraries

©2000-2011 Tibbo Technology Inc.

Verifying and Initializing Settings

Initialization is the process of making setting values "sane". To be considered sane,
the setting value must have correct checksum, and its members must conform to
the constraints of P1 and P2 parameters .

Non-volatile settings are never initialized automatically -- it is your responsibility as
the developer to decide just when and how this happens. If you load a settings-
using application onto a device that has never run this application before, then
each non-volatile setting will be invalid because all setting checksums will be wrong.
Volatile settings are always initialized when you call stg_start() .

Any setting can be "repaired" by writing a valid value into it. You can do this using
stg_sg() or stg_set() -- see Writing and Reading Settings .

A more "automatic" way is to use stg_restore_multiple() . This will restore all
settings to their default values as defined in the setting descriptor file. In the
following example, settings are initialized if the MD button is kept pressed for more
than 2 seconds and then released:

sub on_button_released()
if button.time>4 then

if stg_restore_multiple(EN_STG_INIT_MODE_NORMAL)
<>EN_STG_STATUS_OK then sys.halt

end if
end sub

You can also verify the sanity of each setting in your project by calling
stg_check_all() . Here is some code you can place in on_sys_init() -- it
verifies all settings and performs initialization if any setting is found to be invalid.
Notice how we check the code returned by stg_check_all().
EN_STG_STATUS_INVALID is a "good" error, that is, we expect it to happen.
There are other errors, however, that are "fatal", for example,
EN_STG_STATUS_FAILURE . We halt on those.

sub on_sys_init()
dim x as en_stg_status_codes
dim stg_name as string(STG_MAX_SETTING_NAME_LEN)

if stg_start()<>EN_STG_STATUS_OK then sys.halt

x=stg_check_all(stg_name)
select case x
case EN_STG_STATUS_OK:

'--- all good ---

case EN_STG_STATUS_INVALID, EN_STG_STATUS_FAILURE:
if stg_restore_multiple(EN_STG_INIT_MODE_NORMAL)

<>EN_STG_STATUS_OK then sys.halt

case else:
'some other trouble
sys.halt

end select

comms_init()
end sub

675

691

698 697 678

692

691 533

690

690

678 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

There is also a library procedure to restore a single member of a single setting --
stg_restore_member() . The default value for any member of any setting can be
obtained by calling stg_get_def() .

Writing and Reading Settings

In this section:

Writing and reading settings with stg_sg()

Writing and reading settings with stg_set() and stg_get()

Using setting numbers instead of names

Working with multi-value settings

Understanding timestamps

Using Pre-gets and Post-sets

Using Stg_sg()

Stg_sg() allows you to set (write) or get (read) a setting and directly returns
the execution result so you can check if the setting operation was successful
(hence, the name "_sg", which means "set/get"). In the following example, we set
the setting "IP" to "192.168.1.40":

dim result as en_stg_status_codes
...
result=stg_sg("IP",0,"192.168.1.40",EN_STG_SET)
select case result
case EN_STG_STATUS_OK:

'all good
case EN_STG_STATUS_UNKNOWN, EN_STG_STATUS_INVALID_INDEX:

'bad setting name or index
case EN_STG_STATUS_FAILURE:

'failure ro write
case EN_STG_STATUS_INVALID:

'new setting value is invalidinvalid value
case else:

'some weird error
end select
...

Here is another example where we read the value of the same setting. Notice that
stg_sg() returns the setting value indirectly, through one of its arguments:

dim result as en_stg_status_codes

693

692

678

679

680

681

681

683

698

679Libraries

©2000-2011 Tibbo Technology Inc.

dim s as string
...
result=stg_sg("IP",0,s,EN_STG_GET)
select case result
case EN_STG_STATUS_OK:

'all good, s now contains current setting value
case EN_STG_STATUS_UNKNOWN, EN_STG_STATUS_INVALID_INDEX:

'bad setting name or index
case EN_STG_STATUS_FAILURE:

'failure ro write
case EN_STG_STATUS_INVALID:

'new setting value is invalid
case else:

'some weird error
end select
...

Using Stg_get() and Stg_set()

Extensive use of the stg_sg() can quickly bloat your project because of all this
result checking that you must do everywhere you call stg_sg(). Fortunately, there
is another way, but do exercise caution with it -- see details below.

Stg_set() and stg_get() do not return the execution result directly. Instead,
they invoke callback_stg_error() whenever any error is detected. This procedure
then can be a catch-all point for setting-related errors in your project. Here is an
example:

...
sub procedure1()

dim s,s2 as string(STG_MAX_SETTING_VALUE_LEN)
...
s=stg_get("IP",0)
s2=stg_get("PN",0)

end sub

sub procedure2()
stg_set("CPTN",0,"2")

end sub

sub callback_stg_error(byref stg_name_or_num as string,index as byte,status
as en_stg_status_codes)

pat.play("R-",PL_PAT_CANINT) 'setting error -- blink red LED!
aaa: goto aaa 'This is a "halt" so we hang here forever.
end sub

Notice how readable and simple the code above is. You simply read and write
settings, and when some error happens, you handle it in callback_stg_error(). Since
this is a single place for handling setting errors, you usually include some dramatic
code there... something equivalent to the "blue screen of death" in old Windows.

A sobering note -- think when it is OK (and not OK) to use stg_get() and stg_set().
Typically, "it is not OK" when the setting is being written to after some sort of user
input. Let's say the user is editing settings via a web-browser interface. He makes
a mistake and inputs an invalid new value for the setting. If this part of your code
relies on stg_set() then this simple user mistake will lead to the halt of device

678

697 696

700

680 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

operation, which is totally unwarranted.

So, as a rule of thumb, use stg_set() and stg_get() "internally", in places where
incorrect user input can't cause errors. In places where user input is processed use
stg_sg() , which will allow you to check execution result "right there" and respond
to the user if there was an erroneous input.

We use the same approach in our own sample project .

One additional fact about the stg_get() . Not only does it invoke
callback_stg_error() whenever there is an error, but also returns the default value
of the setting (defined with the setting configurator) when possible. This way, if
the setting can't be read, you get its default value and your reliable product can
continue operating somehow.

Because the TIDE compiler does not allow recursions , some STG library's own
procedures can't be called from within callback_stg_error() . These procedures
are:

Stg_get()

Stg_set()

Using Setting Numbers

Up until now we referred to settings by their names. It is also possible to call
settings by their number. Settings are numbered in the order of their appearance in
the setting configurator . Settings are counted from 0.

Here is a neat example where we read (the first member of) every available setting.
Notice how the error condition (EN_STG_STATUS_UNKNOWN) is used to exit the
loop:

...
dim s as string
dim f as byte
dim result as en_stg_status_codes
f=0
do

result=stg_sg(str(f),0,s,EN_STG_GET)
f=f+1

loop until result<>EN_STG_STATUS_OK

if result<>EN_STG_STATUS_UNKNOWN then
sys.halt 'some error has occurred!

end if
...

Of course, the above example can be implemented in a more conventional way
using stg_get_num_settings() :

...

698

686

696

670

66

700

696

697

670

690

694

681Libraries

©2000-2011 Tibbo Technology Inc.

dim s as string
dim f as byte
dim result as en_stg_status_codes

for f=0 to stg_get_num_settings()-1
s=stg_get(str(f),0)

next f
...

So, how does the STG library know when to interpret your input as a setting name
or number? Simple! If it starts with a digit (0-9), then this is a setting number,
otherwise it is a setting name. Names, therefore, can't start with a digit.

...
s=stg_get("CPTN",0) 'refer to the setting by its name
s=stg)get("4",0) 'refer to the setting by its number
...

Working With Multi-value Settings

A single setting may contain several members, like in an array. Stg_sg() , as well
as stg_get() and stg_set() require that you specify the setting member you
want to read or write. Setting members are counted starting from 0.
Get_stg_num_members() will tell you how many members each setting has.

Here is a modified example from the previous topic , it goes through every
member of every setting:

...
dim s as string
dim f,f2,num as byte
dim result as en_stg_status_codes

for f=0 to stg_get_num_settings()-1
stg_get_num_members(str(f),num)
for f2=0 to num-1

s=stg_get(str(f),f2)
next f2

next f
...

Understanding Timestamps

Sometimes it is necessary to remember the date/time of the most recent setting
modification. This can be useful, for instance, when synchronizing settings between
several devices.

698

696 697

680

682 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

To enable timestamps, click (enable) the Timestamp option in the configurator .
Timestamps occupy an additional 7 bytes of memory for each setting (in the
EEPROM, flash disk file, or in RAM, depending on how the setting is stored). This is
why timestamps are disabled by default.

There is a single timestamp for each setting, even if this setting includes multiple
members . Timestamps are read and written through the stg_timestamp global
variable. Note that it is the responsibility of your application to set and interpret
timestamps. The STG library does not access the real-time clock of your system
and does not verify the contents of stg_timestamp variable.

To set the new timestamp for the setting, fill out the stg_timestamp variable with
desired data prior to calling stg_set() or stg_sg(,,,EN_STG_SET) . Here is an
example:

...
rtc.getdata(stg_timestamp.ts_daycount,stg_timestamp.ts_mincount,
stg_timestamp.ts_seconds)
stg_timestamp.ts_milsec=0 'our RTC does not provide ms data
stg_set("IP",0,"192.168.1.50")
...

You can also set just the timestamp, without altering setting value:

...
rtc.getdata(stg_timestamp.ts_daycount,stg_timestamp.ts_mincount,
stg_timestamp.ts_seconds)
stg_timestamp.ts_milsec=0 'our RTC does not provide ms data
if stg_set_ts("IP")<>EN_STG_STATUS_OK then sys.halt
...

Note that initializing settings (restoring their values to defaults) through
stg_restore_multiple() and stg_restore_member() also sets the timestamp of
each affected setting.

Stg_timestamp variable is updated every time you read the setting with stg_get()
 or stg_sg(,,,EN_STG_GET) . In the following example, we read the setting in

order to get its timestamp, then set new setting value if the setting hasn't been
yet modified today:

...
dim daycount,mincount as word
dim seconds as byte

rtc.getdata(daycount,mincount,seconds)
stg_get("IP",0)
if stg_timestamp.ts_daycount<daycount then

stg_set("IP",0,"ABC")
end if
...

670

681 689

697 698

677

692 693

696 698

683Libraries

©2000-2011 Tibbo Technology Inc.

Using Pre-gets and Post-sets

Like the Windows registry, STG library may be used to provide a well-organized,
persistent storage for your device's operational parameters. One less obvious and
very powerful concept of setting usage is that settings can serve as transit points
for controlling and/or monitoring the device. That is, writing to a setting can cause
some related code to be executed after the new value is set (post-write), and this
code will put the new value "into action". Reading a setting can cause the value of
the setting to be updated first (pre-read), and only then returned to the caller.

Imagine, for instance, that there is an "LS" (Lamp State) setting that defined if the
"lamp" is on or off. Once we change the setting value through, say, a telnet
command, or some kind of setup screen, the state of the lamp should change, too.

The elegant way of achieving this is by using callback_stg_post_set() . It is
invoked every time stg_set() or stg_sg(,,,EN_STG_SET) is used. This callback
procedure offers a catch-all place where you can respond to changing setting
values.

Here is the code template for handling the lamp. The beauty of this approach is
that the setting may be modified in several different places in your application, but
you only need to respond to the setting value change in a single place --
callback_stg_post_set() procedure:

sub callback_stg_post_set(byref stg_name_or_num as string, index as byte,
byref stg_value as string)

if stg_name_or_num="LS" then
if stg_value=0 then

'turn the lamp off
else

'turn the lamp on
end if

end if
end sub

Note that stg_restore_multiple() and stg_restore_member() also write to
settings and callback_stg_post_set() will be called for them too -- once for each
setting affected.

Another callback procedure -- callback_stg_pre_get() -- is called every time
your application reads a setting through stg_get() or stg_sg(,,,EN_STG_GET) .
This allows to update the setting value before returning it to the caller.

Example: Let's say you have a setting called "CT" (Current Temperature). Here is a
code template for automatically updating the setting each time its value is
requested:

701

697 698

692 693

700

696 698

684 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

sub callback_stg_pre_get(byref stg_name_or_num as string,index as byte,byref
stg_value as string)

if stg_name_or_num="CPTN" then
stg_value=get_temperature() 'some function in your project that

returns current T
end if

end sub

The use of pre-gets and post-sets is further illustrated in our sample project .

Because TIDE compiler does not allow recursions , some STG library's own
procedures can't be called from within callback_stg_post_set() and
callback_stg_pre_get() . These procedures are:

Stg_start()

Stg_check_all()

Stg_restore_multiple()

Stg_restore_member()

Stg_get()

Stg_set()

Stg_sg()

9.2.7.4Operation Details

STG library automatically allocates the storage for settings. That is, non-volatile
and volatile memory addresses where individual settings are stored are calculated
automatically.

When non-volatile settings are stored in the EEPROM (default configuration), they
are located at the bottom of the EEPROM, right after the special configuration area

.

When non-volatile settings are stored on a flash disk (Use Flash Disk option
selected), they are stored in the file specified by the Filename option .

When the Custom RAM option is not selected, the volatile (RAM) settings are
stored in an array which is maintained by the library (stg_ram_array variable).

When the Custom RAM option is checked, the volatile (RAM) settings are stored
using callback_stg_vm_read() and callback-stg_vm_write() , which should
contain custom code for accessing whatever memory you have decided to use for
storing volatile settings (example: internal memory of a real-time clock IC).

When the Redundancy option is set to two copies for non-volatile settings, the
library maintains a second copy of data for non-volatile settings (this doubles the
required amount of non-volatile memory) and keeps a single copy for volatile
settings. When the Redundancy option is set to two copies for ALL settings, even
volatile settings are stored as two independent copies.

Two copies of setting data are stored like this:

Bottom of EEPROM (flash)

686

66

701

700

691

691

692

693

696

697

698

197

670

670

702 703

685Libraries

©2000-2011 Tibbo Technology Inc.

Data for all non-volatile settings (first copy)

Data for all non-volatile settings (second copy)

Bottom of RAM

Data for all volatile settings (first copy)

Data for all volatile settings (second copy)

Each setting is stored in the following format:

Setting storage

Setting data Timestamp (7 bytes)* Checksum byte

*Only when the Timestamp option is enabled.

The checksum is a 255 complement of the modulo 256 (8-bit) sum of all data bytes
for the setting except the checksum itself. The amount of storage allocated for
setting data depends on this setting's properties. The total amount of memory
taken by the setting can't exceed 255 bytes.

Setting data includes one or more setting members depending on the number of
members in this setting.

Setting data field for a setting with three members

Member0 data Member1 data Member2 data

Here is how member data for settings of different types is stored:

Byte settings require a single byte of storage for each member.

Word settings require two bytes of storage for each member, the data is stored
like this:

HIGH byte LOW byte

String and dot-decimal settings require the space equal to the P2 parameter
(max length) plus one additional byte to store the current length of the data:

Current length (1 byte) P2 number of bytes for data storage

673

675

686 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

9.2.7.5Sample Project

This sample project is fublished on our website under the name test_stg_lib.zip:

http://tibbo.com/basic/resources.html.

Let's build a sample application. It will have a listening control socket through which
you will be able to send control commands and get replies. These commands will
allow you to write and read settings. One of the settings, with multiple members,
will define a number of LED patterns. Another setting will select the current pattern
to be played. Yet another setting will let you put the selected pattern into play and
check if it is still playing.

This application, although largely useless, will demonstrate all of the fine points and
advantages of the settings library.

The project uses five settings:

DN (Device Name) -- stores a string that can uniquely identify the device. This
setting does nothing for the program's functionality, but it is a nice touch to be
able to name the device.

IP (IP address) -- stores the IP address of the device.

PN (Port Number) -- stores the port number on which the device will accept a
TCP connection. You will use this TCP connection to send commands and receive
replies.

PTN (PaTterNs) -- has three members, each member stores one LED pattern.

CPTN (Current PaTterN) -- specifies which pattern is currently selected.

Design steps:

Step 1: The Embryo

Step 2: Adding Setting Initialization

Step 3: Adding Comms

Step 4: Completing the Project

Step 1: The Embryo

This step corresponds to test_stg_lib_1.

The embryonic project defines the settings and compiles correctly. It does nothing
else.

The steps

We assume you are not going to type everything in from scratch and just open the
test_agg_lib_1 project. Notice that...

1. Settings.tbs and settings.tbh are added to the project (from

686

687

688

689

577

http://tibbo.com/basic/resources.html

687Libraries

©2000-2011 Tibbo Technology Inc.

current_library_set\settings\trunk\). There is also a necessary line in global.tbh:
include "settings\trunk\settings.tbh".

2. There is a settings.xtxt configuration file with type= configuration file, and
format= Setting (STG) library. There is a line in global.tbh that is required for
the configuration file to work correctly: includepp "settings.xtxt".

3. In the configuration file, Debug Printing is enabled. This allows you to "see
what's going on". Don't forget to disable this later, after you've made sure that
the library operates as expected.

4. There are empty callback procedures in device.tbs:

- callback_stg_error() ;

- callback_stg_pre_get() ;

- callback_stg_post_set() ;

5. On_sys_init() calls stg_start() -- this is required to make the library
operational. Notice how we check the code returned by stg_start()!

6. All settings are defined, as on the screenshot shown here .

The result

Compile and run the project -- you will see the output like this:

STG> ---START---
STG> Initialize RAM (volatile) settings...
STG> STG_RESTORE_MULTIPLE(), init_mode= RAM ONLY
STG> STG_SG()
STG> SET 'CPTN(255)' to '0' : OK
STG> STG_SG()
STG> SET 'PIP(255)' to '0' : OK
STG> RAM (volatile) settings initialized
STG> Number of settings: 6
STG> Non-volatile memory space required: 193

You see this printout because the Debug Printing option is enabled (checked).

This sample printout from the output pane shows that both RAM settings got
initialized -- it happens automatically because, obviously, RAM settings need
initialization every time the program runs. As for our non-volatile settings, we are
supposed to find a way to initialize them in some convenient way. Read on...

Step 2: Adding Setting Initialization

This step corresponds to test_stg_lib_2.

Non-volatile settings must be initialized at some point. In our sample project, we
check the "health" of settings upon boot using stg_check_all() . Should any
setting turn out to be invalid, we initialize all settings with stg_restore_multiple()
. Granted, this is a very crude way of handling setting initialization, but it works just
fine for a simple project like ours.

We also provided a way to initialize the settings at any time -- just press the MD
button for more than 2 seconds, then release.

670

96

700

700

701

533 691

670

670

687

677

691

692

688 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

All related changes are in main.tbs.

Step 3: Adding Comms

This step corresponds to test_stg_lib_3. Procedures of interest are comms_init
() and comms_proc_cmd(). Both are in device.tbs.

New stuff

OK, now comms. We use terminal software, for example, our own I/O Ninja software
(ninja.tibbo.com) to send commands and receive replies. The "IP" setting defines
the IP address of the device, while the "PN" setting specifies the port number on
the device side. Setting initialization will cause these settings to have default
values of 192.168.1.93 and 1000, as specified through the setting configurator .

Writing and Reading Settings already explained the difference between the usage
of stg_get() /stg_set() and stg_sg() . Here is a practical illustration:
comms_init() uses "simplified" stg_get(). With this, there is no need to check the
execution result each time we need to read a setting -- should there be any
problem, callback_stg_error() will be called and we respond to the error there.

Comms_proc_cmd(), on the contrary, needs to respond to each command with a
meaningful status code. This is why it relies on stg_sg(), which returns the status
code directly.

There are two commands: "S" (set setting) and "G" (get setting). Both commands
should end with the CR (shown as <CR> below).

Set command format is Ssetting_name,index,setting_value. The command
returns the execution result, which is expressed by a single character (see below).

Get command format is Gsetting_name,index. The command returns the
execution result. If execution was successful, setting value is also returned.

Execution result codes are: A for OK, C for when the setting name is unknown or
the index is invalid, F when there was some sort of failure, I when the setting value
is invalid, and U for "weird internal errors".

The result

Here is a sample printout from I/O Ninja, we write and read one of the "PTN"
setting's members. We set this member to "R-G-B-" and then read this value back:

Established TCP connection with 192.168.1.40:1000 from 3790
SPTN,2,R-G-B-<CR>

A<CR>

GPTN,2<CR>

AR-G-B-<CR>

687

670

678

696 697 698

700

http://ninja.tibbo.com

689Libraries

©2000-2011 Tibbo Technology Inc.

Step 4: Completing the Project

This step corresponds to test_stg_lib_4.

New stuff

OK, settings defined, comms protocol is their to read and write them, now let's put
all this to good use. Rules of engagement:

Writing new value into the "CPTN" setting should play a corresponding pattern
stored in the "PTN" setting.

Briefly pressing the MD button should play the next pattern.

Our sample project nicely illustrates what was said in Using Pre-gets and Post-sets
. When the "CPTN" setting is being written to, callback_stg_post_set() is

called and this gives us a chance to "load" another pattern. Notice how this is
done! We can't use stg_get() or stg_sg() inside callback_stg_post_set() --
this limitation is explained in Using Pre-gets and Post-sets . We, however, need
to read the "PTN" setting in order to play the new pattern!

Luckily, there is almost always a workaround. In our case, we load a very short
blank pattern "-" instead. When this pattern is done playing, the on_pat() event
is generated and then we read one of the "PTN" members according to the
pattern_num variable.

Callback_stg_pre_get() is also useful in our project. When we send a command
to read the current value of the "CPTN" setting, the setting is first updated with
the current value of the pattern_num variable!

Notice also how stg_get_num_members() is used in play_next_pattern(). Each
time the button is pressed, pattern_num is incremented by one, until it reaches
the number of members in the "PTN" setting, after which it is reset back to 0.

The result

Here is the I/O Ninja (ninja.tibbo.com) session where we switched between
different patterns:

Established TCP connection with 192.168.1.93:1000 from 1723
SCPTN,0,1<CR>

A<CR>

ASCPTN,0,2<CR>

A<CR>

Try this and observe how different patterns start playing on the LEDs.

9.2.7.6Stg_timestamp Global Variable

Stg_timestamp variable is used for working with setting timestamps . The variable
is only available when the Timestamp option is enabled.

Set this variable to the desired value prior to calling stg_sg(,,,EN_STG_SET) ,
stg_set() , stg_set_ts() , stg_restore_multiple() , or stg_restore_members()

.

683 701

696 698

683

365

701

694

681

670

698

697 699 692

694

http://ninja.tibbo.com

690 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

The variable will contain the timestamp of the setting in question after the call to
stg_sg(,,,EN_STG_GET) or stg_get() .

The variable is defined as follows:

type struct_stg_timestamp
ts_daycount as word
ts_mincount as word
ts_seconds as byte
ts_milsec as word

end type
...
declare stg_timestamp as struct_stg_timestamp

Note that it is the responsibility of your application to set and interpret timestamps.
The STG library does not access the real-time clock of your system and does not
verify the contents of stg_timestamp variable.

9.2.7.7En_stg_status_codes

Several procedure in the library utilize the en_stg_status_codes enum. This enum
has the following members:

0- EN_STG_STATUS_OK: operation completed successfully.

1- EN_STG_STATUS_NOT_STARTED: stg_start() was not used or failed.

2- EN_STG_STATUS_OUT_OF_FILE_NUMBERS: need to open a file and there are no
free file numbers left (possible only when STG_STORAGE_MEMORY is "1").

3- EN_STG_STATUS_WRONG_DEFINE: wrong #define value.

4- EN_STG_STATUS_WRONG_DESCRIPTOR: wrong descriptor file data.

5- EN_STG_STATUS_UNKNOWN: unknown setting or invalid setting number.

6- EN_STG_STATUS_INVALID_INDEX: invalid index (out-of-range).

7- EN_STG_STATUS_FAILURE: read failure or write failure (checksum error,
hardware malfunction, etc.).

8- EN_STG_STATUS_INVALID: invalid setting value.

9.2.7.8Library Procedures

In this section:

Stg_start()

Stg_check_all()

Stg_get_def()

Stg_restore_multiple()

Stg_restore_member()

Stg_get_num_settings()

Stg_get_num_members()

Stg_find()

Stg_stype_get()

698 696

691

691

691

692

692

693

694

694

695

696

691Libraries

©2000-2011 Tibbo Technology Inc.

Stg_get()

Stg_set()

Stg_sg()

Stg_set_ts()

Callback_stg_error()

Callback_stg_pre_get()

Callback_stg_post_set()

Callback_stg_vm_read()

Callback_stg_vm_write()

Stg_start()

Description: API procedure, starts the STG library, parses the
descriptor file, restores all volatile (RAM) settings to
default values by calling stg_restore_multiple
(EN_STG_INIT_MODE_RAM_ONLY)

Syntax: function stg_start() as en_stg_status_codes

Returns: One of these en_stg_status_codes :
EN_STG_STATUS_OK,
EN_STG_STATUS_OUT_OF_FILE_NUMBERS,
EN_STG_STATUS_WRONG_DEFINE,
EN_STG_STATUS_WRONG_DESCRIPTOR,
EN_STG_STATUS_FAILURE

See Also: Getting Started

Details

MUST be called first, before any other procedure in this library is invoked, or
EN_STG_STATUS_NOT_STARTED will be returned by every other procedure you
call.

When this procedure executes, callback_stg_post_set() is called for each setting
whose Storage Location is Non-volatile. See Editing Settings for details.

Stg_check_all()

Description: API procedure, verifies each setting by reading its value
through stg_sg() .

Syntax: function stg_check_all(byref problem_stg as string) as
en_stg_status_codes

Returns: One of these en_stg_status_codes :
EN_STG_STATUS_OK, EN_STG_STATUS_NOT_STARTED,
EN_STG_STATUS_FAILURE, EN_STG_STATUS_INVALID

See Also: Verifying and Initializing Settings

696

697

698

699

700

700

701

702

703

692

690

676

690

701

673

698

690

677

692 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Part Description

problem_stg After the procedure execution will contain the name of the
problem setting, if any. Will be NULL if no problems were
encountered.

Details

Execution stops once any problem for any setting is encountered. Thus, only one
problem is reported.

Stg_get_def()

Description: API procedure, returns the default value for the specified
setting's member.

Syntax: function stg_get_def(byref stg_name_or_num as
string, index as byte, byref def_value as string) as
en_stg_status_codes

Returns: One of these en_stg_status_codes :
EN_STG_STATUS_OK, EN_STG_STATUS_NOT_STARTED,
EN_STG_STATUS_UNKNOWN,
EN_STG_STATUS_INVALID_INDEX.

In case of successful execution returns the default value
for the specified setting's member through the def_value
argument.

See Also: Verifying and Initializing Settings

Part Description

stg_name_or_num Setting name or number. If the supplied string does not
start with a digit (0-9), then the string is interpreted as the
name of the setting. If the string starts with a digit, then
this will be interpreted as the setting number. Settings are
numbered counting from 0, and in the order of their
appearance in the setting configurator .

index Setting member.

def_value The default setting member's value will be returned through
this argument.

Details

This function only accesses and reads the data from the configuration file .

Stg_restore_multiple()

Description: API procedure, initializes (sets the default values for) all or
multiple settings.

690

677

670

670

693Libraries

©2000-2011 Tibbo Technology Inc.

Syntax: function stg_restore_multiple(init_mode as
en_stg_init_modes) as en_stg_status_codes

Returns: One of these en_stg_status_codes :
EN_STG_STATUS_OK, EN_STG_STATUS_NOT_STARTED,
EN_STG_STATUS_FAILURE, EN_STG_STATUS_INVALID.

See Also: Verifying and Initializing Settings

Part Description

init_mode Initialization mode:

Modes 0- EN_STG_INIT_MODE_NORMAL and 1- 1-
EN_STG_INIT_MODE_OVERRIDE work on non-volatile and
volatile settings.

Modes 2- EN_STG_INIT_MODE_RAM_ONLY and 3-
EN_STG_INIT_MODE_RAM_ONLY_OVERRIDE only work on
volatile settings. Non-volatile settings are not checked at
all.

Modes 0- EN_STG_INIT_MODE_NORMAL and 2-
EN_STG_INIT_MODE_RAM_ONLY cause conditional
initialization of settings according to their Initialization Mode

. If it is Initialize Always, then this setting is initialized
unconditionally, if it is Initialize When Invalid, then this
setting will be initialized only if its current value is invalid
(EN_STG_STATUS_INVALID) or corrupted
(EN_STG_STATUS_FAILURE).

Modes 1- EN_STG_INIT_MODE_OVERRIDE and 3-
EN_STG_INIT_MODE_RAM_ONLY_OVERRIDE cause
initialization of settings regardless of their validity.

stg_timestamp
 variable

When STG_TIMESTAMP is 1, this variable should be
preset with the desired timestamp prior to calling
stg_restore_member(). All affected settings will receive the
same timestamp.

Details

Default values for setting members can be defined through the setting
configurator .

When this procedure executes, callback_stg_post_set() is called for each setting
being initialized.

Stg_restore_member()

Description: API procedure, initializes (sets the default value for) the
specified setting's member.

Syntax: function stg_restore_member(byref stg_name_or_num
as string, index as byte) as en_stg_status_codes

690

677

673

690

690

689 690

675

670

701

694 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Returns: One of these en_stg_status_codes :
EN_STG_STATUS_OK, EN_STG_STATUS_NOT_STARTED,
EN_STG_STATUS_UNKNOWN,
EN_STG_STATUS_INVALID_INDEX,
EN_STG_STATUS_FAILURE.

See Also: Verifying and Initializing Settings

Part Description

stg_name_or_num Setting name or number. If the supplied string does not
start with a digit (0-9), then the string is interpreted as the
name of the setting. If the string starts with a digit, then
this will be interpreted as the setting number. Settings are
numbered counting from 0, and in the order of their
appearance in the setting configurator .

index Setting member.

stg_timestamp
 variable

When STG_TIMESTAMP is 1, this variable should be
preset with the desired timestamp prior to calling
stg_restore_member().

Details

Default values for setting members can be defined through the setting
configurator .

The setting's member is restored regardless of the value of the initialization mode
field in the descriptor file.

When this procedure executes, callback_stg_post_set() is called for the setting
being initialized.

Stg_get_num_settings()

Description: API procedure, returns the number of settings defined in
your project.

Syntax: function stg_get_num_settings() as byte

Returns: Total number of settings.

See Also: Using Setting Numbers

Details

Stg_get_num_members()

Description: API procedure, returns the number of members for the
specified setting.

Syntax: function stg_get_num_members(byref

690

677

670

689 690

675

670

701

680

695Libraries

©2000-2011 Tibbo Technology Inc.

stg_name_or_num as string, byref num_members as
byte) as en_stg_status_codes

Returns: One of these en_stg_status_codes :
EN_STG_STATUS_OK, EN_STG_STATUS_NOT_STARTED,
EN_STG_STATUS_UNKNOWN.

In case of successful execution returns the number of
members through the num_members argument.

See Also: Working with Multi-value Settings

Part Description

stg_name_or_num Setting name or number. If the supplied string does not
start with a digit (0-9), then the string is interpreted as the
name of the setting. If the string starts with a digit, then
this will be interpreted as the setting number. Settings are
numbered counting from 0, and in the order of their
appearance in the setting configurator .

num_members The number of members for this setting will be returned
through this argument.

Details

This function only accesses and reads the data from the configuration file .

Stg_find()

Description: API procedure, returns the number of the specified
setting.

Syntax: function stg_find(byref stg_name_or_num as string) as
byte

Returns: 0 if the specified setting wasn't found, or

setting number +1 if the setting was found. Settings are
numbered counting from 0, and in the order of their
appearance in the setting configurator .

See Also:

Part Description

stg_name_or_num Setting name or number. If the supplied string does not
start with a digit (0-9), then the string is interpreted as the
name of the setting. If the string starts with a digit, then
this will be interpreted as the setting number.

Details

690

681

670

670

670

696 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

If stg_name_or_num argument starts with the digit, this function will simply return
the setting number +1, but only if the setting with the specified number does exist
(zero will be returned if it doesn't).

Stg_stype_get()

Description: API procedure, returns the type of the specified setting.

Syntax: function stg_stype_get(byref stg_name_or_num as
string) as byte

Returns: 0 if the specified setting wasn't found, or

ASCII code of the character representing the setting
type: B̀̀ (byte), Ẁ ̀(word), S̀ ̀(string), D̀̀ (dot-
decimal string).

See Also:

Part Description

stg_name_or_num Setting name or number. If the supplied string does not
start with a digit (0-9), then the string is interpreted as the
name of the setting. If the string starts with a digit, then
this will be interpreted as the setting number.

Details

Stg_get()

Description: API procedure, reads (gets) the value of the specified
setting's member; reports errors through
callback_stg_error() .

Syntax: function stg_get(byref stg_name_or_num as string,
index as byte) as string

Returns: Successful execution: the current value of the specified
setting's member.

Some error, except EN_STG_STATUS_UNKNOWN or
EN_STG_STATUS_INVALID_INDEX : the default value of
this setting's member, plus the callback_stg_error() is
called, too. One of the following errors could be reported:
EN_STG_STATUS_OK, EN_STG_STATUS_NOT_STARTED,
EN_STG_STATUS_UNKNOWN,
EN_STG_STATUS_INVALID_INDEX,
EN_STG_STATUS_FAILURE, EN_STG_STATUS_INVALID.

When STG_TIMESTAMP is 1, also returns the setting
change timestamp through the stg_timestamp global
variable.

See Also: Using Stg_get() and Stg_set()

700

690

690

690

689

679

697Libraries

©2000-2011 Tibbo Technology Inc.

Part Description

stg_name_or_num Setting name or number. If the supplied string does not
start with a digit (0-9), then the string is interpreted as the
name of the setting. If the string starts with a digit, then
this will be interpreted as the setting number. Settings are
numbered counting from 0, and in the order of their
appearance in the setting configurator .

index Setting member.

Details

Callback_stg_error() is invoked if any error is detected during this procedure's
execution. One of the following errors could be reported: EN_STG_STATUS_OK,
EN_STG_STATUS_NOT_STARTED, EN_STG_STATUS_UNKNOWN,
EN_STG_STATUS_INVALID_INDEX, EN_STG_STATUS_FAILURE,
EN_STG_STATUS_INVALID.

Callback_stg_pre_get() is called when this procedure executes. This provides a
"central location" for updating setting values before returning them throughstg_get
().

Stg_set()

Description: API procedure, writes (sets) the value of the specified
setting's member; reports errors through
callback_stg_error() .

Syntax: sub stg_set(byref stg_name_or_num as string, index as
byte, byref stg_value as string)

See Also: Using Stg_get() and Stg_set()

Part Description

stg_name_or_num Setting name or number. If the supplied string does not
start with a digit (0-9), then the string is interpreted as the
name of the setting. If the string starts with a digit, then
this will be interpreted as the setting number. Settings are
numbered counting from 0, and in the order of their
appearance in the setting configurator .

index Setting member.

stg_value New setting member's value to be set.

stg_timestamp
 variable

When STG_TIMESTAMP is 1, this global variable should be
preset with the desired timestamp prior to calling stg_set().

Details

670

700

700

700

679

670

689 690

698 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Callback_stg_error() is invoked if any error is detected during this procedure's
execution. One of the following errors could be reported: EN_STG_STATUS_OK,
EN_STG_STATUS_NOT_STARTED, EN_STG_STATUS_UNKNOWN,
EN_STG_STATUS_INVALID_INDEX, EN_STG_STATUS_FAILURE,
EN_STG_STATUS_INVALID.

Callback_stg_post_set() is called when this procedure executes. This provides a
"central location" for responding to changing setting values.

Stg_sg()

Description: API procedure, writes (sets) or reads (gets) the specified
setting's member; directly returns the execution result.

Syntax: function stg_sg(byref stg_name_or_num as string, index
as byte, byref stg_value as string, op as en_stg_rdwr)
as en_stg_status_codes

Returns: One of these en_stg_status_codes :
EN_STG_STATUS_OK, EN_STG_STATUS_NOT_STARTED,
EN_STG_STATUS_UNKNOWN,
EN_STG_STATUS_INVALID_INDEX,
EN_STG_STATUS_FAILURE, EN_STG_STATUS_INVALID.

For op= 1- EN_STG_SET, also indirectly returns the
current value of the specified setting's member through
the stg_value argument.

For op=0- EN_STG_GET, and when STG_TIMESTAMP is
1, also returns the setting change timestamp through the
stg_timestamp global variable.

See Also: Using Stg_sg()

Part Description

stg_name_or_num Setting name or number. If the supplied string does not
start with a digit (0-9), then the string is interpreted as the
name of the setting. If the string starts with a digit, then
this will be interpreted as the setting number. Settings are
numbered counting from 0, and in the order of their
appearance in the setting configurator .

index Setting member.

stg_value Setting value. For set operations, the desired new setting
value should be supplied through this variable. For get
operations, the current setting value will be found in this
variable after the stg_sg() executes.

op Operation:

0- EN_STG_GET: get (read) the setting value.

1- EN_STG_SET: set (write) the setting value.

stg_timestamp For op=1- EN_STG_SET, and when STG_TIMESTAMP is 1,

700

701

690

690

689

678

670

689 690

699Libraries

©2000-2011 Tibbo Technology Inc.

 variable this global variable should be preset with the desired
timestamp prior to calling stg_sg().

Details

Callback_stg_pre_get() is called when this procedure executes with op= 0-
EN_STG_GET. This provides a central location for updating setting values before
returning them through the stg_get(). Callback_stg_post_set() is called for op=
1- EN_STG_SET. Again, this provides a "central location" for responding to changing
setting values.

Callback_stg_error() is never called from within this procedure, so make sure to
analyse the status code returned by the stg_sg().

Stg_set_ts()

Description: API procedure, writes (sets) the timestamp for the
specified setting. Only available when STG_TIMESTAMP
is 1.

Syntax: function stg_set_ts(byref stg_name_or_num as string)
as en_stg_status_codes

See Also: Understanding Timestamps

Part Description

stg_name_or_num Setting name or number. If the supplied string does not
start with a digit (0-9), then the string is interpreted as the
name of the setting. If the string starts with a digit, then
this will be interpreted as the setting number. Settings are
numbered counting from 0, and in the order of their
appearance in the setting configurator .

stg_timestamp
 variable

This global variable should be preset with the desired
timestamp prior to calling stg_set_ts().

Details

This procedure allows to modify the timestamp of the setting without affecting the
values of setting members.

New timestamp is also set for the setting also when one of the following procedures
executes:

Stg_start() -- for all settings whose Storage Location is Non-volatile.

Stg_restore_multiple() -- for each setting being restored.

Stg_restore_member() -- for the setting being restored.

Stg_set() -- for the setting being written to.

Stg_sg() when op= 1- EN_STG_SET -- for the setting being written to.

700

701

700

690

681

670

689

691 673

692

693

697

698

700 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Callback_stg_error()

Description: Callback procedure, informs of the error during the
execution of stg_get() or set_set() . Procedure body
has to be created elsewhere in the project (externally
with respect to the library).

Syntax: sub callback_stg_error(byref stg_name_or_num as
string, index as byte, status as en_stg_status_codes)

Returns: ---

See Also: Using Stg_get() and Stg_set()

Part Description

stg_name_or_num Setting name or number. If the supplied string does not
start with a digit (0-9), then the string should be
interpreted as the name of the setting. If the string starts
with a digit, then this should be interpreted as the setting
number. Settings are numbered counting from 0, and in the
order of their appearance in the setting configurator .

index Setting member.

status One of the en_stg_status_codes codes indicating the
type of the detected error.

Details

This procedure is invoked when the following procedures execute:

Stg_get()

Stg_set()

Notice that this procedure is never called during the execution of other procedures,
even though many of them access settings!

The following procedures can't be called from within callback_stg_error() or
recursion error will be generated by the compiler:

Stg_get()

Stg_set()

Callback_stg_pre_get()

Description: Callback procedure, informs that the setting member's
value is being read through one of the STG library's
procedures; allows to update the setting member's value
before it is returned by the STG library. Procedure body
has to be created elsewhere in the project (externally
with respect to the library).

696 697

679

670

690

696

697

66

696

697

701Libraries

©2000-2011 Tibbo Technology Inc.

Syntax: sub callback_stg_pre_get(byref stg_name_or_num as
string, index as byte, byref stg_value as string)

Returns: ---

See Also: Using Pre-gets and Post-sets

Part Description

stg_name_or_num Setting name or number. If the supplied string does not
start with a digit (0-9), then the string should be
interpreted as the name of the setting. If the string starts
with a digit, then this should be interpreted as the setting
number. Settings are numbered counting from 0, and in the
order of their appearance in the setting configurator .

index Setting member.

stg_value Current value of the specified setting's member. Leave the
value unchanged if there is no need to update the setting.
Change the value of this argument to have the STG library
set the setting's member to this new value.

Details

This procedure is invoked when the following procedures execute:

Stg_check_all() -- for each setting being checked.

Stg_get() -- for the setting being read from.

stg_sg(,,,EN_STG_GET) -- for the setting being read from.

The following procedures can't be called from within callback_stg_pre_get() or
recursion error will be generated by the compiler:

Stg_start()

Stg_check_all()

Stg_restore_multiple()

Stg_restore_member()

Stg_get()

Stg_set()

Stg_sg()

Callback_stg_post_set()

Description: Callback procedure, informs that the setting member's
value is being written to through one of the STG library's
procedures; allows to respond to the value change.
Procedure body has to be created elsewhere in the
project (externally with respect to the library).

Syntax: sub callback_stg_post_set(byref stg_name_or_num as

683

670

691

696

698

66

691

691

692

693

696

697

698

702 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

string, index as byte,byref stg_value as string)

Returns: ---

See Also: Using Pre-gets and Post-sets

Part Description

stg_name_or_num Setting name or number. If the supplied string does not
start with a digit (0-9), then the string should be
interpreted as the name of the setting. If the string starts
with a digit, then this should be interpreted as the setting
number. Settings are numbered counting from 0, and in the
order of their appearance in the setting configurator .

index Setting member.

stg_value New setting member's value that has just been set.

Details

This procedure is invoked when the following procedures execute:

Stg_start() -- for all settings whose Storage Location is Non-volatile.

Stg_restore_multiple() -- for each setting being restored.

Stg_restore_member() -- for the setting being restored.

Stg_set() -- for the setting being written to.

stg_sg(,,,EN_STG_SET) -- for the setting being written to.

The following procedures can't be called from within callback_stg_post_set() or
recursion error will be generated by the compiler:

Stg_start()

Stg_check_all()

Stg_restore_multiple()

Stg_restore_member()

Stg_get()

Stg_set()

Stg_sg()

Callback_stg_vm_read()

Description: Callback procedure, should implement necessary code for
reading a byte of data from "custom" volatile memory.
Needed only when the Custom RAM option is enabled.
Procedure body has to be created elsewhere in the
project (externally with respect to the library).

Syntax: function callback_stg_vm_read(address as word) as
byte

683

670

691 673

692

693

697

698

66

691

691

692

693

696

697

698

670

703Libraries

©2000-2011 Tibbo Technology Inc.

Returns: ---

See Also: Operation Details

Part Description

address Memory address to read.

Details

Callback_stg_vm_write()

Description: Callback procedure, should implement necessary code for
writing a byte of data to "custom" volatile memory.
Invoked only when the Custom RAM option is enabled.
Procedure body has to be created elsewhere in the
project (externally with respect to the library).

Syntax: sub callback_stg_vm_write(data_to_write as byte,
address as word)

Returns: ---

See Also: Operation Details

Part Description

data_to_write Data byte to save to the "custom" volatile memory.

address Memory address to write.

Details

WLN (Wi-Fi Association) Library

The WLN library works with the GA1000 add-on Wi-Fi module (see Programmable
Hardware Manual). The library complements the Wi-Fi (wln.) object by providing
the following:

Persistent association with an access point of choice;

Implementation of WPA1-PSK and WPA2-PSK security protocols (the wln. object
doesn't fully support them per se);

Support for access point switchover (roaming);

Generation of keepalive messages to prevent disassociation.

The library is event-based and non-blocking -- it quietly runs in the background and

684

670

684

536

704 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

takes a minimal amount of CPU time.

Library Info

Supported
platforms:

Any platform with Wi-Fi (wln.) interface.

Special case: WPA/WPA2 functionality is not supported on
the EM500W platform.

Files to include: Wln.tbs, wln.tbh (from current_library_set\wln\trunk\).

Dependencies: SOCK library (only if you have #define WLN_WPA 1
or #define WLN_KEEP_ALIVE 1);

You may also need STG library (for storing WPA/WPA2
parameters as described in Trying WPA code example).

API procedures:

Use API procedures
 to interact with

the library.

wln_start() -- commences attempts to bring up (boot)
the Wi-Fi interface, find and associate with the specified
wireless network, and then keep associated at all times.

wln_stop() -- shuts down the Wi-Fi interface.

wln_change() -- sets a different target wireless
network for the WLN library.

wln_rescan() -- starts the search for the specified
access point in order to obtain its signal strength.

wln_wpa_mkey_get() -- calculates the pre-shared
master key for WPA1 and WPA2 security modes.

wln_check_association() -- informs whether your
device is currently associated with an access point.

Event
procedures:

Call event
procedures from
corresponding
event handlers, as
described here .

wln_proc_timer() -- call it from the on_sys_timer()
event handler.

wln_proc_data() -- call it from the
on_sock_data_arrival() event handler.

wln_proc_task_complete() -- call it from the
on_wln_task_complete() event handler.

wln_proc_event() -- call it from the on_wln_event()
event handler.

Callback
procedures:

Implement the
bodies of callback
procedures
elsewhere in your
project.

callback_wln_ok() -- informs of the successful
association with the target wireless network.

callback_wln_failure() -- informs of the failure to find
the target wireless network, associate with it, or maintain
association.

callback_wln_pre_buffrq() -- informs of the insufficient
number of free buffer pages available for use by the
library.

callback_wln_mkey_progress_update() -- periodically
called from wln_wpa_mkey_get() to inform about the

536

138

664 721

721

668

711

576

724

725

725

726

727

728

576

619

728 533

728

489

729

565

729 565

576

729

730

730

731

727

705Libraries

©2000-2011 Tibbo Technology Inc.

progress of pre-shared key calculation.

callback_wln_rescan_result() -- informs of the
completion of the re-scanning initiated by wln_rescan()
.

Required buffer
space:

5 buffer pages minimum;

+1 additional buffer page if keepalive packets are enabled
(see WLN_KEEP_ALIVE);

+2 additional buffer pages if WPA/WPA2 support is enabled
(see WLN_WPA).

9.2.8.1Step-by-step Usage Instructions

Minimal steps

1. Make sure you have the SOCK library in your project (actually, you only need
this if you have #define WLN_WPA 1 or #define WLN_KEEP_ALIVE 1).

2. Add wln.tbs and wln.tbh files to your project (they are in
current_library_set\wln\trunk).

3. Add #define WLN_DEBUG_PRINT 1 to the defines section of the global.tbh file
of your project. This way you will "see what's going on". Don't forget to remove
this later, after you've made sure that the library operates as expected.

Some access points, notably CISCO devices, are so impatient during the
WPA1/WPA2 handshake process, that printing debug info makes them
timeout. If you notice that the WLN library is stuck in the endless association
loop, and you are sure that your password is set correctly, then try disabling
debug printing!

4.Define GA1000 interface line mapping. The following code is suggested (unless
you built your own hardware, in which case study the Configuring Interface Lines

 topic of the wln. object's documentation):

#if PLATFORM_ID=EM500 or PLATFORM_ID=EM500W
#define WLN_RESET_MODE 1 'there will be no dedicated reset, and all

other lines are fixed
#elif PLATFORM_ID=EM1206 or PLATFORM_ID=EM1206W

#define WLN_CLK PL_IO_NUM_14
#define WLN_CS PL_IO_NUM_15
#define WLN_DI PL_IO_NUM_12
#define WLN_DO PL_IO_NUM_13
#define WLN_RST PL_IO_NUM_11

#else
'EM1000, NB1010,...
#define WLN_CLK PL_IO_NUM_53
#define WLN_CS PL_IO_NUM_49
#define WLN_DI PL_IO_NUM_52
#define WLN_DO PL_IO_NUM_50
#define WLN_RST PL_IO_NUM_51

731

726

721

721

664

721 721

577

721

545 536

706 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

#endif

5. Add include "wln\trunk\wln.tbh" to the includes section of the global.tbh file.

6. Add wln_proc_timer() to the on_sys_timer() event handler code (this
library assumes that this event is generated twice per second).

7. Add wln_proc_data() to the on_sock_data_arrival() event handler code.

8.Add wln_proc_task_complete() to the on_wln_task_complete() event
handler code. Pass completed_task argument of on_wln_task_complete() directly
to wln_proc_task_complete().

9.Add wln_proc_event() to the on_wln_event() event handler code. Pass
wln_event argument of on_wln_event() directly to wln_proc_event().

10. Create empty callback function bodies (presumably in device.tbs):
callback_wln_ok() , callback_wln_failure() , callback_wln_pre_buffrq() ,
callback_wln_rescan_result() . Hint: copy from declarations in wln.tbh or from
our code example .

11. Add ga1000fw.bin file to your project. This is the firmware file for the GA1000
Wi-Fi add-on module. You can get it at http://tibbo.com/downloads/basic/
firmware.html.

12. Call wln_start() from somewhere. The no-brainer decision is to call from the
on_sys_init() event handler. Note that wln_start() may fail, so it is wise to
check the returned status code.

All of the above is illustrated in a code example .

If you are going to use WPA/WPA2 security

1.Add #define WLN_WPA 1 to the defines section of the global.tbh file.

2.Add an empty callback function body (presumably in device.tbs) for
callback_wln_mkey_progress_update() .

3.Use wln_wpa_mkey_get() to calculate a pre-shared master key, which is
required for WPA/WPA2 security. Assign this function's output result to the key
argument of the wln_start() function.

Wln_wpa_mkey_get() takes up to two minutes to complete. Trying WPA
 code example not only shows how to deal with WPA/WPA2, but also

how to avoid calculating the pre-shared master key repeatedly.

9.2.8.2Operation Details

The operation of the WLN library can be observed in the debug mode by adding
#define WLN_DEBUG_PRINT 1 to the defines section of the global.tbh file of your
project. A wealth of status information will then be printed in the console pane as
the WLN library operates.

Once the wln_start() is called, the WLN library will attempt to bring up the Wi-Fi
interface, then find the specified wireless network and associate with it. The library
uses active scanning (wln.activescan), which means that it can handle wireless
networks that do not broadcast their SSIDs. The operation is persistent -- the
library will repeatedly try to find the target wireless network and associate with it.
There is no limit on the number of attempts. If the association with the wireless
network is lost, the library will try to find the network and associate with it again. If

728 533

728 489

729 565

729 565

576

729 730 730

731

708

724

533

708

721

576

731

727

724

727

711

27

721

724

556

http://tibbo.com/downloads/basic/firmware.html
http://tibbo.com/downloads/basic/firmware.html

707Libraries

©2000-2011 Tibbo Technology Inc.

there are several access points with the same SSID (name) in range, the library will
always choose the access point with the strongest signal.

A buffer space of 5 to 8 pages is required for the library to operate. During
wln_start() execution, the library will check if the required buffer space is available
and call callback_wln_pre_buffrq() if more space is needed. Once successful
association is achieved, callback_wln_ok() is called. If scanning or association
fails, callback_wln_failure() is invoked to notify your system of the fact. Current
association status can also be checked through wln_check_association() .

One of the most important features of the WLN library is the support for WPA/WPA2
security. The library will associate your device with any access point configured for
WPA-PSK, WPA2-PSK, or mixed WPA-PSK/WPA2-PSK modes.

To connect to an access point configured for the mixed WPA-PSK/WPA2-
PSK mode, use WPA2 on the device side. At the moment, WPA security will
not work correctly on ad-hoc networks.

Using WPA1 or WPA2 involves calculating the pre-shared master key.
Wln_wpa_mkey_get() is provided for key calculation. This function takes up to
two minutes to complete. Fortunately, you don't have to recalculate the key all the
time -- see Trying WPA code example for details. While wln_wpa_mkey_get() is
executing, callback_wln_mkey_progress_update() is called periodically to tell
your application of the calculation progress.

The library can simultaneously maintain association with the selected access point
and search for another access point with the same or different SSID (name). The
search is initiated through wln_rescan() and delivers the result via
callback_wln_rescan_result() . The primary purpose of rescanning is to find out if
there are access points in range that offer a better signal than the current access
point. Your application can switch to another access point by calling wln_change()

. For illustration see Roaming Between Access Points code example.

Some access points disassociate devices after a period of inactivity. To prevent
this, you can add #define WLN_KEEP_ALIVE 1 to your project. The WLN library
will then periodically send out broadcast UDP datagrams (the period is defined by
WLN_KEEP_ALIVE_TIMEOUT). This is normally enough to prevent access points
from kicking your device out.

Calling wln_stop() terminates library operation and shuts down the Wi-Fi
interface. Related buffers are released at that time.

9.2.8.3Code Examples

Projects in the Code Examples section are published on our website under the
name "test_wln_lib".

730

729

730

728

727

711

731

726

731

725 716

721

721

725

708 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

In this section:

Step 1: The Simplest Example

Step 2: Adding TCP Comms

Step 3: Trying WPA

Step 4: Roaming Between Access Points

Step 1: The Simplest Example

This and other projects in the Code Examples section are published on our website
under the name "test_wln_lib".

Let's start with a simple example of connecting to an access point named "TIBB1",
which is configured for WEP64 security. The password is "12345678AB". All your
code really has to do is start the "Wi-Fi engine" by calling wln_start() .

To illustrate the use of callback procedures, we set green status LED on in
callback_wln_ok() . We turn this LED off in callback_wln_failure() .

Debug output we've got after running the code:

WLN> ---START---
WLN> ACTIVE SCAN for TIBB1
WLN> ASSOCIATE with TIBB1 (bssid: 192.63.14.197.236.216, ch: 11)
WLN> ---OK(associated in WEP64, WEP128, or no-security mode)---

You can test the "association persistence" by turning your access point off and on.
You will see how the library will restore the association:

WLN> ERROR: disassociation (or link loss with the access point)
WLN> ACTIVE SCAN for TIBB1
WLN> ERROR: access point not found
WLN> ACTIVE SCAN for TIBB1
WLN> ERROR: access point not found
...
WLN> ACTIVE SCAN for TIBB1
WLN> ASSOCIATE with TIBB1 (bssid: 192.63.14.197.236.216, ch: 11)
WLN> ---OK(associated in WEP64, WEP128, or no-security mode)---

And here is the code itself...

global.tbh:

'DEFINES---
#define WLN_DEBUG_PRINT 1

#if PLATFORM_ID=EM500 or PLATFORM_ID=EM500W
#define WLN_RESET_MODE 1 'there will be no dedicated reset, and all

708

710

711

716

724

729 730

709Libraries

©2000-2011 Tibbo Technology Inc.

other lines are fixed
#elif PLATFORM_ID=EM1206 or PLATFORM_ID=EM1206W

#define WLN_CLK PL_IO_NUM_14
#define WLN_CS PL_IO_NUM_15
#define WLN_DI PL_IO_NUM_12
#define WLN_DO PL_IO_NUM_13
#define WLN_RST PL_IO_NUM_11

#else
'EM1000, NB1010,...
#define WLN_CLK PL_IO_NUM_53
#define WLN_CS PL_IO_NUM_49
#define WLN_DI PL_IO_NUM_52
#define WLN_DO PL_IO_NUM_50
#define WLN_RST PL_IO_NUM_51

#endif

'INCLUDES--
include "sock\trunk\sock.tbh" 'this lib is necessary for the WLN lib's
operation
include "wln\trunk\wln.tbh"

main.tbs:

include "global.tbh"

'==
sub on_sys_init()

if wln_start("TIBB1",WLN_SECURITY_MODE_WEP64,"12345678AB",
PL_WLN_DOMAIN_FCC)<>WLN_STATUS_OK then

sys.halt
end if

end sub

'--
sub on_sys_timer()

wln_proc_timer()
end sub

'--
sub on_sock_data_arrival()

wln_proc_data()
end sub

'--
sub on_wln_task_complete(completed_task as pl_wln_tasks)

wln_proc_task_complete(completed_task)
end sub

'--
sub on_wln_event(wln_event as pl_wln_events)

wln_proc_event(wln_event)
end sub

device.tbs:

include "global.tbh"

710 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

'==
sub callback_wln_ok()

pat.play("G~",PL_PAT_CANINT)
end sub

'--
sub callback_wln_failure(wln_state as en_wln_status_codes)

pat.play("-",PL_PAT_CANINT)
end sub

'--
sub callback_wln_pre_buffrq(required_buff_pages as byte)
end sub

'--
sub callback_wln_rescan_result(current_rssi as byte, scan_rssi as byte,
different_ap as no_yes)
end sub

Step 2: Adding TCP Comms

This and other projects in the Code Examples section are published on our website
under the name "test_wln_lib".

Now let's take the previous example and create a TCP socket that will accept
connections over the Wi-Fi interface. We will make a simple loopback socket that
echoes back the data.

May we suggest our very own I/O NINJA terminal/sniffer software as the
tool for testing the loopback socket? Hint: use Connection Socket plugin.

Only main.tbs needs to be changed from the previous example . The socket is
configured in on_sys_init() . Notice how we don't just pick a random socket
number to use. We obtain the socket from the SOCK library by calling sock_get()

. This is very important! Once any part of your project uses the SOCK library
(and WLN library does), all other parts of your project must do the same. Mess will
ensue if you fail to handle socket numbers correctly.

In the code below, we first call wln_start() and then configure the loopback
socket. There is no significance to this order and you can reverse it. Same goes
for on_sock_data_arrival() . There is no special reason to call wln_proc_data()
first, and handle the loopback socket next. You can reverse the order and
everything will still work.

main.tbs:

include "global.tbh"

dim tcp_sock as byte

'==
sub on_sys_init()

wln.ip="192.168.1.50" '<--- set suitable IP here

if wln_start("TIBB1",WLN_SECURITY_MODE_WEP64,"12345678AB",

708

533

664

667

724

489 728

http://ninja.tibbo.com/

711Libraries

©2000-2011 Tibbo Technology Inc.

PL_WLN_DOMAIN_FCC)<>WLN_STATUS_OK then
sys.halt

end if

'configure loopback socket
tcp_sock=sock_get("TCP")
sock.num=tcp_sock
sock.rxbuffrq(1)
sock.txbuffrq(1)
sys.buffalloc
sock.protocol=PL_SOCK_PROTOCOL_TCP
sock.localportlist="1000"
sock.allowedinterfaces="WLN"
sock.inconmode=PL_SOCK_INCONMODE_ANY_IP_ANY_PORT
sock.reconmode=PL_SOCK_RECONMODE_3

end sub

'--
sub on_sys_timer()

wln_proc_timer()
end sub

'--
sub on_sock_data_arrival()

wln_proc_data()

'loopback tcp data
if sock.num=tcp_sock then

sock.setdata(sock.getdata(sock.txfree))
sock.send

end if
end sub

'--
sub on_wln_task_complete(completed_task as pl_wln_tasks)

wln_proc_task_complete(completed_task)
end sub

'--
sub on_wln_event(wln_event as pl_wln_events)

wln_proc_event(wln_event)
end sub

Step 3: Trying WPA

This and other projects in the Code Examples section are published on our website
under the name "test_wln_lib".

OK then, now let's try to associate with an access point configured for WPA2-PSK
security. Your can try WPA-PSK by yourself.

If your access point is configured for WPA-PSK/WPA2-PSK mode, select
WPA2 on the device side.

With WPA, things get a bit tricker because of a pre-shared master key (PMK). This
is the actual password used between your device and the access point. The key is

712 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

calculated from a "human" password (that you define) and the access point's SSID
(name). Wln_wpa_mkey_get() does the math. The bad news is that it takes 2
minutes... yep, sorry, 8000 iterations involving sha1 need that long. The good
news is that you only need to do this once after changing the password or SSID.
You can then just save the resulting key for the future use. STG library comes
handy for this.

Our project now has a new function -- connect_to_ap() -- that calls wln_start()
. This function takes all the same arguments as wln_start(). Connect_to_ap()
stores the SSID, human password, and pre-shared master key into the EEPROM.
Wln_wpa_mkey_get() is only called if the SSID or human password change, or if the
"PMK" setting is invalid. For the "PMK" setting to be valid, it must contain a 32-
character string -- the PMK always has this length. Keeping the PMK in the EEPROM
allows us to avoid recalculating it -- a huge time saver.
Callback_wln_mkey_progress_update() is called repeatedly from within
wln_wpa_mkey_get() while the PMK calculation is in progress. We put pat.play
there to assure the user that the system isn't dead.

Below is the debug output we've got when connecting to the access point named
"TIBB1".

WLN> ---START---
WLN> ACTIVE SCAN for TIBB1
WLN> ASSOCIATE with TIBB1 (bssid: 192.63.14.197.236.216, ch: 11)
WLN> Pre-associated for WPA1-PSK or WPA2-PSK, starting handshake process
WLN> Pairwise handshake, process step 1 of 4
WLN> Pairwise handshake, process step 2 of 4
WLN> Pairwise handshake, process step 3 of 4
WLN> Pairwise handshake, process step 4 of 4
WLN> ---OK(associated in WPA2-PSK mode)---

Some access points, notably CISCO devices, are so impatient during the
WPA1/WPA2 handshaking process, that printing debug info makes them
timeout. If you notice that the WLN library is stuck in the endless association
loop, and you are sure that your password is set correctly, then try disabling
debug printing! It may be the reason why the association fails.

The new iteration of our project is listed below. Notice how we set #define
WLN_WPA 1 in global.tbh. This is necessary to enable WPA support.

We show one more trick in this example. Instead of having a listening TCP socket,
we have a loopback socket that connects to a certain destination IP whenever
there is a successful association. To ensure persistent connection, we put a polling
code into on_sys_timer . Not the most beautiful of solutions, but gets the job
done. The TCP connection is discarded whenever we get callback_wln_failiure() .

Test outgoing connections by setting sock.targetip to your PC's address
and using our I/O NINJA terminal/sniffer software. This software has a
unique Listener Socket plugin that will allow your PC to receive incoming
TCP connections.

global.tbh:

727

223

668

724

731

365

721

533

730

506

http://ninja.tibbo.com/

713Libraries

©2000-2011 Tibbo Technology Inc.

'DEFINES---
#define WLN_DEBUG_PRINT 1
#define WLN_WPA 1

#if PLATFORM_ID=EM500 or PLATFORM_ID=EM500W
#define WLN_RESET_MODE 1 'there will be no dedicated reset, and all

other lines are fixed
#elif PLATFORM_ID=EM1206 or PLATFORM_ID=EM1206W

#define WLN_CLK PL_IO_NUM_14
#define WLN_CS PL_IO_NUM_15
#define WLN_DI PL_IO_NUM_12
#define WLN_DO PL_IO_NUM_13
#define WLN_RST PL_IO_NUM_11

#else
'EM1000, NB1010,...
#define WLN_CLK PL_IO_NUM_53
#define WLN_CS PL_IO_NUM_49
#define WLN_DI PL_IO_NUM_52
#define WLN_DO PL_IO_NUM_50
#define WLN_RST PL_IO_NUM_51

#endif

'INCLUDES--
include "sock\trunk\sock.tbh" 'this lib is necessary for the WLN lib's
operation
include "settings\trunk\settings.tbh" 'this lib is necessary to save pre-
shared master key
includepp "settings.xtxt"
include "wln\trunk\wln.tbh"

'DECLARATIONS--
declare function connect_to_ap(byref ap_name as string, security_mode as
pl_wln_security_modes, byref key as string, domain as pl_wln_domains) as
en_wln_status_codes
declare tcp_sock as byte

main.tbs:

include "global.tbh"

dim tcp_sock as byte

'==
sub on_sys_init()

wln.ip="192.168.1.50" '<---
set suitable IP here

stg_start()

if connect_to_ap("TIBB1",WLN_SECURITY_MODE_WPA2,"12345678",
PL_WLN_DOMAIN_FCC)<>WLN_STATUS_OK then

sys.halt
end if

'configure loopback socket
tcp_sock=sock_get("TCP")
sock.num=tcp_sock
sock.rxbuffrq(1)

714 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

sock.txbuffrq(1)
sys.buffalloc
sock.protocol=PL_SOCK_PROTOCOL_TCP
sock.targetinterface=PL_SOCK_INTERFACE_WLN
sock.targetip="192.168.1.67" '<----- set

suitable target IP here
sock.targetport=1000 '<----- set

suitable target port here
end sub

'--
sub on_sys_timer()

wln_proc_timer()

'this code ensures persistent connection to the target IP
if wln_check_association()=PL_WLN_ASSOCIATED then

sock.num=tcp_sock
if sock.statesimple=PL_SSTS_CLOSED then

sock.connect
end if

end if
end sub

'--
sub on_sock_data_arrival()

wln_proc_data()

'loopback tcp data
if sock.num=tcp_sock then

sock.setdata(sock.getdata(sock.txfree))
sock.send

end if
end sub

'--
sub on_wln_task_complete(completed_task as pl_wln_tasks)

wln_proc_task_complete(completed_task)
end sub

'--
sub on_wln_event(wln_event as pl_wln_events)

wln_proc_event(wln_event)
end sub

device.tbs:

include "global.tbh"

'==
function connect_to_ap(byref ap_name as string, security_mode as
pl_wln_security_modes, byref key as string, domain as pl_wln_domains) as
en_wln_status_codes

dim pmk as string(32)

#if WLN_WPA
if security_mode=WLN_SECURITY_MODE_WPA1 or

security_mode=WLN_SECURITY_MODE_WPA2 then
if stg_get("APN",0)<>ap_name or stg_get("PW",0)<>key or

stg_sg("PMK",0,pmk,EN_STG_GET)<>EN_STG_STATUS_OK then

715Libraries

©2000-2011 Tibbo Technology Inc.

'recalculate the key
pmk=wln_wpa_mkey_get(key,ap_name)
stg_set("PMK",0,pmk)
stg_set("APN",0,ap_name)
stg_set("PW",0,key)

else
pmk=stg_get("PMK",0) 'the key stays the same

end if
else

pmk=key
end if

#else
pmk=key

#endif

connect_to_ap=wln_start(ap_name,security_mode,pmk,domain)
end function

'--
sub callback_wln_ok()

pat.play("G~",PL_PAT_CANINT)
end sub

'--
sub callback_wln_failure(wln_state as en_wln_status_codes)

pat.play("-",PL_PAT_CANINT)
sock.num=tcp_sock
sock.discard

end sub

'--
sub callback_wln_pre_buffrq(required_buff_pages as byte)
end sub

'--
sub callback_wln_rescan_result(current_rssi as byte, scan_rssi as byte,
different_ap as no_yes)
end sub

'--
sub callback_wln_mkey_progress_update(progress as byte)

pat.play("B-**",PL_PAT_CANINT)
end sub

'--
sub callback_stg_error(byref stg_name_or_num as string,index as byte,status
as en_stg_status_codes)
end sub

'--
sub callback_stg_pre_get(byref stg_name_or_num as string,index as byte,byref
stg_value as string)
end sub

'--
sub callback_stg_post_set(byref stg_name_or_num as string, index as byte,
byref stg_value as string)
end sub

716 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

settings.xtxt (the underlying configuration file):

>>APN E S 1 0 32 A ^
Access point name

>>PW E S 1 0 32 A ^
Password

>>PMK E S 1 32 32 A
12345678901234567890123456789012 Pre-shared master key

#define STG_DESCRIPTOR_FILE "settings.xtxt"
#define STG_MAX_NUM_SETTINGS 3
#define STG_MAX_SETTING_NAME_LEN 3
#define STG_MAX_SETTING_VALUE_LEN 32

Step 4: Roaming Between Access Points

This and other projects in the Code Examples section are published on our website
under the name "test_wln_lib".

Finally, here is the coolest example of them all -- the code for a mobile device that
roams between several access points that all have the same SSID (name).
Typically, you use such a setup to create a larger wireless network. The example
from the previous topic would work, but not very well if your device was mobile.

Say, you walk around with your GA1000-based gadget in your pocket. At boot, it
would execute wln_start() , which would in turn search for the target wireless
network, find several access points, and select the one with the strongest signal.
The GA1000 would then latch onto this access point and won't let go until the
signal gets so bad that the association is lost. The WLN library would then try to
find a better access point to work with. Sounds like there is no problem, right?

Wrong! In practice, you will find that at a certain distance from the access point
you get into the "grey area of communications" where the link between your gadget
and the access point becomes spotty, but not quite bad enough for the association
to fail. And, since the association won't quite fail, your device won't try to find a
better access point to link to. Meanwhile, you will experience data delivery delays,
unstable comms, etc.

Here is the solution. Additional code in on_sys_timer periodically checks current
signal strength (wln.rssi). Whenever it falls below a predefined constant
RSSI_THRESHOLD, the code will do wln_rescan() in an attempt to "find a better
deal". Rescan result is checked in callback_wln_rescan_result() . If a different
and better access point is found, wln_change() will switch your device to using
it.

It is important to understand why the program searches for better access points
only when the signal drops below RSSI_THRESHOLD. Scanning is a disruptive
process that temporarily interferes with data comms. There is no reason to scan if
the current signal is perfect! Exactly what value should RSSI_THRESHOLD have
depends on your device, antenna, etc. Find it through trial and error.

global.tbh:

'DEFINES---

#define WLN_DEBUG_PRINT 1
#define WLN_WPA 1

724

533

566

726

731

725

717Libraries

©2000-2011 Tibbo Technology Inc.

#if PLATFORM_ID=EM500 or PLATFORM_ID=EM500W
#define WLN_RESET_MODE 1 'there will be no dedicated reset, and all

other lines are fixed
#elif PLATFORM_ID=EM1206 or PLATFORM_ID=EM1206W

#define WLN_CLK PL_IO_NUM_14
#define WLN_CS PL_IO_NUM_15
#define WLN_DI PL_IO_NUM_12
#define WLN_DO PL_IO_NUM_13
#define WLN_RST PL_IO_NUM_11

#else
'EM1000, NB1010,...
#define WLN_CLK PL_IO_NUM_53
#define WLN_CS PL_IO_NUM_49
#define WLN_DI PL_IO_NUM_52
#define WLN_DO PL_IO_NUM_50
#define WLN_RST PL_IO_NUM_51

#endif

'INCLUDES--
include "sock\trunk\sock.tbh" 'this lib is necessary for the WLN lib's
operation
include "settings\trunk\settings.tbh" 'this lib is necessary to save pre-
shared master key
includepp "settings.xtxt"
include "wln\trunk\wln.tbh"

'DECLARATIONS--
declare function connect_to_ap(byref ap_name as string, security_mode as
pl_wln_security_modes, byref key as string, domain as pl_wln_domains) as
en_wln_status_codes
declare tcp_sock as byte

const RESCAN_PERIOD=30 '<-----
change as needed
const RSSI_THRESHOLD=200 '<----- change
as needed
const AP_NAME="TIBB1" '<-----
change as needed
const AP_PASSWORD="12345678" '<----- change
as needed
const AP_SECURITY=WLN_SECURITY_MODE_WPA2 '<----- change as
needed
'use WLN_SECURITY_MODE_DISABLED, WLN_SECURITY_MODE_WEP64,
WLN_SECURITY_MODE_WEP128, WLN_SECURITY_MODE_WPA1, or WLN_SECURITY_MODE_WPA2

main.tbs:

include "global.tbh"

'--
dim tcp_sock as byte
dim rescan_tmr as byte

'==
sub on_sys_init()

wln.ip="192.168.1.50" '<-----
set suitable IP here

stg_start()

718 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

if connect_to_ap(AP_NAME,AP_SECURITY,AP_PASSWORD,PL_WLN_DOMAIN_FCC)
<>WLN_STATUS_OK then

sys.halt
end if

'configure loopback socket
tcp_sock=sock_get("TCP")
sock.num=tcp_sock
sock.rxbuffrq(1)
sock.txbuffrq(1)
sys.buffalloc
sock.protocol=PL_SOCK_PROTOCOL_TCP
sock.targetinterface=PL_SOCK_INTERFACE_WLN
sock.targetip="192.168.1.67" '<----- set

suitable target IP here
sock.targetport=1000 '<----- set

suitable target port here
end sub

'--
sub on_sys_timer()

wln_proc_timer()

if wln_check_association()=PL_WLN_ASSOCIATED then
'this code ensures persistent connection to the target IP
sock.num=tcp_sock
if sock.statesimple=PL_SSTS_CLOSED then

sock.connect
end if

'this code handles access point roaming
if rescan_tmr>0 then

rescan_tmr=rescan_tmr-1
if rescan_tmr=0 then

rescan_tmr=RESCAN_PERIOD
if wln.rssi<=RSSI_THRESHOLD then

wln_rescan(AP_NAME)
end if

end if
end if

else
rescan_tmr=RESCAN_PERIOD

end if
end sub

'--
sub on_sock_data_arrival()

wln_proc_data()

'loopback tcp data
if sock.num=tcp_sock then

sock.setdata(sock.getdata(sock.txfree))
sock.send

end if
end sub

'--
sub on_wln_task_complete(completed_task as pl_wln_tasks)

wln_proc_task_complete(completed_task)
end sub

719Libraries

©2000-2011 Tibbo Technology Inc.

'--
sub on_wln_event(wln_event as pl_wln_events)

wln_proc_event(wln_event)
end sub

device.tbs:

include "global.tbh"

'==
function connect_to_ap(byref ap_name as string, security_mode as
pl_wln_security_modes, byref key as string, domain as pl_wln_domains) as
en_wln_status_codes

dim pmk as string(32)

#if WLN_WPA
if security_mode=WLN_SECURITY_MODE_WPA1 or

security_mode=WLN_SECURITY_MODE_WPA2 then
if stg_get("APN",0)<>ap_name or stg_get("PW",0)<>key or

stg_sg("PMK",0,pmk,EN_STG_GET)<>EN_STG_STATUS_OK then
'recalculate the key
pmk=wln_wpa_mkey_get(key,ap_name)
stg_set("PMK",0,pmk)
stg_set("APN",0,ap_name)
stg_set("PW",0,key)

else
pmk=stg_get("PMK",0) 'the key stays the same

end if
else

pmk=key
end if

#else
pmk=key

#endif

connect_to_ap=wln_start(ap_name,security_mode,pmk,domain)
end function

'--
sub callback_wln_ok()

pat.play("G~",PL_PAT_CANINT)
end sub

'--
sub callback_wln_failure(wln_state as en_wln_status_codes)

pat.play("-",PL_PAT_CANINT)
sock.num=tcp_sock
sock.discard

end sub

'--
sub callback_wln_pre_buffrq(required_buff_pages as byte)
end sub

'--
sub callback_wln_rescan_result(current_rssi as byte, scan_rssi as byte,
different_ap as no_yes)

dim s as string(32)

720 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

if different_ap=NO or scan_rssi<current_rssi or scan_rssi-
current_rssi<5 then

exit sub
end if

select case AP_SECURITY
case WLN_SECURITY_MODE_DISABLED:

s=""
case WLN_SECURITY_MODE_WEP64,WLN_SECURITY_MODE_WEP128:

s=AP_PASSWORD
case else:

s=stg_get("PMK",0)
end select

wln_change(AP_NAME,AP_SECURITY,s)
end sub

'--
sub callback_wln_mkey_progress_update(progress as byte)

pat.play("B-**",PL_PAT_CANINT)
end sub

'--
sub callback_stg_error(byref stg_name_or_num as string,index as byte,status
as en_stg_status_codes)
end sub

'--
sub callback_stg_pre_get(byref stg_name_or_num as string,index as byte,byref
stg_value as string)
end sub

'--
sub callback_stg_post_set(byref stg_name_or_num as string, index as byte,
byref stg_value as string)
end sub

settings.xtxt (the underlying configuration file):

>>APN E S 1 0 32 A ^
Access point name

>>PW E S 1 0 32 A ^
Password

>>PMK E S 1 32 32 A
12345678901234567890123456789012 Pre-shared master key

#define STG_DESCRIPTOR_FILE "settings.xtxt"
#define STG_MAX_NUM_SETTINGS 3
#define STG_MAX_SETTING_NAME_LEN 3
#define STG_MAX_SETTING_VALUE_LEN 32

721Libraries

©2000-2011 Tibbo Technology Inc.

9.2.8.4Library Defines (Options)

Any of the options below look cryptic? Read the Operation Details section.

WLN_DEBUG_PRINT (default= 0)

0- no debug information.

1- print debug information into the output pane. Debug printing only works when
the project is in the debug mode . However, still set this option to 0 for release,
as this will save memory and code space.

Some access points, notably CISCO devices, are so impatient during the
WPA1/WPA2 handshake process, that printing debug info makes them
timeout. If you notice that the WLN library is stuck in the endless association
loop, and you are sure that your password is set correctly, then try disabling
debug printing!

WLN_RESET_MODE (default= 0)

0- dedicated RST line. Remember to define this line's mapping with WLN_RST.

1- CS and CLK lines are to generate reset. Use the reset generation circuit as
shown on diagram B in Connecting GA1000 topic.

WLN_RST (default= PL_IO_NULL)

RST line mapping. Only relevant when WLN_RESET_MODE= 0.

WLN_CS (default= PL_IO_NULL)

CS line mapping.

WLN_DI (default= PL_IO_NULL)

DI line mapping.

WLN_DO (default= PL_IO_NULL)

DO line mapping.

WLN_CLK (default= PL_IO_NULL)

CLK line mapping.

WLN_KEEP_ALIVE (default= 0)

706

27

201

722 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

0- do not send keepalive UDP datagrams (saves code and memory space).

1- send keepalive UDP datagrams to prevent disassociation from the access point.

WLN_KEEP_ALIVE_TOUT (default= 120)

Time interval, in 1/2 second increments, between keepalive UDP datagrams. This
assumes that on_sys_timer runs at 0.5 second intervals.

Only relevant when WLN_KEEP_ALIVE=1.

WLN_WPA (default= 0)

0- disable WPA1/WPA2 support (saves code and memory space).

1- enable WPA1/WPA2 support.

9.2.8.5En_wln_status_codes

Several procedures in the library utilize the en_wln_status_codes enum. This enum
has the following members:

0- WLN_STATUS_OK: Success.

1- WLN_STATUS_OUT_OF_SOCKETS: No free sockets available for the library to
operate.

2- WLN_STATUS_INSUFFICIENT_BUFFER_SPACE: Insufficient number of buffer
pages available and the call to callback_wln_pre_buffrq() failed to cure the
problem.

3- WLN_STATUS_MISSING_FIRMWARE_FILE: You forgot to add "ga1000fw.bin"
file to your project.

4- WLN_STATUS_BOOT_FAILURE: Wi-Fi hardware could not be booted (improperly
connected? turned off? ...).

5- WLN_STATUS_INVALID_SECURITY_MODE: Incorrect security mode specified in
the security_mode argument of the wln_start() function.

6- WLN_STATUS_INVALID_WEP_KEY: WEP64 or WEP128 was specified when calling
to wln_start() , and the length of the key argument is incorrect. The length must
be 10 HEX characters (characters 0̀ ~̀ 9̀ ,̀ À ~̀ F̀ ,̀ or à ~̀ f̀ ̀) for WEP64,
and 26 HEX characters for WEP128.

7- WLN_STATUS_SCANNING_FAILURE: Failed to discover the target wireless
network.

8- WLN_STATUS_ASSOCIATION_FAILURE: Failed to associate with the target

533

730

132

724

724

723Libraries

©2000-2011 Tibbo Technology Inc.

wireless network.

9- WLN_STATUS_DISASSOCIATION: Wi-Fi interface got disassociated from the
target wireless network.

10- WLN_STATUS_UNEXPECTED_ERROR: Well, this is something... unexpected :).

11- WLN_STATUS_NOT_STARTED: The procedure couldn't be executed because
the library hasn't been started (call wln_start() first).

12- WLN_STATUS_BUSY: The procedure couldn't be executed because the library is
busy. Try again after a short delay.

9.2.8.6Library Procedures

In this section:

Wln_get_info()

Wln_start()

Wln_stop()

Wln_change()

Wln_rescan()

Wln_wpa_mkey_get()

Wln_check_association()

Wln_proc_timer()

Wln_proc_data()

Wln_proc_task_complete()

Wln_proc_event()

Callback_wln_ok()

Callback_wln_failure()

Callback_wln_pre_buffrq()

Callback_wln_mkey_progress_update()

Callback_wln_rescan_result()

Wln_get_info()

Description: API procedure, returns library-specific information
according to the requested information element.

Syntax: function wln_get_info(info_element as
wln_info_elements, byref extra_data as string) as
string

Returns: Requested data in string form

See Also: About _get_info() API Functions

Part Description

info_element Information element being requested:

0- WLN_INFO_ELEMENT_REQUIRED_BUFFERS: total number

724

723

724

725

725

726

727

728

728

728

729

729

729

730

730

731

731

577

724 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

of buffer pages required for the library to operate.

extra_data When info_element=
WLN_INFO_ELEMENT_REQUIRED_BUFFERS, set this argument
to the desired security mode. This is necessary because the
security mode affects the amount of required buffer space.
Available security modes are defined by the
pl_wln_security_modes enum (see security_mode argument
of wln_start). Since the extra_data argument is of the
string type, you have to convert the security mode into a
string form, i.e. like this: str(WLN_SECURITY_MODE_WPA1).

Details

Wln_start()

Description: API procedure, commences attempts to bring up (boot)
the Wi-Fi interface, find and associate with the specified
wireless network, and then keep associated at all times.

Syntax: wln_start(byref ap_name as string, security_mode as
pl_wln_security_modes, byref key as string, domain as
pl_wln_domains) as en_wln_status_codes

Returns: One of these en_wln_status_codes : WLN_STATUS_OK,
WLN_STATUS_OUT_OF_SOCKETS,
WLN_STATUS_INSUFFICIENT_BUFFER_SPACE,
WLN_STATUS_MISSING_FIRMWARE_FILE,
WLN_STATUS_BOOT_FAILURE,
WLN_STATUS_INVALID_SECURITY_MODE,
WLN_STATUS_INVALID_WEP_KEY

See Also: Step-by-step Usage Instructions , Operation Details ,
The Simplest Example

Part Description

ap_name The SSID (name) of the wireless network to associate with.

security_mode One of pl_wln_security_modes:

0- WLN_SECURITY_MODE_DISABLED,

1- WLN_SECURITY_MODE_WEP64,

2- WLN_SECURITY_MODE_WEP128,

3- WLN_SECURITY_MODE_WPA1 (will be accepted only if
WLN_WPA is defined as 1),

4- WLN_SECURITY_MODE_WPA2 (will be accepted only if
WLN_WPA is defined as 1)

724

722

705 706

708

721

721

725Libraries

©2000-2011 Tibbo Technology Inc.

key For WEP64 mode, a string of 10 HEX characters (characters
0̀ ~̀ 9̀ ,̀ À ~̀ F̀ ,̀ or à ~̀ f̀ ̀). For WEP128 mode, a

string of 26 HEX characters. For WPA1-PSK and WPA2-PSK
modes, this is the pre-shared master key, which is not the
"human" password. The key can be calculated using
wln_wpa_mkey_get() .

domain Defines the set of channels on which the Wi-Fi interface will
operate. Possible values are:

0- PL_WLN_DOMAIN_FCC (default): FCC domain (US).
Allowed channels: 1-11.

1- PL_WLN_DOMAIN_EU: European Union. Allowed channels:
1-13.

2- PL_WLN_DOMAIN_JAPAN: Japan. Allowed channels: 1-14.

3- PL_WLN_DOMAIN_OTHER: All other countries. Allowed
channels: 1-11.

Details

WLN library operation is non-blocking. Wln_start() will quickly return control to your
application and the rest of the library's operation will continue in the background.

The WLN library uses active scanning (wln.activescan) and, therefore, will be
able to find access points that do not broadcast their SSIDs.

If several access points with the same SSID are in range, the WLN library will
automatically select the access point with the strongest signal.

Wln_stop()

Description: API procedure, shuts down the Wi-Fi interface.

Syntax: sub wln_stop()

Returns: ---

See Also: Step-by-step Usage Instructions , Operation Details

Details

Wi-Fi interface shutdown includes the hardware reset of the GA1000 module.

Wln_change()

Description: API procedure, sets a different target wireless network for
the WLN library.

Syntax: function wln_change(byref ap_name as string,
security_mode as pl_wln_security_modes, byref key as
string) as en_wln_status_codes

727

550 556

705 706

726 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Returns: One of these en_wln_status_codes : WLN_STATUS_OK,
WLN_STATUS_NOT_STARTED,
WLN_STATUS_INVALID_SECURITY_MODE,
WLN_STATUS_INVALID_WEP_KEY, WLN_STATUS_BUSY

See Also: Step-by-step Usage Instructions , Operation Details ,
Roaming Between Access Points

Part Description

ap_name New SSID (name) of the wireless network to associate with.

security_mode One of pl_wln_security_modes:

0- WLN_SECURITY_MODE_DISABLED,

1- WLN_SECURITY_MODE_WEP64,

2- WLN_SECURITY_MODE_WEP128,

3- WLN_SECURITY_MODE_WPA1 (will be accepted only if
WLN_WPA is defined as 1),

4- WLN_SECURITY_MODE_WPA2 (will be accepted only if
WLN_WPA is defined as 1)

key For WEP64 mode, a string of 10 HEX characters (characters
0̀ ~̀ 9̀ ,̀ À ~̀ F̀ ,̀ or à ~̀ f̀ ̀). For WEP128 mode, a

string of 26 HEX characters. For WPA1-PSK and WPA2-PSK
modes, this is the pre-shared master key, which is not the
"human" password. The key can be calculated using
wln_wpa_mkey_get() .

Details

WLN library operation is non-blocking. Wln_change() will quickly return control to
your application and the rest of the library's operation will continue in the
background.

The WLN library uses active scanning (wln.activescan) and, therefore, will be
able to find access points that do not broadcast their SSIDs.

If several access points with the same SSID are in range, the WLN library will
automatically select the access point with the strongest signal.

You can't use this function before calling wln_start() .

Wln_rescan()

Description: API procedure, starts the search for the specified access
point in order to obtain its signal strength.

Syntax: function wln_rescan(byref ap_name as string) as
en_wln_status_codes

Returns: One of these en_wln_status_codes : WLN_STATUS_OK,
WLN_STATUS_NOT_STARTED, WLN_STATUS_BUSY

722

705 706

716

721

721

727

550 556

724

722

727Libraries

©2000-2011 Tibbo Technology Inc.

See Also: Step-by-step Usage Instructions , Operation Details ,
Roaming Between Access Points

Part Description

ap_name The SSID (name) of the access point to search for.

Details

The purpose of wln_rescan() is to help you find out if there is an access point in
range that has a "better signal". This function starts the process, which then
proceeds in the background without stalling your application. Once the scanning is
finished, callback_wln_rescan_result() is called.

If several access points with the same SSID are in range,
callback_wln_rescan_result() will return the signal strength for the access point
with the strongest signal.

The WLN library uses active scanning (wln.activescan) and, therefore, will be
able to find access points that do not broadcast their SSIDs.

You can't use this function before calling wln_start() .

Wln_wpa_mkey_get()

Description: API procedure, calculates the pre-shared master key for
WPA1 and WPA2 security modes.

Syntax: function wln_wpa_mkey_get(byref password as string,
byref ssid as string) as string

Returns: Pre-shared master key string

See Also: Step-by-step Usage Instructions , Operation Details ,
Trying WPA

Part Description

password The "human" password for the access point.

ssid SSID (name) of the access point.

Details

In WPA1-PSK and WPA2-PSK security schemes, the password you set and the SSID
of the access point are used to calculate a so-called pre-shared master key, which
is the actual password used in communications between your device and the
access point. The password and the pre-shared master key are not to be confused:
the password is the string you manually enter (on the setup page) when configuring
the access point. The pre-shared master key is a binary string that you never get
to handle directly.

On Tibbo devices, pre-shared master key calculation takes up to 2 minutes.
Fortunately, the key needs only be calculated when there is the password or SSID

705 706

716

731

731

550 556

724

705 706

711

728 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

change.

Callback_wln_mkey_progress_update() is called periodically from within
wln_wpa_mkey_get(). This enables your application to indicate the calculation
progress to the user (i.e. by drawing a progress bar on the LCD screen).

Wln_check_association()

Description: API procedure, informs whether your device is currently
associated with an access point.

Syntax: function wln_check_association() as
pl_wln_association_states

Returns: 0- PL_WLN_NOT_ASSOCIATED.

1- PL_WLN_ASSOCIATED.

See Also: Step-by-step Usage Instructions , Operation Details ,
Trying WPA

Details

If you are running with no security or WEP security, then using this API call is the
same as checking wln.associationstate . For WPA1-PSK and WPA2-PSK security
modes, the mere fact that wln.associationstate returns 1- PL_WLN_ASSOCIATED
does not indicate association success. This is because WPA1-PSK and WPA2-PSK
additionally involve a complex exchange of "handshake" messages. Only after the
handshake is completed that the association is finished and wln_check_association
() will return 1- PL_WLN_ASSOCIATED.

Wln_proc_timer()

Function: Event procedure, call it from the on_sys_timer() event
handler.

Syntax: sub wln_proc_timer()

Returns: ---

See Also: Step-by-step Usage Instructions , Operation Details ,
The Simplest Example

Details

Wln_proc_data()

Function: Event procedure, call it from the on_sock_data_arrival()
 event handler.

Syntax: sub wln_proc_data()

731

705 706

711

558

533

705 706

708

489

729Libraries

©2000-2011 Tibbo Technology Inc.

Returns: ---

See Also: Step-by-step Usage Instructions , Operation Details ,
The Simplest Example

Details

Wln_proc_task_complete()

Function: Event procedure, call it from the on_wln_task_complete()
 event handler.

Syntax: sub wln_proc_task_complete()

Returns: ---

See Also: Step-by-step Usage Instructions , Operation Details ,
The Simplest Example

Details

Wln_proc_event()

Function: Event procedure, call it from the on_wln_event() event
handler.

Syntax: sub wln_proc_event()

Returns: ---

See Also: Step-by-step Usage Instructions , Operation Details ,
The Simplest Example

Details

Callback_wln_ok()

Description: Callback procedure, informs of the successful association
with the target wireless network. Procedure body has to
be created elsewhere in the project (externally with
respect to the library).

Syntax: sub callback_wln_ok()

Returns: ---

See Also: Step-by-step Usage Instructions , Operation Details ,
The Simplest Example

705 706

708

565

705 706

708

565

705 706

708

705 706

708

730 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Details

Callback_wln_failure()

Description: Callback procedure, informs of the failure to find the
target wireless network, associate with it, or maintain
association. Procedure body has to be created elsewhere
in the project (externally with respect to the library).

Syntax: sub callback_wln_failure(wln_state as
en_wln_status_codes)

Returns: ---

See Also: Step-by-step Usage Instructions , Operation Details ,
The Simplest Example

Part Description

wln_state One of these en_wln_status_codes :
WLN_STATUS_SCANNING_FAILURE,
WLN_STATUS_ASSOCIATION_FAILURE,
WLN_STATUS_DISASSOCIATION,
WLN_STATUS_UNEXPECTED_ERROR.

Details

Callback_wln_pre_buffrq()

Description: Callback procedure, informs of the insufficient number of
free buffer pages available for use by the library.
Procedure body has to be created elsewhere in the
project (externally with respect to the library).

Syntax: sub callback_wln_pre_buffrq(required_buff_pages as
byte)

Returns: ---

See Also: Step-by-step Usage Instructions , Operation Details ,
The Simplest Example

Part Description

required_buffer_p
ages

The number of additional buffer pages that the WLN library
needs to operate. Your application must free up at least this

705 706

708

722

705 706

708

731Libraries

©2000-2011 Tibbo Technology Inc.

number of buffer pages within callback_wln_pre_buffrq() or
wln_start() will fail with the
WLN_STATUS_INSUFFICIENT_BUFFER_SPACE status code
.

Details

This procedure will be called only if there are not enough buffer pages available.

Callback_wln_mkey_progress_update()

Description: Callback procedure, informs of the pre-shared master key
calculation progress. Procedure body has to be created
elsewhere in the project (externally with respect to the
library).

Syntax: sub callback_wln_mkey_progress_update(progress as
byte)

Returns: ---

See Also: Step-by-step Usage Instructions , Operation Details ,
Trying WPA

Part Description

progress Current progress, in %.

Details

Callback_wln_mkey_progress_update() is called periodically from within
wln_wpa_mkey_get() . This enables your application to indicate the calculation
progress to the user (i.e. by drawing a progress bar on the LCD screen).

Callback_wln_rescan_result()

Description: Callback procedure, informs of the completion of the re-
scanning initiated by wln_rescan() . Procedure body has
to be created elsewhere in the project (externally with
respect to the library).

Syntax: sub callback_wln_rescan_result(current_rssi as byte,
scan_rssi as byte, different_ap as no_yes)

Returns: ---

See Also: Step-by-step Usage Instructions , Operation Details ,
Roaming Between Access Points

Part Description

724

722

705 706

711

727

726

705 706

716

732 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

current_rssi Signal strength for the access point your device is currently
associated with. This argument will be 0 if your device is not
associated with any access point.

scan_rssi Signal strength for the access point you searched for with
wln_rescan() . This argument will be 0 if the specified
access point wasn't found.

different_ap Indicates whether or not wln_rescan() has found the same
access point as the one your device is currently associated
with, or a different access point:

0- NO: the same access point.

1- YES: different access point.

Details

The WLN library determines whether the access point is the same or different by
comparing BSSIDs ("MAC addresses") of the access point your device is currently
associated with and the access point that was discovered by wln_rescan() . This
comes handy for your application in case several access points in range have the
same SSID (name).

If several access points with the same SSID are in range,
callback_wln_rescan_result() will return the signal strength for the access point
with the strongest signal.

Update History (for this Manual)
01SEP2012

Documented DS1100 , DS1101W , and DS1102W platforms.

Almost completely rewritten the Common Library Info section.

Documented the AggreGate (AGG) library .

Significantly updated the Setting (SRG) library documentation.

Documented changes to the gprs_start() of the GPRS library (new apn
argument).

22DEC2011 release

Documented ppp. object and GPRS library .

Documented fd.copyfirmwarelzo, and edited Upgrading the Firmware/Application
.

21NOV2011 release

Documented ssi. object.

18OCT2011 release

Documented STG library improvements:

 - It is now possible to use escape sequences (i.e. "\xA5") in default value strings
-- see Setting Descriptor File Format.

726

726

164 168 174

575

580

668

652 645

366 645

243

512

668

733Update History (for this Manual)

©2000-2011 Tibbo Technology Inc.

 - Stg_restore_multiple() now has now have 4 operation modes.

 - STG_REDUNDANCY now offers three choices.

 - new STG_RAM_TYPE define added.

 - new Callback_stg_vm_read and Callback_stg_vm_write topics.

Documented changes in the .romfile object, which now supports files over
64KB.

New topic added: About _get_info() API Functions .

Documented new API procedures: pppoe_get_info() , wln_get_info() ,
dhcp_get_info() .

Edited Using HTTP -- SWF files are now supported!

17AUG2011 release

Documented WLN library .

Updated wln. object documentation (many small edits). Notable changes:

 - Removed "Known Limitations" from wln. object documentation -- these
limitations do not exist any more.

 - Documented wln.activescan and expanded Scanning for Wi-Fi Networks .

 - Expanded on WPA security (for example, see Setting WPA Mode and Keys).

Documented two new API calls of the STG library : stg_find() and
stg_stype_get() .

Updated code examples in the DPHP library .

Updated the sample project of the STG library .

Fixed error in Serial Settings topic code sample.

Added Includepp Statement topic.

20JUL2011 release

Updated wln. object documentation:

 - Dropped "Migrating From the WA1000" and "Rebooting" topics.

 - Added "Known Limitations", Setting Wi-Fi Security , Setting WPA Mode and Key
, .Scanresultwpainfo R/O Property .

 - Reedited the entire text.

Changed Our Language Philosophy topic to reflect support for floating point
variables.

Documented aes128dec , aes128enc , rc4 , strand , stror , and strxor
 functions.

23JUN2011 release

Fixed sock.allowedinterfaces topic to include new values (PPPoE and PPP)

New topic: sock.availableinterfaces

20JUN2011 release

Documented pppoe. object and PPPOE library .

New topics: Protecting Your Device with a Password , Setup (MD) Button (Line)
.

692

702 703

370

577

660 723

636

461

703

536

536

556 550

553

668 695

696

622 618

686 668

390

96

536

552

553 569

4

205 206 222 225 227

228

474

475

369 655

41

201

734 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Updated: Compiling a Final Binary , The Structure of a Project , Creating,
Opening, and Saving Projects , Adding, Removing, and Saving Files , Project
Settings , Device Explorer , Special Configuration Section of the EEPROM .

Corrected: Connecting GA1000 (diagram C was wrong).

Corrected: .ip Property (of the net. object).

30MAY2011 release

EM500 platform change: fd. and wln. objects are now supported.

Fd. object docs change: there is a new 16-
PL_FD_STATUS_FLASH_NOT_DETECTED error code , and fd.format ,
fd.formatj , fd.mount , fd.getsector , fd.setsector may return it.

New topics: Connecting External Flash IC , Connecting GA1000 .

Many small changes in Platform Specifications (especially for the EM500
module).

12MAY2011 release

Removed "EM202" platform documentation, it is no longer supported. We
recommend using EM1206 or EM1206W instead.

Cleaned up platform specifications -- many things rearranged:

 - Most specs for each platform now fit in a single topic;

 - The folder with common information has been expanded and rewritten.

Updated fd. object documentation:

 - Using Checksums , Fd.checksum -- several major corrections, original text
contained many factual errors!

 - Documented transactions (new feature).

 - Most topics were edited and updated.

09FEB2011 release

Released all-new Libraries section, with SOCK , FILENUM , STG and
DHCP library documentation.

Updated TIDE topic Adding, Removing and Saving Files with new screenshots
and "add existing files" option.

10OCT2010 release

Corrected typographical errors in topics Lbin Function , Lhex Function .

04OCT2010 release

Corrected typographical errors in topics Instr Function , .Insert Function ,
Date Function , Mincount Function .

27JUL2010 release

Documented new feature, incremental project uploads .

15JUNE2010 release

15 16

17 18

38 39 197

201

360 358

138 236 536

236

239 276

277 283 281 290

143 201

138 138

158 158

138

191

242 268

259

572 664 641 668

618

18

214 216

214 213

208 220

26

735Update History (for this Manual)

©2000-2011 Tibbo Technology Inc.

Corrected EM1206 PLL status on boot (PLL ON by default, no PE pin) under
Platform-dependent Programming Information.

Corrected inter-pulse gaps in Wiegand mode for the .ser object (2mS instead
of 20mS)

02JUN2010 release

Documented EM500 platform.

Added Enum pl_io_port_num topic to each platform's description.

Added Device serial number section to the Platform-dependent Programming
Information topic of each platform.

Changed the Serial Number topic -- it now refers to the Device serial number
section (see above).

Edited Serialnum R/O Property and Setserialnum method topics.

29JUL2009 release

Uncluttered platform documentation -- made these topics "common":

 - Supported Variable Types (T1000-based Devices) ;

 - Supported Functions (T1000-based Devices) ;

 - LED Signals ;

 - Debug Communications ;

 - Project Settings Dialog.

Merged EM1000 and EM1000W platform documentation under a single manual --
EM1000 and EM1000W Platforms .

Added EM1202W platform documentation into the EM1000 platform docs, renamed
the section into EM1202 and EM1202W Platforms .

Documented new platforms: EM1206 and EM1206W , DS1202 , DS1206 .

Reworked Platform Specifications topic.

Documented new insert function.

Changes in the wln object manual:

 - Every topic was updated and edited;

 - Added "Migrating From the WA1000" to address the changes in the wln object
operation;

 - "Configuring CS Line" renamed into Configuring Interface Lines ;

 - "Powering Down" renamed to "Rebooting";

 - "Detecting Disassociation or Powerdown" renamed into Detecting Disassociation
or Offline State ;

 - "Enabling Port" renamed into Applying Reset ;

 - New Creating Own Ad-hoc Network and Terminating Own Ad-hoc Network
topics;

Changes in the button object manual:

 - Expanded the main topic;

 - Documented new button.pressed R/O property;

 - Added information about "debouncing".

383

138

530

534 535

192

192

200

204

143

151

158 158 181 186

138

213

536

545

556

546

555 556

234

234

235

736 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Changes in the pat object manual:

 - Documented pat.greenmap and pat.redmap properties;

 - Updated all other information in relation to the above.

Changes in the fd object manual:

 - Updated fd.find method;

 - Documented new fd.rename method.

 - In connection with the above, renamed "Creating and Deleting Files" into
Creating, Deleting, and Renaming Files , expanded topic content.

Changes in the sock object manual:

 - Updated sock.close , sock.reset , and sock.discard topics -- these
methods are ignored when called from within an HTML page;

 - Updated HTTP-related Buffers -- an HTTP socket can now live without the
RX buffer. Also, HTTP variables of any size can now be received;

 - Reworked Working with HTTP Variables -- this is now a section; explained and
documented sock.gethttprqstring and on_sock_postdata ;

 - Added "Redirection and UDP" to the Redirecting Buffers topic;

 - Documented URL substitution: new URL Substitution and sock.urlsubstitutes
 topics;

 - Documented the data sinking feature: new Sinking Data and sock.sinkdata
topics;

 - Documented the timeout counter: expanded Closing Connections topic (see
Connection Timeouts), added new sock.toutcounter topic.

Changes in the ser object manual:

 - There is a new data sinking feature, so Sinking Data and sock.sinkdata
topics were added;

 - Corrected schematic diagram (C) in the Wiegand Mode topic.

31AUG2008 release

Documented kp. object , lcd. object .

Documented md5 , sha1 , ddstr , and ddval syscalls.

Documented sys.serialnum and sys.setserialnum . Added Serial Number
topic.

Added Using Preprocessor and Scope of Preprocessor Directives topics.

Updated The Watch topic -- documented new capabilities such as true
support for arrays, expressions ("x(y)"), etc.

Update Project Settings topic -- documented new Customize button.

Updated EM202 platform -- this platform is now used by "203" devices as well.

04AUG2008 release

Documented fd object .

Added Legal Information topic.

Deleted "What's New in R2" and "Migration From Version 1" topics.

363

364 366

236

274

285

250

421

475 495 478

462

469

480 491

454

468

511

456 501

437

507

378

399 501

383

304 317

218 223 210 210

534 535 530

76 78

33

38

236

1

737Update History (for this Manual)

©2000-2011 Tibbo Technology Inc.

10MAR2008 release

Documented wln object .

Documented new EM1000W platform.

Documented new romfile.offset R/O property. In connection with this, updated
the following topics: Supported Functions (Syscalls) (EM202/200 (-EV), DS202
platform), Romfile Object .

Documented new sock.allowedinterfaces , sock.targetinterface , and
sock.currentinterface properties. In connection with this, also edited the
following topics: Accepting Incoming Connections , Establishing Outgoing
Connections , and Checking Connection Status . Changed information in the
Supported Objects (EM202 platform) topic. Updated sock.localportlist ,
sock.targetinterface property topics. Also edited "Platform-dependent
Programming Information" topics of all platforms. EM1000 and EM1202
platforms got new "Enum pl_sock_interfaces" topics.

Corrected a mistake in the Main Parameters topic (net object). The topic
incorrectly stated that the Tibbo Basic application can't change the MAC address,
which is, in fact, possible.

Correction: default value for the net.ip property is "1.0.0.1", not "127.0.0.1".

Corrected net.ip , net.netmask , net.gatewayip (details portion).

Correction: EM1202 platform does not support RTC (rtc .) object.

Edited Enum pl_io_num topic of the EM1000 platform manual to reflect
newly supported I/O lines 49-53.

Added to Understanding TCP Reconnects topic (section about reconnects and
HTTP). Note added also to Sock.reconmode Property topic.

Improved "Supported Functions" and "Supported Objects" topics for all platforms.

04SEP2007 release

Extended and renamed the Project Browser topic (formerly called "Using the
Project Browser"). Also made new screenshot.

New screenshots in the Code Auto-completion topic. Text edited slightly as
well.

Updated the Tooltips topic, created Supported HTML Tags topic. New data
concerns using HTML elements in tooltips.

Updated the Watch and Scopes in Watch topics -- new screenshots; the
text was also edited.

Extended the Constants topic -- added a new section about escape
sequences in string constants.

Updated Language Element Icons (slight changes only).

09AUG2007 release

Added the EM1202 platform description section.

Corrected RTC Object topic: should be rtc.getdata and rtc.setdata, not
rtc.get and rtc.set.

Minor corrections in the EM1000 platform description section.

536

373

370

474 506

478

426

434 439

486

506

143 151

358 358

360

360 360 361

151 375

147 143

428

492

22

23

24 26

33 37

65

136

151

375

143

738 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

12JUN2007 release

Closing Connections topic contained references to sock.abort method, which
does not exist. Correct method name is sock.reset.

Expanded Establishing Outgoing Connections and Closing Connections
topics. Both topics now contain "Do not forget! Connection Handling is fully
asynchronous" sections.

Added "Socket re-use after connection closing" section to the Closing
Connections topic.

New More On the Socket's Asynchronous Nature topic.

12FEB2007 release

Updated Adding, Removing, and Saving Files topic.

Added Graphic File Properties Dialog topic.

Updated Working With HTML topic.

Significantly expanded Embedding Code Within an HTML File topic -- especially
important: all code fragments on the HTML page are parts of one procedure.

Updated Using HTTP , Generating Dynamic HTML pages , and Working With
HTTP Variables topics.

27DEC2006 release

Added "What's new in R2" and "Migration From Version 1" topics.

Updated The Watch -- described new functionality, provided more info on how
watch works.

Scopes in Watch topics -- provided more info on how watch works.

Updated Using the Project Browser -- selected platform is now visible in the
topmost tree node.

Updated Program Structure -- explained that event handlers can also accept
arguments.

New Exceptions topic

Updated Variables and Their Types -- added info about dword, long, real, float,
and structures.

Updated Type Conversion -- almost 100% new text.

New Type Conversion in Expressions -- this section has been "under
construction" for a long time.

New Compile-time Calculations topic.

Updated Arrays topic -- new ways to declare, etc.

New Structures topic.

Updated and renamed "User-defined Types" topic. Now it is called Enumeration
Types .

Updated Understanding the Scope of Variables topic.

New Declaring Variables topic.

437

434 437

437

441

18

133

79

80

461 466

469

33

37

22

43

29

48

50

52

53

54

58

59

61

64

739Update History (for this Manual)

©2000-2011 Tibbo Technology Inc.

Updated Introduction to Procedures -- explained that event handlers can also
accept arguments and can never be functions procedures.

Updated Dim Statement topic -- new data about ways to define array
variables.

New Type...End Type Statement topic.

Updated Passing Arguments to Procedures topic (strict byref argument match
is now required).

Updated Goto Statement -- all labels are local!

New Supported Variable Types topics for each platform (EM202, EM1000).

Updated Platform-dependent Programming Information topics for each platform
(EM202, EM1000).

EM202 platform no longer supports redirection -- Enum pl_redir topic has been
updated.

Updated Supported Functions (Syscalls) for EM202 and EM1000 platforms -- some
stuff in, some stuff out.

Updated Generating Dynamic HTML Pages topic -- described changed behavior
when the same code snippet has to be executed from two instances of the same
HTML page being sent to the browser.

Updated Httpnoclose Property topic -- there is a new "separator" string.

Updated Pat.play and Beep.play topics -- now "**" means x4 speed.

New Sys.onsystimerperiod Property topic.

Updated On_sys_timer Event topic -- to reflect that there is a new
sys.onsystimerperiod property.

New Sock.inconenabledmaster Property topic.

Updated Accepting Incoming Connections topic -- added material regarding
sock.inconenabledmaster property.

Updated Stor.getdata Method , Stor.setdata Method , Rtc.getdata Method
, Rtc.setdata Method topics because all four methods have been renamed.

New Cfloat Function , ftostr Function , Lbin Function , Lhex Function ,
Lstr Function , Lstri Function , Lval Function , Strtof Function topics.

Updated Vali Function topic -- this function is no longer available since val
function now works both for word (unsigned) and short (signed) conversions.

Updated Val Function topic to reflect the fact that this function is now used
both for word (unsigned) and short (signed) conversions.

Updated Str Function , Stri Function , Bin Function , Hex Function , Val
Function topics -- more accurate description and examples.

Added "declaration" to the description of all events.

Updated sock.event R/O Property and sock.eventsimple R/O Property topics
-- these properties are not longer available.

Updated On_sock_event Event topic -- this event now carries newstate and
newstatesimple arguments that have replaced sock.event and
sock.eventsimple R/O properties.

Updated Checking Connection Status topic to reflect the changes made to
the on_sock_event .

New "Split Packet" Mode of TCP Data Processing , .Splittcppackets Property ,
and On_sock_tcp_packet_arrival Event topics.

Updated certain screenshots in several topics.

66

86

100

68

93

466

482

365 233

533

533

533

484

484

523 524

376 377

207 211 214 216

216 217 218 228

230 229

229

225 226 207 212

229

480 480

480

480

480

439

490

453 501

491

740 TIDE and Tibbo BASIC User Manual

©2000-2011 Tibbo Technology Inc.

Added Image Editor topics: Built-in Image Editor , Image Menu , Image Editor
Toolbar , Tool Properties Toolbars (+ all subtopics).

Updated Adding, Removing, and Saving Files topic (added image editor-related
info).

06JULY2006 release

Added new platform -- EM1000 .

Added "Platform revision Programming Information" topics to EM202 and EM1000
 platform documentation.

Stor object got new property- stor.base . Entire description of the object
has been updated because of that.

Clarification has been added to the romfile object description. This object can
only access first 65534 bytes of each file, even if the actual file is larger.

Entire new beep object has been added.

New feature in io object -- io.enabled property was added.

New feature in system object- see PLL Management, sys.currentpll ,
sys.newpll , sys.resettype .

New features in serial port object- support for Wiegand and clock/data
interfaces. New topics include: Three Modes of the Serial Port with subtopics,
ser.mode , and ser.autoclose . A lot of other topics have been changed- too
many to list here.

Change in sys.buffalloc behavior: now if the serial port (socket) to which the
buffer belongs is not closed (idle) the buffer size will remain unchanged. This
affects ser.rxbuffrq , ser.txbuffrq , sock.rxbuffrq , sock.txbuffrq ,
sock.tx2buffrq , sock.cmdbuffrq , sock.rplbuffrq , sock.varbuffrq .

Corrected errors in the Enum pl_io_num (pin descriptions were wrong- RTS, CTS,
DTR, and DSR lines were shown at incorrect positions).

Corrected ser.txlen , ser.txfree , sock.txlen , sock.txfree property
descriptions. These properties do not take into account uncommitted data in the
TX buffer (it was stated otherwise previously). Consequently these topics were
also edited: Buffer Memory Status , TX and RX Buffer Memory Status .
Ser.notifysent , on_ser_data_sent , sock.notifysent , on_sock_data_sent

, ser.setdata , and sock.setdata have been amended accordingly.

Corrected mistakes related to date/time conversion functions- date function
was erroneously documented as "day" function, weekday function description
was missing altogether. Topics of other date/time related functions- year ,
month , daycount , hours , minutes , and mincount were slightly
corrected.

08MAY2006 release

Corrected errors in io.Num Property and io.State Property

08MAR2006 release

Updated Preparing Your Hardware with the network upgrade procedure

Updated Starting a New Project

Updated Making, Uploading and Running an Executable Binary

20 124

127 128

18

143

143

522 523

370

232

294 298

526 531

532 535

378

380

409 402

530

415 419 497 509

508 476 496 511

420 420 510 510

394 447

410 412 487

489 418 500

208

230

230

221 209 213 221 220

301 303

9

10

26

741Update History (for this Manual)

©2000-2011 Tibbo Technology Inc.

Updated Project Menu with new entry description for Device Explorer

Updated Debug Toolbar with new button description for Device Explorer

Updated and expanded Device Explorer

Added new functions: Day Function , Daycount Function , Hours Function ,
Mincount Function , Minutes Function , Month Function , Year Function

11JAN2006 release

Improved indexes -- better context search.

Added L1008 , L1009

02JAN2006 release

Initial release of manual.

123

126

208 209 213

220 221 221 230

118 118

TIDE and Tibbo BASIC User Manual742

©2000-2011 Tibbo Technology Inc.

Index

- - -
- Operator 105

- & -
&b 45

&h 45

- * -
* Operator 105

- / -
/ Operator 105

- + -
+ Operator 105

- = -
= Operator 105

- A -
Abort 28

Accessing a Value Within an Array 54

active opens 434

Actively closing TCP connections 437

Actively closing UDP connections 437

add custom comments 24

Add File 18

AND Operator 105

arrays 54
watching 33

asc 206

asynchronous operation 378

- B -
BASIC code snippet in HTTP file 465

BASIC files 16

baudrate 378

baudrate property 390

Beep 232

beep.divider 232

beep.play 233

Beeper 232

bin 207

blocking code 448

blue line 31

boolean 48

Break 28

breakpoint 30

Broadcast 428

buffer memory 526

buffer overruns 398, 454

buffer redirection 454

buffer shorting 378, 454

buffer sizes 378

buffers 526

Button 234

button.time 235

Buzz 10

Buzzer 232

By Reference 68

By Value 68

byte 48

- C -
C1001 107

C1002 107

C1003 107

C1004 108

C1005 108

C1006 108

C1007 109

C1008 109

C1009 110

C1010 110

C1011 111

C1012 111

C1013 111

C1014 112

C1015 112

C1016 113

C1017 113

C1018 113

C1019 114

C1020 114

C1021 114

Index 743

©2000-2011 Tibbo Technology Inc.

C1022 115

C1023 115

C1024 116

call stack 31, 133

case 97

Case Sensitive 45

cfloat 207

char 48

chr 208

CMD buffer 422, 457
overruns 458

Code hinting 24

Code Profiling 37

code-completion 23

Colons 45

Comments 45

Communication in progress 28

Communication problem 28

Compilation Unit 136

Compiler 136

connections close automatically 437

const 65, 84

Constants 65
In different bases 45

Construct 136

Conversion 50

cross-debugging 28, 136

Ctrl+Shift+space 24

Ctrl+space 23

CTS line 379

CTS/RTS flow control 378

custom comments for tooltips 24

- D -
data overrun detection 378

date 208

daycount 209

ddstr 210

ddval 210

Debug Mode 27, 120

Debug version 15

Decision Structures 72

Declares 84

Declaring Procedures 66

Declaring Variables 61

default gateway 358

dim 86

direction control via RTS 378

do 87

doevents 73, 87, 466

Double Quote Marks 45

dynamic HTML 79, 462, 466

- E -
Edit Mode 120

EEPROM 522

else 94

elseif 94

EM1000 143

EM1000-EV 143

EM1202 151

EM1202-EV 151

end 89

end if 94

end select 97

end sub 99

enum 59, 88

enumeration types 48

escape character 456

escape sequence 80

escape sequences 378

Ethernet communications 358

events 8
event handlers 11, 43

exit 89

exit do 89

exit for 89

exit function 89

exit sub 89

exit while 89

- F -
F5 14, 26

F7 26

F9 30

fd.availableflashspace 267

fd.buffernum 267

fd.capacity 268

fd.checksum 268

fd.close 269

fd.copyfirmware 269

fd.create 271

fd.cutfromtop 271

fd.delete 272

fd.filenum 273

TIDE and Tibbo BASIC User Manual744

©2000-2011 Tibbo Technology Inc.

fd.fileopened 273

fd.filesize 274

fd.find 274

fd.flush 275

fd.format 276

fd.getattributes 278

fd.getbuffer 278

fd.getdata 279

fd.getfreespace 280

fd.getnextdirmember 280

fd.getnumfiles 281

fd.getsector 281

fd.laststatus 282

fd.maxopenedfiles 282

fd.maxstoredfiles 283

fd.mount 283

fd.numservicesectors 284

fd.open 284

fd.pointer 285

fd.ready 285

fd.resetdirpointer 286

fd.sector 287

fd.setattributes 287

fd.setbuffer 288

fd.setdata 289

fd.setfilesize 289

fd.setpointer 291

fd.setsector 290

fd.totalsize 292

file pointer 370

firewall 9

firmware file 9

for 90

form 469

freeze 448

ftostr 211

Full duplex 378

Function 91

Function Procedures 66

- G -
GIF 461

Global Scope 61

Global Variables 43

goto 93

graceful disconnect 425

green LED 363

green status 28

GUI 119

- H -
half duplex 378

halt 530

Handling RX buffer overruns 398

Header files 16

hex 212

hours 213

hover your mouse 24

HTML 79, 461
dynamic content 79

dynamic data 466

Dynamic pages 462

files 16

form 469

Pages 79

Scope 61

HTTP 424
mode 461

server 461

Variables 469

- I -
icons 136

Identifier 137

Identifiers 47

if statement 94

illegal characters 466

Inband commands 456

Inband message 456

Inband replies 460

include 43, 95

includepp 96

incoming connections mode 426

instr 214

integer 48

Integers 48

IO Object 294

io.enabled 298

io.intenabled 299

io.intnum 299

io.invert 300

io.lineget 300

io.lineset 300

io.num 301

io.portenabled 302

io.portget 302

Index 745

©2000-2011 Tibbo Technology Inc.

io.portnum 302

io.portset 303

io.portstate 303

io.state 303

- J -
JPG 461

Jump to Cursor 33

- K -
Keyword 137

kp.autodisablecodes 312

kp.enabled 312

kp.longpressdelay 313

kp.longreleasedelay 313

kp.pressdelay 315

kp.releasedelay 315

kp.repeatdelay 315

kp.returnlinesmapping 316

kp.scanlinesmapping 317

- L -
L1001 116

L1002 116

L1003 117

L1004 117

L1005 117

L1006 117

L1007 118

L1008 118

L1009 118

label 93, 137

lbin 214

lcd.backcolor 339

lcd.bitsperpixel 339

lcd.bluebits 340

lcd.bmp 340

lcd.enabled 341

lcd.error 342

lcd.fill 342

lcd.filledrectangle 343

lcd.fontheight 343

lcd.fontpixelpacking 344

lcd.forecolor 344

lcd.getprintwidth 345

lcd.greenbits 345

lcd.height 346

lcd.horline 346

lcd.inverted 347

lcd.iomapping 347

lcd.line 348

lcd.linewidth 348

lcd.lock 348

lcd.lockcount 349

lcd.paneltype 349

lcd.pixelpacking 350

lcd.print 351

lcd.printaligned 351

lcd.rectangle 352

lcd.redbits 352

lcd.rotated 353

lcd.setfont 353

lcd.setpixel 354

lcd.textalignment 355

lcd.texthorizontalspacing 355

lcd.textorientation 356

lcd.textverticalspacing 356

lcd.unlock 356

lcd.verline 357

lcd.width 357

LED 363

left 215

len 215

lhex 216

Linker 137

link-level broadcasts 428

Listening ports 426

Local Scope 61

loop 87

Loop structures 72

loopback 448

lstr 216

lstri 217

lval 218

- M -
main window 120

Master Process 7

md5 218

memory allocation 393, 444, 526

memory capacity 393

menu 121

messages embedded within the TCP data stream
456

TIDE and Tibbo BASIC User Manual746

©2000-2011 Tibbo Technology Inc.

mid 219

mincount 220

minimalistic 82

minutes 221

MOD Operator 105

month 221

more than one serial port 388

Multi-Dimensional Arrays 54

Multiple Sockets 432

- N -
Net object 358

net.failure 361

net.gatewayip 361

net.ip 360

net.linkstate 361

net.mac 360

net.netmask 360

new project 10

next 90

No Communication 28

non-blocking operation 394

non-HTTP and HTTP processing on the same socket
 463

NOT Operator 105

- O -
Objects 8, 82

on_beep 233

on_button_pressed 234

on_button_released 235

on_io_int 301

on_kp 314

on_kp_overflow 314

on_net_link_change 362

on_net_overrun 362

on_pat 365

on_ser_data_arrival 412

On_ser_data_arrival Event 396

on_ser_data_sent 412

on_ser_esc 413

on_ser_overrun 413

on_sock_data_arrival 489

on_sock_data_sent 489

on_sock_event 490

on_sock_inband 490

on_sock_overrun 491

on_sock_tcp_packet_arrival 491

on_sys_init 526, 533

on_sys_timer 533

on_wln_event 565

on_wln_task_complete 565

OR Operator 105

- P -
parity 378

passive open 425

Passive TCP connection termination 437

pat.play 365

Pause 28

P-Code 137

Philosophy 4

PL_SST_CL_ARESET_CMD 439

PL_SSTS_CLOSED 439

Platform Functions 82

point-to-point 424

polling 396, 448

Port Selection 388

port switchover 429

program pointer 30

project 15

Project file 16

Project pane 134

Project tree 18

- Q -
queue 7

- R -
RAM 70

random 222

read data from EEPROM 522

Real-time Clock 375

reboot your device manually 26

Receiving Data 394, 445, 446

receiving data with UDP 450

reconmode 428

reconnects 428, 429

Recursion 66

red dot 30

red LED 363

red status 28

Release Mode 27

Index 747

©2000-2011 Tibbo Technology Inc.

Remove All Breakpoints 30

Remove File 18

Resource files 16, 20

Restart 26

right 223

Romfile Object 370

romfile.find 372

romfile.getdata 373

romfile.offset 373

romfile.open 374

romfile.pointer 374

romfile.size 375

RPL buffer 422, 457, 460

rtc.get 376

rtc.running 377

rtc.set 377

RTS line 379

Run 28

Run to Cursor 33

RX buffer 379, 394, 422, 447, 462

RX buffer overruns 454

RX line 379

- S -
sandbox 7, 137

scope 61

select case 97

send UDP broadcasts 435

Sending data 397, 445, 446, 451

ser.autoclose 402

ser.baudrate 402

ser.bits 403

ser.ctsmap 403

ser.dircontrol 404

ser.div9600 404

ser.enabled 405

ser.escchar 405

ser.esctype 405

ser.flowcontrol 407

ser.getdata 407

ser.interchardelay 408

ser.interface 408

ser.mode 409

ser.newtxlen 410

ser.notifysent 410

ser.num 411

ser.numofports 411

ser.parity 413

ser.redir 414

ser.rtsmap 415

ser.rxbuffrq 415

ser.rxbuffsize 416

ser.rxclear 416

ser.rxlen 417

ser.send 417

ser.setdata 418

ser.txbuffrq 419

ser.txbuffsize 419

ser.txclear 420

ser.txfree 420

ser.txlen 420

serial port 379

serial port object 378

Serial Settings 390

set the socket for HTTP 463

Settings 38

sha1 223

short 48

Single Quote Marks 45

Sock Object 421

sock.acceptbcast 474

sock.allowedinterfaces 474

sock.bcast 475

sock.close 475

sock.cmdbuffrq 476

sock.cmdlen 477

sock.connect 477

sock.connectiontout 477

sock.currentinterface 478

sock.discard 478

sock.endchar 479

sock.escchar 479

sock.event 480

sock.eventsimple 480

sock.getdata 480

sock.getinband 481

sock.httpmode 481

sock.httpnoclose 482

sock.httpportlist 483

sock.httprqstring 483

sock.inbandcommands 484

sock.inconenabledmaster 484

sock.inconmode 485

sock.localport 485

sock.localportlist 486

sock.newtxlen 486

sock.nextpacket 450, 487

TIDE and Tibbo BASIC User Manual748

©2000-2011 Tibbo Technology Inc.

sock.notifysent 487

sock.num 488

sock.numofsock 488

sock.outport 488

sock.protocol 492

sock.reconmode 492

sock.redir 493

sock.remoteip 494

sock.remotemac 495

sock.remoteport 495

sock.reset 495

sock.rplbuffrq 496

sock.rplfree 497

sock.rpllen 497

sock.rxbuffrq 497

sock.rxbuffsize 498

sock.rxclear 498

sock.rxlen 499

sock.rxpacketlen 499

sock.send 500

sock.setdata 500

sock.setsendinband 500

sock.splittcppackets 501

sock.state 439, 502

sock.statesimple 439, 505

sock.targetbcast 505

sock.targetinterface 506

sock.targetip 506

sock.targetport 507

sock.tx2buffrq 508

sock.tx2len 508

sock.txbuffrq 509

sock.txbuffsize 509

sock.txclear 510

sock.txfree 510

sock.txlen 510

sock.varbuffrq 511

socket
automatic switching 423

stack pointer 31

state 28

Statements 83

status bar 130

status messages 28

stepping 33

stor.base 523

stor.get 523

stor.set 524

stor.size 525

str 225

strgen 226

stri 226

string 48

strsum 227

strtof 228

sub 99

Sub Procedures 66

SYN-SYN-ACK 434

Sys Object 526

sys.buffalloc 530

sys.currentpll 531

sys.freebuffpages 531

sys.halt 532

sys.newpll 532

sys.onsystimerperiod 533

sys.reboot 534

sys.resettype 535

sys.runmode 534

sys.serialnum 534

sys.setserialnum 535

sys.timercount 536

sys.totalbuffpages 536

sys.version 536

Syscall 137

system requirements 119

- T -
Target 137

tbh 16

tbs 16

TCP 424

terms 136

Tibbo Basic code within an HTML file 80

Timekeeping 375

timeouts 437

timer 37, 528

toolbars 126

tooltip 24

total capacity of the buffer 394

tpr 16

tree 70

TX buffer 379, 394, 422, 447, 462

TX buffer overruns 398, 454

TX line 379

TX2 buffer 422, 457

TXT 461

Index 749

©2000-2011 Tibbo Technology Inc.

- U -
UDP "connections" 425

UDP broadcasts
accept 428

send 435

until 87

Upload 26

- V -
val 229

vali 230

VAR buffer 422, 462

Variable Types For Arrays 54

Virtual Machine 7, 28, 137

- W -
watch 33

watching arrays 33

weekday 230

wend 101

while 87, 101

who can connect 426

window 120

wln.associate 557

wln.associationstate 558

wln.boot 558

wln.buffrq 559

wln.buffsize 559

wln.csmap 560

wln.disassociate 561

wln.domain 561

wln.enabled 562

wln.gatewayip 562

wln.ip 563

wln.mac 563

wln.netmask 564

wln.rssi 566

wln.scan 567

wln.scanresultbssid 567

wln.scanresultbssmode 568

wln.scanresultchannel 568

wln.scanresultrssi 569

wln.scanresultssid 569

wln.settxpower 570

wln.setwep 570

wln.task 572

word 48

word length 378

write data to EEPROM 522

- X -
XOR Operator 105

- Y -
year 230

yellow line 30

yellow status 28

	Taiko R2
	Legal Information

	Overview
	Our Language Philosophy
	System Components
	Objects
	Events

	Getting Started
	Preparing Your Hardware
	Starting a New Project
	Writing Code
	Building, Uploading and Running
	Compiling a Final Binary

	Programming with TIDE
	Managing Projects
	The Structure of a Project
	Creating, Opening and Saving Projects
	Adding, Removing and Saving Files
	Resource Files
	Built-in Image Editor
	Coding Your Project
	Project Browser
	Code Auto-completion
	Code Hinting
	Tooltips
	Supported HTML Tags

	Making, Uploading and Running an Executable Binary
	Two Modes of Target Execution

	Debugging Your Project
	Target States
	Exceptions

	Program Pointer
	Breakpoints
	The Call Stack and Stack Pointer
	Stepping
	The Watch
	Scopes in Watch

	Code Profiling

	Project Settings
	Device Explorer
	Upload Function

	Protecting Your Device with a Password

	Programming Fundamentals
	Program Structure
	Code Basics
	Naming Conventions
	Introduction to Variables, Constants and Scopes
	Variables And Their Types
	Type Conversion
	Type conversion in expressions
	Compile-time Calculations
	Arrays
	Structures
	Enumeration Types
	Understanding the Scope of Variables
	Declaring Variables
	Constants

	Introduction to Procedures
	Passing Arguments to Procedures
	Memory Allocation for Procedures

	Introduction to Control Structures
	Decision Structures
	Loop Structures
	Doevents

	Using Preprocessor
	Scope of Preprocessor Directives

	Working with HTML
	Embedding Code Within an HTML File

	Understanding Platforms
	Objects, Events and Platform Functions

	Language Reference
	Statements
	Const Statement
	Declare Statement
	Dim Statement
	Doevents Statement
	Do... Loop Statement
	Enum Statement
	Exit Statement
	For... Next Statement
	Function Statement
	Goto Statement
	If.... Then... Else Statement
	Include Statement
	Includepp Statement
	Select-Case Statement
	Sub Statement
	Type Statement
	While-Wend Statement

	Keywords
	As
	Boolean
	ByRef
	Byte
	ByVal
	Char
	Else
	End
	False
	For
	Integer
	Next
	Public
	Short
	Step
	String
	Then
	Type
	To
	True
	Word

	Operators
	Error Messages
	C1001
	C1002
	C1003
	C1004
	C1005
	C1006
	C1007
	C1008
	C1009
	C1010
	C1011
	C1012
	C1013
	C1014
	C1015
	C1016
	C1017
	C1018
	C1019
	C1020
	C1021
	C1022
	C1023
	C1024
	L1001
	L1002
	L1003
	L1004
	L1005
	L1006
	L1007
	L1008
	L1009

	Objects, Properties, Methods, Events

	Development Environment
	Installation Requirements
	User Interface
	Main Window
	Operation Modes
	Menu Bar
	File Menu
	Edit Menu
	View Menu
	Project Menu
	Debug Menu
	Image Menu
	Window Menu
	Help Menu

	Toolbars
	Project Toolbar
	Debug Toolbar
	Image Editor Toolbar
	Tool Properties Toolbar
	Selection Tool Properties
	Paint Tool Properties
	Eraser Tool Properties
	Text Tool Properties
	Line Tool Properties
	Rectangle Tool Properties
	Ellipse Tool Properties
	Zoom Tool Properties

	Status Bar
	Dialogs
	Project Settings
	New Project
	Add File to Project
	Graphic File Properties Dialog

	Panes
	Call Stack
	Output
	Project
	Browser
	Files

	Watch
	Colors

	Language Element Icons

	Glossary of Terms
	Compilation Unit
	Compiler
	Construct
	Cross-Debugging
	Identifier
	Keyword
	Label
	Linker
	P-Code
	Syscall
	Target
	Virtual Machine

	Platforms
	Platform Specifications
	EM500W
	Platform-specific Constants
	Enum pl_redir
	Enum pl_io_num
	Enum pl_io_port_num
	Enum pl_int_num
	Enum pl_sock_interfaces

	Connecting External Flash IC

	EM1000 and EM1000W Platforms
	Platform-specific Constants
	Enum pl_redir
	Enum pl_io_num
	Enum pl_io_port_num
	Enum pl_int_num
	Enum pl_sock_interfaces

	EM1202 and EM1202W Platforms
	Platform-specific Constants
	Enum pl_redir
	Enum pl_io_num
	Enum pl_io_port_num
	Enum pl_int_num
	Enum pl_sock_interfaces

	EM1206 and EM1206W Platforms
	Platform-specific Constants
	Enum pl_redir
	Enum pl_io_num
	Enum pl_io_port_num
	Enum pl_int_num
	Enum pl_sock_interfaces

	DS1100 Platform
	Platform-specific Constants
	Enum pl_redir
	Enum pl_io_num
	Enum pl_io_port_num
	Enum pl_int_num
	Enum pl_sock_interfaces

	DS1101W Platform
	Platform-specific Constants
	Enum pl_redir
	Enum pl_io_num
	Enum pl_io_port_num
	Enum pl_int_num
	Enum pl_sock_interfaces

	DS1102W Platform
	Platform-specific Constants
	Enum pl_redir
	Enum pl_io_num
	Enum pl_io_port_num
	Enum pl_int_num
	Enum pl_sock_interfaces

	DS1202 Platform
	Platform-specific Constants
	Enum pl_redir
	Enum pl_io_num
	Enum pl_io_port_num
	Enum pl_int_num
	Enum pl_sock_interfaces

	DS1206 Platform
	Platform-specific Constants
	Enum pl_redir
	Enum pl_io_num
	Enum pl_io_port_num
	Enum pl_int_num
	Enum pl_sock_interfaces

	Common Information
	Supported Variable Types
	Supported Functions
	GPIO Type
	RTS/CTS Remapping
	Serial Port FIFOs
	Clock Frequency (PLL) Control
	Special Configuration Section of the EEPROM
	Device Serial Number
	Flash Memory Configuration
	Status LEDs
	Setup (MD) Button (Line)
	Connecting GA1000
	Debug Communications
	Serial Channels vs. Serial Ports

	Function Reference
	Aes128dec Function
	Aes128enc Function
	Asc Function
	Bin Function
	Cfloat Function
	Chr Function
	Date Function
	Daycount Function
	Ddstr Function
	Ddval Function
	Ftostr Function
	Hex Function
	Hours Function
	.Insert Function
	Instr Function
	Lbin Function
	Left Function
	Len Function
	Lhex Function
	Lstr Function
	Lstri Function
	Lval Function
	Md5 Function
	Mid Function
	Mincount Function
	Minutes Function
	Month Function
	Random Function
	Rc4 Function
	Right Function
	Sha1 Function
	Str Function
	Strand Function
	Strgen Function
	Stri Function
	Stror Function
	Strsum Function
	Strtof Function
	Strxor Function
	Val Function
	Vali Function
	Weekday Function
	Year Function

	Object Reference
	Beep Object
	.Divider Property
	On_beep Event
	.Play Method

	Button Object
	On_button_pressed Event
	On_button_released Event
	.Pressed R/O Property
	.Time R/O Property

	Fd Object
	Overview
	Sharing Flash Between Your Application and Data
	Fd. Object's Status Codes
	Direct Sector Access
	Using Checksums
	Upgrading the Firmware/Application

	File-based Access
	Formatting the Flash Disk
	Disk Area Allocation Details

	Mounting the Flash Disk
	Checking Disk Vitals
	File Names and Attributes
	Creating, Deleting, and Renaming Files
	Reading and Writing File Attributes
	Walking Through File Directory
	Opening Files
	Writing To and Reading From Files
	Removing Data From Files
	Searching Within Files
	Closing Files
	Using Disk Transactions
	Understanding Transaction Capacity

	File-based and Direct Sector Access Coexistence
	Prolonging Flash Memory Life

	Properties and Methods
	.Availableflashspace R/O Property
	.Buffernum Property
	.Capacity R/O Property
	.Checksum Method
	.Close Method
	.Copyfirmware Method
	.Copyfirmwarelzo Method
	.Cutfromtop Method
	.Create Method
	.Delete Method
	.Filenum Property
	.Fileopened R/O Property
	.Filesize R/O Property
	.Find Method
	.Flush Method
	.Format Method
	.Formatj Method
	.Getattributes Method
	.Getbuffer Method
	.Getdata Method
	.Getfreespace Method
	.Getnextdirmember Method
	.Getnumfiles Method
	.Getsector Method
	.Laststatus R/O Property
	.Maxopenedfiles R/O Property
	.Maxstoredfiles R/O Property
	.Mount Method
	.Numservicesectors R/O Property
	.Open Method
	.Pointer R/O Property
	.Ready R/O Property
	.Rename Method
	.Resetdirpointer Method
	.Sector R/O Property
	.Setattributes Method
	.Setbuffer Method
	.Setdata Method
	.Setfilesize Method
	.Setsector Method
	.Setpointer Method
	.Totalsize R/O Property
	.Transactioncapacityremaining R/O Property
	.Transactioncommit Method
	.Transactionstart Method
	.Transactionstarted R/O Property

	IO Object
	Overview
	Line/Port Manipulation With Pre-selection
	Line/Port Manipulation Without Pre-selection
	Controlling Output Buffers
	Working With Interrupts

	Properties, Events, Methods
	.Enabled Property (Selected Platforms Only)
	.Intenabled Property
	.Intnum Property
	.Invert Method
	.Lineget Method
	.Lineset Method
	.Num Property
	On_io_int Event
	.Portenabled Property (Selected Platforms Only)
	.Portget Method
	.Portnum Property
	.Portset Method
	.Portstate property
	.State Property

	Kp Object
	Possible Keypad Configurations
	Key States and Transitions
	Preparing the Keypad for Operation
	Servicing Keypad Events
	Properties, Methods, Events
	.Autodisablecodes Property
	.Enabled Property
	.Longpressdelay Property
	.Longreleasedelay Property
	On_kp Event
	On_kp_overflow Event
	.Pressdelay Property
	.Releasedelay Property
	.Repeatdelay Property
	.Returnlinesmapping Property
	.Scanlinesmapping Property

	LCD Object
	Overview
	Understanging Controller Properties
	Preparing the Display for Operation
	Working With Pixels and Colors
	Lines, Rectangles, and Fills
	Working With Text
	Raster Font File Format

	Displaying Images
	Improving Graphical Performance

	Supported Controllers/Panels
	Samsung S6B0108 (Winstar WG12864F)
	Solomon SSD1329 (Ritdisplay RGS13128096)
	Himax HX8309 (Ampire AM176220)

	Properties and Methods
	.Backcolor Property
	.Bitsperpixel R/O Property
	.Bluebits R/O Property
	.Bmp Method
	.Enabled Property
	.Error R/O Property
	.Fill Method
	.Filledrectangle Method
	.Fontheight R/O Property
	.Fontpixelpacking R/O Property
	.Forecolor Property
	.Getprintwidth Method
	.Greenbits R/O Property
	.Height Property
	.Horline Method
	.Inverted Property
	.Iomapping Property
	.Line Method
	.Linewidth Property
	.Lock Method
	.Lockcount R/O Property
	.Paneltype R/O Property
	.Pixelpacking R/O Property
	.Print Method
	.Printaligned Method
	.Rectangle Method
	.Redbits R/O Property
	.Rotated Property
	.Setfont Method
	.Setpixel Method
	.Textalignment Property
	.Texthorizontalspacing Property
	.Textorientation Property
	.Textverticalspacing Property
	.Unlock Method
	.Verline Method
	.Width Property

	Net Object
	Overview
	Main Parameters
	Checking Ethernet Status

	Properties, Methods, Events
	.Mac R/O Property
	.Ip Property
	.Netmask Property
	.Gatewayip Property
	.Failure R/O Property
	.Linkstate R/O Property
	On_net_link_change Event
	On_net_overrun Event

	Pat Object
	.Channel Property
	.Greenmap Property
	On_pat Event
	.Play Method
	.Redmap Property

	Ppp Object
	.Buffrq Method
	.Buffsize R/O Property
	.Enabled Property
	.Ip Property
	.Portnum Property

	Pppoe Object
	.Acmac Property
	.Ip Property
	.Sessionid Property

	Romfile Object
	.Find Method
	.Find32 Method
	.Getdata Method
	.Offset R/O Property
	.Open Method
	.Pointer Property
	.Pointer32 Property
	.Size R/O Property

	RTC Object
	.Getdata Method (Previously .Get)
	.Running R/O Property
	.Setdata Method (Previously .Set)

	Ser Object
	Overview
	Anatomy of a Serial Port
	Three Modes of the Serial Port
	UART Mode
	Wiegand Mode
	Clock/Data Mode

	Port Selection
	Serial Settings
	Sending and Receiving Data (TX and RX buffers)
	Allocating Memory for Buffers
	Using Buffers
	Buffer Memory Status
	Receiving Data
	Sending Data
	Handling Buffer Overruns
	Redirecting Buffers
	Sinking Data

	Properties, Methods, Events
	.Autoclose Property
	.Baudrate Property
	.Bits Property
	.Ctsmap property (Selected Platforms Only)
	.Dircontrol Property
	.Div9600 R/O Property
	.Enabled Property
	.Escchar Property
	.Esctype Property
	.Flowcontrol Property
	.Getdata Method
	.Interchardelay Property
	.Interface Property
	.Mode Property
	.Newtxlen R/O Property
	.Notifysent Method
	.Num Property
	.Numofports R/O Property
	On_ser_data_arrival Event
	On_ser_data_sent Event
	On_ser_esc Event
	On_ser_overrun Event
	.Parity Property
	.Redir Method
	.Rtsmap Property (Selected Platforms Only)
	.Rxbuffrq Method
	.Rxbuffsize R/O Property
	.Rxclear Method
	.Rxlen R/O Property
	.Send Method
	.Setdata Method
	.Sinkdata Property
	.Txbuffrq Method
	.Txbuffsize R/O Property
	.Txclear Method
	.Txfree R/O Property
	.Txlen R/O Property

	Sock Object
	Overview
	Anatomy of a Socket
	Socket Selection
	Handling Network Connections
	TCP connection basics
	UDP "connection" basics
	Accepting Incoming Connections
	Accepting UDP broadcasts
	Understanding TCP Reconnects
	Understanding UDP Reconnects and Port Switchover
	Incoming Connections on Multiple Sockets
	Establishing Outgoing Connections
	Sending UDP broadcasts
	Closing Connections
	Checking Connection Status
	More On the Socket's Asynchronous Nature

	Sending and Receiving data
	Allocating Memory for Buffers
	Using Buffers in TCP Mode
	Using Buffers in UDP Mode
	TX and RX Buffer Memory Status
	Receiving Data in TCP Mode
	Receiving Data in UDP Mode
	Sending TCP and UDP Data
	"Split Packet" Mode of TCP Data Processing
	Handling Buffer Overruns
	Redirecting Buffers
	Sinking Data

	Working With Inband Commands
	Inband Message Format
	Inband-related Buffers (CMD, RPL, and TX2)
	Processing Inband Commands
	Sending Inband Replies

	Using HTTP
	HTTP-related Buffers
	Setting the Socket for HTTP
	Socket Behavior in the HTTP Mode
	Including BASIC Code in HTTP Files
	Generating Dynamic HTML Pages
	URL Substitution
	Working with HTTP Variables
	Simple Case (Small Amount of Variable Data)
	Complex Case (Large Amount of Variable Data)
	Details on Variable Data

	Properties, Methods, and Events
	.Acceptbcast Property
	.Allowedinterfaces Property
	.Availableinterfaces R/O Property
	.Bcast R/O Property
	.Close Method
	.Cmdbuffrq Method
	.Cmdlen R/O Property
	.Connect Method
	.Connectiontout Property
	.Currentinterface R/O Property
	.Discard Method
	.Endchar Property
	.Escchar Property
	.Event R/O Property (Obsolete)
	.Eventsimple R/O Property (Obsolete)
	.Getdata Method
	.Gethttprqstring Method
	.Getinband Method
	.Httpmode Property
	.Httpnoclose Property
	.Httpportlist Property
	.Httprqstring R/O Property
	.Inbandcommands Property
	.Inconenabledmaster Property
	.Inconmode Property
	.Localport R/O Property
	.Localportlist Property
	.Newtxlen R/O Property
	.Nextpacket Method
	.Notifysent Method
	.Num Property
	.Numofsock R/O Property
	.Outport Property
	On_sock_data_arrival Event
	On_sock_data_sent Event
	On_sock_event Event
	On_sock_inband Event
	On_sock_overrun Event
	On_sock_postdata
	On_sock_tcp_packet_arrival Event
	.Protocol Property
	.Reconmode Property
	.Redir Method
	.Remoteip R/O Property
	.Remotemac R/O Property
	.Remoteport R/O Property
	.Reset Method
	.Rplbuffrq Method
	.Rplfree R/O Property
	.Rpllen R/O Property
	.Rxbuffrq Method
	.Rxbuffsize R/O Property
	.Rxclear Method
	.Rxpacketlen R/O Property
	.Rxlen R/O Property
	.Send Method
	.Setdata Method
	.Setsendinband Method
	Sinkdata Property
	.Splittcppackets Property
	.State R/O Property
	.Statesimple R/O Property
	.Targetbcast Property
	.Targetinterface Property
	.Targetip Property
	.Targetport Property
	.Toutcounter R/O property
	.Tx2buffrq Method
	.Tx2len R/O Property
	.Txbuffrq Method
	.Txbuffsize R/O Property
	.Txclear Method
	.Txfree R/O Property
	.Txlen R/O Property
	.Urlsubstitutes
	.Varbuffrq Method

	Ssi Object
	Configuring SSI Channel
	CLK, DO, and DI Lines
	Baudrate
	SSI Modes
	Direction

	Sending and Receiving Data
	More on I2C
	Properties, Methods
	.Baudrate Property
	.Channel Property
	.Clkmap Property
	.Dimap Property
	.Direction Property
	.Domap Property
	.Enabled Property
	.Mode Property
	.Str Method
	.Value Method
	.Zmode Property

	Stor Object
	.Base Property
	.Getdata Method (previously .Get)
	.Setdata Method (previously .Set)
	.Size R/O Property

	Sys Object
	Overview
	On_sys_init Event
	Buffer Management
	System Timer
	PLL Management
	Serial Number
	Miscellaneous

	Properties, Methods, Events
	.Buffalloc Method
	.Currentpll R/O Property (Selected Platforms Only)
	.Freebuffpages R/O Property
	.Halt Method
	.Newpll Method (Selected Platforms Only)
	On_sys_init Event
	On_sys_timer Event
	.Onsystimerperiod Property (Selected Platforms Only)
	.Reboot Method
	.Runmode R/O Property
	Serialnum R/O Property (Selected Platforms Only)
	Setserialnum Method (Selected Platforms Only)
	.Resettype R/O Property
	.Timercount R/O Property
	.Totalbuffpages R/O Property
	.Version R/O Property

	Wln Object
	Overview
	Wi-Fi Parlance Primer
	Wln Tasks
	Wln State Transitions
	Brining Up Wi-Fi Interface
	Configuring Interface Lines
	Applying Reset
	Selecting Domain
	Allocating Buffer Memory
	Setting MAC Address (Optional)
	Booting Up the Hardware
	Setting IP, Gateway, and Netmask
	Setting TX Power (Optional)

	Scanning for Wi-Fi Networks
	Discovering All Wireless Networks
	Collecting Data About Specific Network
	Multiple Access Points With the Same Name

	Setting Wi-Fi Security
	Setting WEP Mode and Key
	Setting WPA Mode and Key

	Associating With Selected Network
	Creating Own Ad-hoc Network
	Communicating via Wln Interface
	Disassociating From the Network
	Terminating Own Ad-hoc Network
	Detecting Disassociation or Offline State

	Properties, Methods, Events
	.Activescan Method
	.Associate Method
	.Associationstate R/O Property
	.Boot Method
	.Buffrq Method
	.Buffsize R/O Property
	.Clkmap Property
	.Csmap Property
	.Dimap Property
	.Disassociate Method
	.Domain Property
	.Domap Property
	.Enabled R/O Property
	.Gatewayip Property
	.Ip Property
	.Mac Property
	.Netmask Property
	.Networkstart Method
	.Networkstop Method
	On_wln_event Event
	On_wln_task_complete Event
	.Rssi R/O Property
	.Scan Method
	.Scanresultbssid R/O Property
	.Scanresultbssmode R/O Property
	.Scanresultchannel R/O Property
	.Scanresultrssi R/O Property
	.Scanresultssid R/O Property
	.Scanresultwpainfo R/O Property
	.Settxpower Method
	.Setwep Method
	.Setwpa Method
	.Task R/O Property

	Libraries
	Common Library Info
	Library Sets
	Anatomy of Tibbo Libraries
	Libraries and Platforms
	Adding Library Files to Projects
	About _get_info() API Functions
	Library Configurators

	Library Reference
	AGG (AggreGate) Library
	AggreGate Configurator
	The Access Control Demo
	The Steps
	Preparing the AggreGate Server
	Step 1: The Embryo
	Step 2: Adding Setting A-variables
	Define Required Settings
	Define Required A-variables

	Step 3: Adding Table A-variables
	Define the User Table
	Add the Table A-variable

	Step 4: Adding A-functions
	Adding A-function

	Step 5: Firing Instant A-events
	Adding Instant A-event

	Step 6: Handling Stored A-events
	Define the ACE Table
	Define the ACE Stored Event

	Step 7: Gluing it All Together
	Step 8: Adding Bells and Whistles

	En_agg_event_levels
	En_agg_status_codes
	Library Procedures
	Agg_start()
	Agg_stop()
	Agg_get_connection_state()
	Agg_record_decode()
	Agg_record_encode()
	Agg_fire_instant_event()
	Agg_stored_event_added()
	Agg_proc_stored_events()
	Agg_proc_timer()
	Agg_proc_data()
	Agg_proc_sock_event()
	Agg_proc_data_sent()
	Callback_agg_get_firmware_version()
	Callback_agg_device_function()
	Callback_agg_synchronized()
	Callback_agg_pre_buffrq()
	Callback_agg_buff_released()
	Callback_agg_error()
	Callback_agg_convert_setting()
	Callback_agg_convert_event_field()
	Callback_agg_rtc_sg()

	DHCP Library
	Step-by-step Usage Instructions
	Operation Details
	Code Examples
	Step 1: Code Example for the Ethernet Interface
	Step 2: Code Example for the Wi-Fi Interface
	Step 3: Adding Bells and Whistles
	Step 4: Adding More Bells and Whistles

	Library Defines (Options)
	En_dhcp_status_codes
	Library Procedures
	Dhcp_get_info()
	Dhcp_start()
	Dhcp_stop()
	Dhcp_proc_timer()
	Dhcp_proc_data()
	Callback_dhcp_ok()
	Callback_dhcp_failure()
	Callback_dhcp_pre_clear_ip()
	Callback_dhcp_pre_buffrq()
	Callback_dhcp_buff_released()

	FILENUM (File Numbers) Library
	Step-by-step Usage Instructions
	Operation Details
	A Code Snippet
	Library Defines (Options)
	Library Procedures
	Filenum_get()
	Filenum_who_uses()
	Filenum_release()

	GPRS (PPP) Library
	Step-by-step Usage Instructions
	Operation Details
	Operation Details
	Code Example
	Library Defines (Options)
	En_gprs_status_codes
	Library Procedures
	Gprs_get_info()
	Gprs_start()
	Gprs_stop()
	Gprs_proc_timer()
	Gprs_proc_sock_data()
	Gprs_proc_ser_data()
	Callback_gprs_ok()
	Callback_gprs_failure()
	Callback_gprs_pre_buffrq()

	PPPOE Library
	Step-by-step Usage Instructions
	Operation Details
	Code Example
	Library Defines (Options)
	En_pppoe_status_codes
	Library Procedures
	Pppoe_get_info()
	Pppoe_start()
	Pppoe_stop()
	Pppoe_proc_timer()
	Pppoe_proc_data()
	Callback_pppoe_ok()
	Callback_pppoe_failure()
	Callback_pppoe_pre_buffrq()

	SOCK (Socket Numbers) Library
	Step-by-step Usage Instructions
	Operation Details
	A Code Snippet
	Library Defines (Options)
	Library Procedures
	Sock_get()
	Sock_who_uses()
	Sock_release()

	STG (Settings) Library
	Controlling Your Device Through Settings
	Setting Configurator
	Library Options
	Editing Settings
	Dot-decimal Settings
	Max Number of Members
	P1 and P2 Parameters
	Default Setting Values

	Step-by-step Usage Instructions
	Getting Started
	Verifying and Initializing Settings
	Writing and Reading Settings
	Using Stg_sg()
	Using Stg_get() and Stg_set()
	Using Setting Numbers
	Working With Multi-value Settings
	Understanding Timestamps
	Using Pre-gets and Post-sets

	Operation Details
	Sample Project
	Step 1: The Embryo
	Step 2: Adding Setting Initialization
	Step 3: Adding Comms
	Step 4: Completing the Project

	Stg_timestamp Global Variable
	En_stg_status_codes
	Library Procedures
	Stg_start()
	Stg_check_all()
	Stg_get_def()
	Stg_restore_multiple()
	Stg_restore_member()
	Stg_get_num_settings()
	Stg_get_num_members()
	Stg_find()
	Stg_stype_get()
	Stg_get()
	Stg_set()
	Stg_sg()
	Stg_set_ts()
	Callback_stg_error()
	Callback_stg_pre_get()
	Callback_stg_post_set()
	Callback_stg_vm_read()
	Callback_stg_vm_write()

	WLN (Wi-Fi Association) Library
	Step-by-step Usage Instructions
	Operation Details
	Code Examples
	Step 1: The Simplest Example
	Step 2: Adding TCP Comms
	Step 3: Trying WPA
	Step 4: Roaming Between Access Points

	Library Defines (Options)
	En_wln_status_codes
	Library Procedures
	Wln_get_info()
	Wln_start()
	Wln_stop()
	Wln_change()
	Wln_rescan()
	Wln_wpa_mkey_get()
	Wln_check_association()
	Wln_proc_timer()
	Wln_proc_data()
	Wln_proc_task_complete()
	Wln_proc_event()
	Callback_wln_ok()
	Callback_wln_failure()
	Callback_wln_pre_buffrq()
	Callback_wln_mkey_progress_update()
	Callback_wln_rescan_result()

	Update History (for this Manual)

